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Abstract. Although Man-in-the-Middle (MitM) attacks on LANs have been
known for some time, they are still considered a significant threat. This is be-
cause these attacks are relatively easy to achieve, yet challenging to detect. For
example, a planted network bridge or compromised switch leaves no forensic
evidence.
In this talk, we present Vesper: a novel plug-and-play MitM detector for local
area networks. Vesper uses a technique inspired from the domain of acoustic
signal processing. Analogous to how echoes in a cave capture the shape and
construction of the environment, so to can a short and intense pulse of ICMP
echo requests model the link between two network hosts. Vesper sends these
probes to a target network host and then uses the reflected signal to summarize
the channel environment (think sonar). Vesper uses neural networks called au-
toencoders to profile the link with each host, and to detect when the environment
changes. Using this technique, Vesper can detect MitM attacks with high accu-
racy, to the extent that it can distinguish between identical networking devices.
Vesper is implemented at the software level and is therefore is cross platform.
We evaluate Vesper on LANs consisting of video surveillance cameras, servers,
and hundreds of PC workstations. We show how Vesper works across multiple
network switches and in the presence of traffic. We also investigate several pos-
sible adversarial attacks against Vesper, and demonstrate how Vesper mitigates
these attacks. Finally, we show how Vesper can be used to fingerprint network
devices remotely (e.g., for tamper protection). To demonstrate this, we show
how Vesper can differentiate between 40 identical Raspberry Pis.
A version of the vesper tool can be downloaded online.1

1https://github.com/ymirsky/Vesper
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1. Introduction
A Man-in-the-Middle attack (MitM) is where a malicious third party takes control of a
communication channel between two or more endpoints by intercepting and forwarding
the traffic in transit. An attacker in the middle has the capability of harming the confiden-
tiality, integrity, and availability of the user’s content, by eavesdropping, manipulating,
crafting, and dropping traffic on the network. In general, the MitM attack model on a
local area network (LAN) has three steps: (1) gain access to the network, (2) intercept
traffic in transit, and (3) manipulate, craft, or drop traffic.

Depending on the scenario, access can be achieved by connecting to a public Wi-Fi
access point (e.g. at a café, airport...) or by connecting physically to an exposed network
cable or network switch. The attacker can also conduct this attack remotely via a mal-
ware which has infected a trusted computer within the existing network [1]. After gaining
access, interception can be achieved by exploiting known vulnerabilities in network pro-
tocols. For example, the attacker can poison a host’s address resolution protocol (ARP)
table to capture local traffic [2–4], or spoofing a domain name server (DNS) to intercept
all web traffic [5–7]. The attacker can easily exploit these vulnerabilities with free tools
which work out-of-the-box such as Ettercap, Cain and Abel, Evilgrade, arpspoof, dsniff,
and many others.

Although MitM attacks on LANs have been known for some time, they are still con-
sidered a significant threat [8,9], and have gained academic attention over the years. This
is likely because the attack is relatively easy to achieve, yet challenging to detect [10].
Encryption can protect the integrity and confidentiality of the traffic in transit. However,
according to [11], 30% of the world’s web traffic is not encrypted. Furthermore, in many
cases networked systems do not encrypt their traffic by default (e.g., SCADA control
system [12]). Moreover, even if the traffic is encrypted, encryption protocols may have
flaws [13, 14], be misconfigured, or simply left out by a manufacturer (e.g. CVE-2017-
15643). We also note that LAN-based MitM attacks are used in APTs to achieve lateral
movement [15]. Therefore, there is a need for detecting the presence of a MitM, even
when encryption is employed.

1.1. The Proposed Solution

Our proposed solution is inspired by signal processing domain. In a dynamic system, the
output (reaction) of the system to a short input signal is called impulse response. A com-
mon use of impulse responses is the modeling and recreation of acoustic environments,
such as small rooms or concert halls. As an intuitive example, one can hear the IR of a
room by clapping their hands. The sound of the clap changes based on the size, shape,
and materials of the room.

Using this concept, we propose a MitM detector called Vesper. Vesper bats are the
largest and best-known family of the bat species. Akin to it name, our detector captures
the impulse response of a LAN by measuring the round-trip-times (RTT) resulting from an
intense burst of ICMP echo requests. The payload sizes of the ICMP request packets are
modulated according to an excitation signal. As a result, the impulse response extracted
from the RTTs can be used to model the network environment in the perspective of two
communicating hosts. When a third party intercepts traffic, the harmonic composition
of the impulse response between the hosts changes significantly. These changes can be
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detected using an anomaly detector.

The described impulse response analysis is enough to detect all LAN based MitM
attacks. However, although the described echo analysis seems difficult to evade, there
are several adversarial attacks which can be performed. For example, Eve can spoof the
ICMP replies on behalf of the victim or even replay previously recorded bursts. Therefore,
Vesper monitors three features in total to resist adversarial attacks: the impulse response’s
energy, the overall delay, and the packets’ jitter distribution. The three features are weak
at detecting some adversarial attacks, but strong at detecting others. Therefore, when
combined, these features provide good protection against adversarial attacks.

Altogether, Vesper (1) probes a link with an end-host with a modulated ICMP excita-
tion signal, (2) extracts three features from the response, and (3) detects MitM attacks and
potential adversarial attacks using an autoencoder neural network as an anomaly detector.
In this talk, we show how Vesper works with various devices, in the presence of diverse
traffic, across multiple switches, and for long durations of time. We also show how Vesper
is robust against adversarial attacks, and can differentiate between devices with identical
hardware.

The current version of the Vesper MitM detection tool can be downloaded from
https://github.com/ymirsky/Vesper. The tool is written in python and
wraps C/C++ code using cython. The the current version only works on Linux machines
and has been tested on Kali. We plan to port Vesper to Windows in the near future.

1.2. Other MitM Detection Methods

In the past decade, many different detection schemes have been proposed in order to ad-
dress MitM attacks. In general, the solutions to MitM attacks on LANs address a specific
flaw in a protocol [3, 5, 6, 16, 17]. As an example, consider the infamous vulnerability in
the Address Resolution Protocol (ARP). The vulnerability gives untrusted hosts the abil-
ity to spread spoofed ARP messages, causing network traffic to be routed to the attacker’s
device. Solutions to this flaw include improved protocols [2,18,19] and the integration of
new security features [20].

Intrusion Detection Systems (IDS) have been proposed as a more generic way for
dealing with MitM attacks. These IDSs include software-based IDSs [21] and hybrid
hardware/software IDSs (e.g., an add-on component plugged into the mirror port of a
switch) [10].

However, these solutions have limitations:

Generalization. Many of these solutions address a flaw in a specific protocol, and there-
fore cannot be generalized to other or unknown MitM attacks occurring in the
LAN. For example, detecting an exploitation of the ARP protocol does not solve
the issue of an IL MitM.

Portability. Some of these solutions require additional hardware or other costly re-
sources. For example, a separate network host which acts as an IDS.

False Positives. Network traffic tends to be noisy, making it difficult to detect the pres-
ence of a MitM based on traffic patterns and packet contents. Therefore, searching
network packets for evidence of a MitM may lead to a large number of false posi-
tives [10].
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Regardless, all of the related solutions are weak to IL MitM attacks, since they leave no
forensic evidence in the packets. On the other hand, Vesper does not require additional
hardware and can detect EP, IL, and IP MitM attacks. Furthermore, Vesper is robust since
it analyzes its own probes and not the traffic of others.

The rest of this talk is organized as follows. In section 2, we present the MitM attack
model. In section 3, we provide a background on echo analysis, and introduce our tech-
nique (ping echo analysis). In section 4, we present the framework for MitM detection in
LANs via ping echo analysis (Vesper). In section 5, we present evaluations of Vesper on
several different networks. In section 6, we present possible adversarial attacks against
Vesper and the respective countermeasures. Finally, in section 8, we conclude our talk.
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End-point (EP) MitM: An attacker reroutes traffic

In-line (IL) MitM: An attacker physically intercepts traffic
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End-point (EP) MitM: An attacker reroutes traffic

In-line (IL) MitM: An attacker physically intercepts traffic
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In-Point (IP) MitM: An attacker replaces an existing network switch

(a) The three LAN MitM attack topologies.
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DH: Dedicated Hardware IP: In-Point  
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Topology EP IL IL IP IL 

Implementation TD NB DH DH DH 

Attack 

Vectors 

Gain physical access to switch X X X X X 

Connect to Ethernet wall socket X     

Install malware on existing host X     

Install device on strategic wire  X X  X 

Traffic 

Intercepted 

All traffic in LAN X     

Local traffic only  X X X X 

Can alter and inject traffic? X X X X  

Can be detected by Vesper? X X X   
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Topology EP IL IL IP IL 

Implementation TD NB DH DH DH 

Attack 

Vectors 

Gain physical access to switch X X X X X 

Connect to Ethernet wall socket X     

Install malware on existing host X     

Install device on strategic wire  X X  X 

Traffic 

Intercepted 

All traffic in LAN X     

Local traffic only  X X X X 

Can the MitM alter and inject traffic? X X X X  

Complexity of the MitM attack - ○ ● ★ ○ 

Vesper’s detection of the MitM attack* ★ ★ ● ○ NA 

*Based on the average Equal Error Rates (EER) from the evaluations: 
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(b) Summary of MitM Attacks on a LAN

Figure 1: A summary of the MitM attack topologies, implementations, under the scope
of Vesper’s detection.

2. The Attack Model

In this section we describe the MitM attack model used throughout the talk. We also
enumerate the attacker’s requirements, attack vectors, and capabilities.

2.1. Attack Scenario

Let Alice and Bob be victims located on the same LAN segment, where the LAN segment
may contain one or more network switches. Let Eve be the attacker whose objective is to
perform a MitM attack between Alice and Bob. In other words, Eve wants to manipulate
the traffic sent between Alice and Bob, while being able to craft new traffic as well (e.g.,
sending ARP packets). Eve has physical access to the LAN’s infrastructure, and can
install malware on a network host other than Alice and Bob.

2.2. Attack Topologies

Eve can accomplish her objective by establishing one of the following MitM topologies
(illustrated in Fig. 1a):

End-Point (EP) MitM. Eve either adds a new host, or compromises an existing host on
the LAN. Eve then causes the traffic in transit between the Alice and Bob to flow
through her device (e.g., via ARP poisoning or some other protocol-based MitM
attack).

In-Line (IL) MitM. Eve locates an exposed network cable which Alice and Bob use to
communicate. Eve then covertly installs a device which passes all traffic from one
side of the wire to the other, while being able to manipulate/inject traffic.

In-Point (IP) MitM. Eve locates an exposed network switch which Alice and Bob use
to communicate. Eve then swaps the switch with a new switch that has additional
logic enabling her to manipulate/inject traffic.

Unlike the EP MitM, IL and IP MitM attacks can only be accomplished by introducing
additional hardware. Therefore, these attacks require physical access to the LAN.
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Figure 2: The packet interception process for (1) an EP MitM, (2-3) an IL MitM, (4) an
IP MitM, and (4) a passive wiretap.

2.3. Classes of Attacks

MitM attacks in a LAN vary based on their stealth and complexity. For example, a more
covert attack is typically more difficult for the attacker to accomplish. We categorize the
class of a MitM attack based on the MitM topology, and implementation used. Table 1b
summarizes these classes, and their notations which we use throughout the talk.

We note that although an In-Point Dedicated Hardware (IP-DH) MitM attack is very
hard to detect, it is also very hard for the attacker to accomplish. This is because (1)
network switches are typically stored under lock and key, and (2) modern switches provide
a password protected administrator console (the attacker must copy the configurations
prior to the swap).

There are two reasons why such a MitM will buffer each and every inbound packet: (1)
to avoid signal collisions on the media when transmitting crafted/altered packets, and (2)
to capture and alter relevant packets before they reach their intended destination. In the
latter case, the MitM must parse every frame in order to determine the frame’s relevancy to
the attack, and cannot retroactively stop a transmitted frame. Therefore, the interception
process (hardware and/or software) will affect the timing of network traffic. We note
that since passive wiretaps only observe traffic, they are not MitM attacks and therefore
not in the scope of this talk. However, Vesper can detect a MitM which is presently
eavesdropping (not currently altering traffic) because a MitM always buffers each packet
upon reception. Fig. 2 illustrates the basic packet interception process for all MitM
implementations.
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Figure 3: A summary of the MitM attack topologies, implementations, under the scope
of Vesper’s detection.

3. Echo Analysis

In this section, we present the probing technique used by Vesper to capture the presence
of a MitM. Later in section 4, we show how Vesper uses this technique to actively detect
MitM attacks.

3.1. Acoustic Signal Processing

Our technique is inspired by the domain of acoustic signal processing. Therefore, we will
now briefly cover this topic to give you a bit of a background.

In the domain of acoustic signal processing, a sound which reverberates through the
air, and the environment (e.g., room) which reflects and affects the vibrations as they
propagate, are the signal x and LTI system S respectively. An acoustic engineer can model
S by extracting its impulse response h. This can be achieved by emitting an excitation
signal x at one location while simultaneously recording the resulting signal y at another
location. In this case, the input to S is generated by a speaker and the output is captured
by a microphone.

There are several methods for extracting an acoustic impulse response with an excita-
tion signal. These methods can be categorized as either being direct or indirect (visualized
in Fig. 3a):

Direct Methods. Direct methods involve an excitation signal x which is similar to that
of a Dirac function, so that y = h. However, since it is impossible to generate a
true Dirac signal in an acoustic environment, short loud sounds are used instead.
For example, popping a balloon, generating a spark, and firing a gun.
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Indirect Methods. An approximation of h can be obtained indirectly from a non-Dirac
excitation signal. The process involves deconvolving the excitation signal x with
the resulting output signal y [22]. One well-known excitation signal is the maxi-
mal length sequence (MLS) signal. An MLS is a pseudorandom binary sequence
generated from maximal linear feedback shift registers. Withm registers, the gen-
erator produces a random binary sequence of length N = 2m − 1 which is spec-
trally flat. As a result, an MLS excitation signal produces all frequencies, closely
resembles white noise, and is robust in noisy and populated environments [23]. A
code snippet is available in this talk’s the supplementary material, and the reader
may download our MLS generator’s source code and demo online.2

Once the impulse response h has been extracted from S, it can be used to perform a
convolution reverb (a digital simulation of an audio environment on sound). For example,
the response can be used to make a recorded piece of music to sound like it was played
in a particular cave or arena. We can see from this that h is dependent on the shape of the
room, the materials of the surfaces, and the positioning of the speaker and microphone.
Any alteration to these physical parameters will cause a noticeable affect on the impulse
response. In other words, an impulse response can be seen as an acoustical signature of
the environment.

To illustrate this concept, Fig. 3b presents four impulse responses extracted from dif-
ferent environments. The initial Dirac pulse (e.g., balloon pop sound) can be seen at
the beginning, followed by dynamic reverberations and echoes (i.e., spikes). The figure
shows that each environment has its own unique signature due to their unique constructs.

3.2. Ping Signal Processing
Our approach to MitM detection is to (1) model a LAN as an acoustic environment, (2)
emit excitation signals, (3) model the echoed response signals, and (4) detect abnormal
changes in newly sampled responses.

In networks, there are no reverberations of sound waves. However, switches, network
interfaces, and operating systems all affect a packet’s travel time across a network. The
hardware, buffers, caches, and even the software versions of the devices which interact
with the packets, all affect packet timing. When a device processes a burst of packets, the
device has dynamic reaction with respect to the packets’ sizes. This affects the packets’
processing times, which are in turn, then propagated to the next node in the network. This
is analogous to how a sound wave is affected as it reverberates off various surfaces.

To capture packet timing between a local host and an end-host, one can use the Internet
Control Message Protocol (ICMP) [24]. The ICMP is a popular protocol used to gain
feedback about problems in an IP network. One of the features of this protocol is the
Echo_Request command, commonly used to determine whether a host is operational.
When a host sends another host an Echo_Request, the target host returns an ICMP
Echo_Reply. Upon receiving the Echo_Reply, the sender can measure the round-
trip-time (RTT) to and from the receiver. This process is referred to as ‘pinging’. To
according to the ICMP standard (RFC 1122: 3.2.2.6), one may include data (a payload)
in an Echo_Request. In this case, the receiver must include the same data in the
Echo_Reply.

2https://github.com/ymirsky/MLSgen
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Figure 4: The behavior of ping RTT times in a LAN.

The RTT of an ICMP packet over a LAN is dependent on the number of switches
(hops) traversed, since interactive networking elements (e.g., switches) must fully buffer
each received frame before transmitting. The RTT is also dependent on the current load
and the hardware/software implementation of each networking element along the path of
the ping. Fig. 4a visualizes the timing of a ping to a host and back over a switch, and Fig
4b visualizes how two packets with different sizes sent quickly at a set rate affect jitter
(inter-packet arrival times). Note, proc denotes the packet processing time and reply
denoted the ICMP ECHO response processing time –both of which dynamically change
according to the load, model, software, and other characteristics.

3.2.1. System Definition (S)

Let S be a LAN environment consisting of one or more switches and numerous hosts. Let
Sij be the LAN in the perspective of host i communicating with host j, where i and j are
within the same LAN.

Let g be our generator signal which produces our system’s input signal x. The signal
g is defined as a sequence of ICMP Echo_Request frames transmitted at a rate of fs
Hz, where g[n] ∈ {42, 43, . . . , 1542} are the number of bytes which are transmitted in the
ICMP Echo_Request: 42 bytes for the Ethernet, IPv4, and ICMP protocol headers,
plus an additional 0-1500 bytes for the ICMP payload).

Let the input signal x be defined as the packet transmission times as a result of g. More
formally,

x[n] = g[n] · trans (1)

Finally, let the output signal y be defined as the sequence of RTTs, computed from the
respective ICMP Echo_Reply packets’ arrival times. More formally,

y[n] = Trx[n]− Ttx[n] (2)

where Ttx[n] is the transmission timestamp of the n-th Echo_Request in x, and Trx[n]
is the reception time of the resulting Echo_Reply.
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It is clear that there is a direct relationship between the packet transmission times x
and the RTTs y as generated by the signal g (evident in Fig. 5).

3.2.2. Ping Excitation Signal (x)

In order to capture a characterization of Sij , we use an MLS excitation signal as the
generator signal g.

To transmit a binary MLS signal s, we modulate is over g as the minimum and max-
imum ICMP payload sizes. For example, one possible N = 7 length MLS may be
s = {1, 1, 1, 0, 1, 0, 0}. In this case, s would be translated into the transmission signal
g = {1542, 1542, 1542, 42, 1542, 42, 42}. Fig. 5 illustrates an m = 10 bit (N = 1023
length) sequence (g) modulated as the input signal x, and then received as the output
signal y.

There are several reasons why we use the MLS method over other known excitation
methods:

• The MLS method is known to be robust in noisy environments, such as a room
populated with conversing individuals [23]. Network traffic can affect Sij , thus it
is appropriate to assume the system will be noisy.

• An MLS of sufficient length has subsequences of ‘1’s. This results in bursts of
pings which have the maximum size of 1500. This burst causes a momentary
stress on the network which is reflected in the output y, thus better capturing the
network’s characteristics.

• An MLS is randomly generated each time, thus raising the difficulty for an attacker
to perform a replay attack (discussed in detail later in section 6).

When the random sized packets of the modulated MLS signal g are sent back-to-back
at a fast rate, the electronics, caching mechanisms, CPU schedulers, and queuing algo-
rithms of each network element dynamically affect the respective proc(t) and reply(t) in
response to the varying load. Since the transmission times x of the payloads in g reflect
an MLS signal, y captures Sij’s fingerprint (impulse response).

Empirical evidence can be shown via linear regression. We found that the k-th RTT in
y has a dependency on the random payload sizes of previously transmitted ICMP requests
in x.In Fig. 6, we illustrate this dependency. The figure shows the RTT distribution of
the i-th ping sent in a burst of 50 pings, over 1500 trials. For example, the first box plot
is the RTT distribution of the first ping sent in each of the 1500 bursts. If there were no
dependency, then all of the distributions would have been the same. However, the figure
shows that the system has a dynamic response to the burst of packets. I.e., we get much
better accuracy if we model the response and not just naively average the RTTs times.

Fig. 6 also shows that the first pings are noisier than those which follow (e.g., due to
caching). This is another reason why we must send g at a fast rate, and not as individual
pings. In our system, we set the transmission rate of g to

fs ≡
2

µRTT ∗
(3)

where µRTT ∗ denotes the average RTT time of largest ping possible (a 1542 byte Ethernet

9



0.
0

0.
5

1.
0

1.
5

Transm. Time [usec]

In
pu

t:
 P

in
g 

E
xc

ita
tio

n 
S

ig
na

l (
x)

20
0

40
0

60
0

RTT [usec]

O
ut

pu
t:

 E
ch

o 
R

es
po

ns
e 

S
ig

na
l (

y)

0

20
0

40
0

60
0

80
0

0.
0

0.
1

0.
2

0.
3

T
im

e 
E

la
ps

ed
 [s

ec
]

Jitter [usec]

T
he

 IC
M

P
 E

ch
o 

R
es

po
ns

e 
Ji

tte
r 

(z
)

Fi
gu

re
5:

Sa
m

pl
e

si
gn

al
s

fr
om

a
L

in
ux

PC
(i

)a
nd

an
IP

-b
as

ed
se

cu
ri

ty
ca

m
er

a
(j

).
To

p:
th

e
10

bi
tM

L
S

pi
ng

ex
ci

ta
tio

n
si

gn
al
x

,s
en

tf
ro

m
i

to
j.

M
id

dl
e:

th
e

re
su

lti
ng

pi
ng

ec
ho

re
sp

on
se

si
gn

al
y

,t
im

ed
by
i.

B
ot

to
m

:t
he

IC
M

P
ec

ho
re

sp
on

se
jit

te
rz

,c
om

pu
te

d
by
i.

Si
gn

al
s
x

an
d
y

ha
ve

be
en

fit
te

d
to

a
L

oe
ss

cu
rv

e
(b

lu
e

lin
e)

fo
rb

et
te

rv
is

ua
liz

at
io

n.

10



100

200

300

400

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950

i−th Ping in a burst

R
T

T
 [u

se
c]

Figure 6: The RTT distribution of the i-th ping in a burst of 50 packets. The data was
collected over 1500 trials with a direct host-to-host Ethernet connection.

frame). This rate ensures that y captures the system well, while not overloading the end-
host.

3.2.3. ICMP Echo Response Jitter (z)

In order to form a robust MitM detector and to resist adversarial attacks, we also examine
the jitter of the ICMP echo response signal. Jitter is the time lapse between two consecu-
tive packet arrivals. We denote the jitter values of the ICMP echo responses as z, defined
as

z[t] = Trx[t]− Trx[t− 1] (4)

The bottom of Fig. 5 plots an example of the jitter resulting from the MLS signal
x. In this example, we can see that the jitter is distributed at distinct high (650 usec),
medium (390 usec), and low (50 usec) levels. The three distinct levels are the result of
the transitions between adjacent bits in the MLS binary sequence. For instance, whenever
a ‘10’ appears in the sequence, the jitter is small. This is because the RTT of a 42 byte
packet (’0’) is shorter than that of a 1542 byte packet (‘1’). Since the pings are sent at a
rate of fs, the response for the ‘0’ arrives shortly after the response for the ‘1’. Fig. 4b
illustrates the effect of all four possible transitions.

Although z is not part of our system model Sij , it captures additional characteristics of
the channel between i and j. For example, additional processing delays and moments of
stress on the participating network elements.
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4. Vesper
In this section, we present the MitM detector Vesper: the framework, machine learning
process, and deployment.

Lo
g
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Figure 7: The framework of Vesper, deployed on a network host.

4.1. Overview
Vesper is a plug-and-play man-in-the-middle detector based on ping echo-analysis. The
detector is installed on a local host within a LAN, and protects the local host from MitM
attacks originating from within the same LAN. In this section, we use Γ to denote the set
of known remote hosts in the LAN, excluding the local host.

Vesper’s framework has the following main components:

• Orchestrator (OR): The component responsible for adding new local IPs (hosts)
automatically, and deciding which link in the LAN should be probed when.

• Link Prober (LP): The component responsible for probing the hosts in Γ. Each
probe produces an MLS excitation signal (x), which results in the echo response
signal (y) and the echo response jitter (z).

• Feature Extractor (FE): The component responsible for summarizing the result
of a probe. The summary forms a feature vector ~v ∈ R3.

• Host Profiler (HP): The component responsible for detecting the presence of a
MitM using ~v. It accomplishes this by profiling the link to each host j ∈ Γ with an
autoencoder. The autoencoder is trained to recognize the link’s normal behavior.
An autoencoder is a neural network which can be used as an anomaly detector
(discussed later in section 4.5).

Vesper operates by performing the following steps (illustrated in Fig. 7):

Vesper’s MitM Detection Procedure

I. Orchestrator

1. At a random time, a random network host j ∈ Γ is selected and the detection
process is initiated.

II. Link Prober

2. The MLS Generator produces the random binary sequence s.

3. The MLS Modulator creates the ping excitation signal x based on the binary se-
quence s.

4. The Excitation Emitter sends host j a total of N Echo_Request packets, ac-
cording to x, and at a rate of fs. In parallel, the Echo Receiver captures j’s

12



Echo_Reply packets.

5. Once all N Echo_Reply packets have been received, the MLS Demodulator
extracts the echo response signal y and the echo response jitter z.

III. Feature Extractor

6. The Impulse Extractor, DC Extractor, and KS-Tester use x, y, and z to produce the
feature vector ~v.

IV. Host Profiler

7. The IP address of j is used to retrieve j’s autoencoder via a hashmap.

8. Using ~v, the autoencoder determines whether or not the link with host j has been
significantly altered. If ~v is determined to be normal (with high confidence), then
the autoencoder learns from the instance ~v. Otherwise, an alert is raised.

We will now discuss the each of Vesper’s main components in greater detail.

4.2. Orchestrator (OR)

Whenever a new IP address from the same subnet as Vesper is observed in the network
traffic, or added by the user, the OR pings that address. If none of the pings traverse a
router (indicated by TTL field of the IPv4 header) then the address is added to Γ. After
sending each probe, at a random time within the next second, the OR selects a random
host i ∈ Γ and initiates a probe via the LP.

4.3. Link Prober (LP)

After generating s and x, the LP transmits Echo_Request packets to the target host,
according to x. The Echo_Request packets are transmitted every 1

fs
= 1

2
µRTT ∗ sec-

onds. This means that the transmission and reception of ICMP packets must be performed
concurrently on two separate threads: the Excitation Emitter and Echo Receiver.

In order to measure the RTT of each ping correctly, each Echo_Request must be
associated with its respective Echo_Reply. To accomplish this, the Excitation Emitter
places the current index of x into the Sequence_Number field of the Echo_Request
header. When a host replies, it copies the same value from the Echo_Request into the
header of its Echo_Reply. The Identifier field is used to differentiate between
separate excitation signals.

In order to obtain the necessary accuracy, the LP records all transmission and re-
ception timestamps with nanosecond resolution. In C++, and with a Linux kernel,
this can be accomplished using the <time.h> library’s clock_gettime() with the
CLOCK_MONOTONIC option enabled.3

When the last Echo_Reply is received, y and z are computed, and the raw probe
data (x, y, z) is passed to the FE for feature extraction.

3The API instructs the OS to collect the time from a CPU register. On a Dell PC, we found the error to
be at worst 0.015% w.r.t. the smallest possible RTT (150 usec with a host-to-host direct Ethernet link).
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4.4. Feature Extractor (FE)
After each probe, the FE is tasked with extracting the following three features from
(x, y, z):

vEh
: The impulse response energy using x and y

vrtt∗: The mean RTT from the largest packets sent in x
vjit: The log-likelihood of the jitter’s distribution (z)

The feature vector ~v = {vEh
, vrtt∗, vjit} summarizes the state of the probed channel

(system Sij). After the FE computes ~v, the vector is passed to the HP for inspection. Fig.
8 plots each of the features before and after a MitM attack.

Figure 8: The three features extracted each probe over time where the dashed line indi-
cates the start of an IL-DH MitM attack.

4.4.1. Impulse Response Energy (vEh
)

When Eve intercepts Alice’s traffic, Eve affects the dynamics of the channel between
Alice and Bob. Even when Eve responds to Alice’s ICMP traffic on behalf of Bob, the
impulse response h, captured by y, changes. This is because Alice has different hardware
and software than Bob. To exemplify this concept, Fig. ?? shows the average impulse
response h obtained from x and y in the most extreme cases: when an intermediary switch
is swapped with an identical switch (both D-Link DGS-1100), and when an end-host j ∈ Γ
is swapped with an identical device (both Raspberry Pi 3B). In both cases, h captures the
variations and defects in the hardware of the swapped devices. Thus, h acts as a remote
physically unclonable function (PUF) [25] which captures the state of the system Sij ,
where i is the local host.

The Impulse Extractor summarizes the state of the system Sij by measuring the energy
of h, denoted Eh. As mentioned in section 3.1, through a process called deconvolution,
the response h can be obtained from the output y by knowing the excitation signal x.

In a linear time invariant system, the output can be expressed as

y[t] = h[t] ∗ x[t] (5)

where ∗ is the convolution operator, and h is the system’s impulse response. To extract
impulse response in the absence of noise, we can perform the deconvolution

h[t] = F−1{Y/X} (6)

where F−1 is inverse of the Discreet Fourier Transform (DFT), and where Y and X are
the Fourier Transforms of the signals y and x respectively.
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Figure 9: The average impulse response of 100 probes in the case where (top) the in-
termediary switch is swapped with an identical one, and (bottom) the target end-host is
swapped with an identical device (over the same switch).
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By assuming periodicity, we can use Parseval’s theorem [22] to obtain Eh without the
need for computing the inverse DFT in (6) by computing

Eh =
1

N

N∑
k=1

∣∣∣∣Y [k]

X[k]

∣∣∣∣2 (7)

The resulting value used as the feature vEh
in ~v.

4.4.2. Mean RTT of the Largest Packets (vrtt∗)

In Fig. 1a, it can be seen that a both MitM attack scenarios add an additional 2 ·Thop delay
to Alice’s traffic. We can detect this additional delay by averaging the values (RTTs) in y.

We note that the duration of Thop increases with the length of the Ethernet frame.
Approximately 50% of the packets in x have the maximum length of 1542 bytes. By
averaging the RTTs of those frames only, we obtain a better separation between benign
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the malicious scenarios. Fig. 10 illustrates the benefit of averaging the 1542 byte frames
in each response y.

This average is extracted from each y by the DC Extractor, and used as the feature
vRTT∗ in ~v.

4.4.3. Log-likelihood of the Jitter’s Distribution (vjit)

As mentioned in section 3.2.3, the jitter of the Echo_Reply packets (z) captures the
behavior of the networking elements between the sender and receiver. Concretely, since
x is transmitted at a rate of fs, it can be expected that some packets may be being queued,
and then transmitted back-to-back. This dynamic behavior characterizes the network’s
elements, and thus fingerprints the connection with host j.

Fig. 11 plots z’s distribution, with and without the presence of a MitM attack. Fig.
11 shows that the three levels of jitter (refer to section 3.2.3) are affected by the attack.
To detect abnormalities in this distribution, the FE performs a two-sample Kolmogorov-
Smirnov (KS) test. The KS test is a nonparametric statistical test which results in a prob-
ability value (p-value) that indicates how likely two sample distributions come from the
same distribution. We denote this value as pX,Y , where X and Y are tested distributions.

The KS Tester stores m samples of host j’s jitter distributions. These samples are used
as references for the channel’s expected behavior. We denote host j’s references as the
set Zj = z1, z2, . . . , zm. Although m is a parameter of V esper, in practice m = 5 works
well.

Let z0 denote the jitter distribution given to the FE for feature extraction. With z0, the
KS Tester computes the value

pjit = max{pz0,z1 , pz0,z2 , . . . pz0,zm} ≥ φ (8)

where φ is a probability threshold (we use 0.1 in our tool). The last k computations of pjit
(from previous probes) are averaged to form the feature vjit. In practice, we found that
k = 15 produces good results. In (8), we take the maximum p-value, since this makes the
feature more robust against false positives.

4.5. Host Profiler (HP)

The HP component uses local outlier factor (LOF) to perform the basic anomaly detection.
First, we will explain in how LOF works, and then we will explain how the HP uses them
to detect anomalies in the link with host j.

4.5.1. Local Outlier Factor

Local Outlier Factor (LOF) is an anomaly detection algorithm based on the lazy learner
concept of the K-nearest neighbors (KNN) algorithm. The KNN algorithm is used for
anomaly detection as follows:

Let a datasetX ofm numerical points (observations/feature vectors) which represent nor-
mal behavior. To determine whether or not a new observation xwe perform the following:
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Figure 12: LOF scores visualized. While the upper right cluster has a comparable density
to the outliers close to the bottom left cluster, they are detected correctly.

1. Retrieve the K nearest neighbors to x in X
2. compute the average distance from each neighbor and x
3. If the average distance is over some set threshold, then x is an outlier (abnormal),

otherwise, x is an inlier (normal).

The KNN anomaly detection algorithm works quite well, except when the data has
varying densities. In which case, the concept of distance to ones’ neighbors becomes
contextual. LOF resolves this by considering the local density of the discovered neigh-
bors. The anomaly score for x is a value on the range [0, inf) where scores below 1 in-
dicate inliers and scores above 1 indicate outliers. Fig. 12 illustrates how LOF attributes
these scores according to local density. For a detailed description of how these scores are
computed, see [26, 27].

In Vesper, we use euclidean distance as our LOF distance measure. Therefore, we
normalize our data with z-score normalization before applying LOF. In order to determine
whether or not the observation ~x is an anomaly, we set a cut-off probability pthr, and raise
an alert if LOF (x) > pthr.

4.5.2. The Anomaly Detection Procedure

To detect anomalies, the HP component maintains a set of observations (profile) for each
j ∈ Γ (denoted LOFj). The task of LOFj is to (1) learn the normal behavior of the
system Sij via each probe ~v taken from host j, and (2) raise an alert if a sample ~v is
abnormal. The HP accomplishes this in a plug-and-play fashion updating LOFj with the
first several probes observed. This assumes that there is no MitM in the network during
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Figure 13: Two ways to deploy Vesper in a LAN.

the initial deployment. In summary, the HP performs the following steps when instance ~v
arrives:

The Procedure of the HP Component

1. The set LOFj is retrieved via a hashmap, with host j as the key.

2. LOFj(~v) is executed propagated through Aj to produce the anomaly score s.

3. if s > φ, and the grace period is over, an alert is raised.

4. else if we are in training, then update LOFj with ~v.

In the tool, an averaging window is applied to the alerts (0:normal 1:alert) to increase
robustness. The size of the window is configurable: larger windows are more robust but
increase the detection delay.

4.6. Deployments

There are two ways one can deploy Vesper on a LAN (see Fig. 13). In order to protect
the link between host i and j Vesper only needs to be running on host i. However, this
trust is one-sided since j would be unaware of the state of his link with i. Therefore, to
secure all links in a LAN in a fully trusted manner, all hosts in the LAN must be running
an instance of Vesper. This kind of deployment can be practical in large LANs if Vesper
(1) sends probes to all LAN end-hosts as usual during an initial training phase (e.g., one
day), and then (2) have the OR only send probes to IP addresses with whom the local host
is currently communicating with.

Another option is to install one instance of Vesper on the network gateway (router).
Although this does not secure the links between each host of the LAN, it does secure the
inbound and outbound traffic. We note that both deployments only protect a host from
MitM attacks originating within the same LAN. In the future, we plan extending Vesper
to work across routers as well.
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Figure 14: Vesper’s performance in detecting IL MitMs
in a large LAN over multiple intermediary switches. The
scores before applying 10 sec averaging window are
marked in gray.

Figure 15: Vesper detecting
IP-DH MitM attacks. The
scores before applying a 1 min
averaging window are marked
in gray.

Figure 16: Plots of the anomaly scores produced by Vesper when installed on a laptop
PC (Alice), and in the presence of one intermediary switch. The rows indicate the victim
(Bob), and the columns indicate the MitM attack (Eve).
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Figure 19: Vesper detecting IP-DH attacks using an identical switch. Left: when a port is
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5. Evaluation
In this section, we refer to the device on which Vesper is installed as Alice, and Bob as the
device whose channel with Alice is under attack.

We evaluated Vesper in detecting End-Point Traffic Diversion (EP-TD), In-Line Net-
work Bridge (IL-NB), In-Line Dedicated Hardware (IL-DH) and In-Point Dedicated
Hardware (IP-DH) MitM attacks (see Table 1b). For the EP-TD MitM attack, we used a
Kali Linux Desktop PC which performed an ARP poising attack. For the IL-NB and IL-
DH MitM attacks, we used a Raspberry Pi 3B and a 1Gbps Ethernet switch respectively.
The Pi was provided with an extra Ethernet adapter, and configured to operate as a net-
work bridge. For the IP-DH MitM attacks, we used three 1Gbps switches: an advanced
feature (SW1), basic (SW2), and PoE (SW3) switch.

In this section, we refer to each of the devices in the above setups as the attacker Eve. In
our experiments, we used a C++ implementation of Vesper, set the autoencoder learning
rate to l = 0.1, the KS-Tester parameters to m = 5 and k = 15, and the MLS probe length
to N = 1023. The Ttx and Trx times were obtained with ±83 ns accuracy.4

In order to evaluate Vesper’s accuracy when operating in different sized LANs, we ex-
amined two setups: (1) when Alice connects to the same switch as Bob (one intermediary
switch), and (2) when Alice connects several switches away from Bob (multiple interme-
diary switches). In both setups, Vesper was evaluated in the presence of a wide variety
of real-world traffic, while the end-hosts were actively using the network. We will now
present our experimental results accordingly (a summary of the experiments and results
can be found in Table 1).

5.1. One Intermediary Switch

For the EP5 and IL6 MitMs, we experimented on two LANs (1) a surveillance camera
network, and (2) a LAN segment populated with active servers. The surveillance network
consisted 8 high-end HD Sony cameras and three PCs. The server LAN segment con-
sisted of one large switch connected to 61 active servers. Alice was a Kali Linux laptop
PC (Intel i5 CPU), and Bob was either a camera (SNC-EB602R), a Windows desktop PC
workstation (Intel i7 CPU), or a data server (Intel Xeon E5-2660 CPU) in each experi-
ment. The desktop PC was located in the surveillance network.

We performed the EP-TD,7 IL-NB,8 and IL-DH9 attacks on each of the three versions
of Bob, with duration of 3 hours each. Fig. 16 shows RMSE scores produced by Vesper
in each of experiments (at the moment of the attack). Each point in the figure represents
the result of a single probe, and the color indicates the probe’s abnormality.

For the IP-DH10 attack, we trained Vesper on one switch, and then swapped the switch
with a different one. Fig. 15 presents the results from the IP-DH attacks.

4For the purpose of reproducibility, we have published a ping timing tool based on the experiment code
used to test Vesper in this talk https://github.com/ymirsky/burstPing

5End-Point: An attack originating from an end-host
6In-Line: An attack originating from a device placed mid-wire
7End-Point Traffic Diversion: When traffic is diverted to an end-host first
8In-Line Network Bridge: The installation of network bridge mid-wire
9In-Line Dedicated Hardware: A dedicated MitM device installed mid-wire

10In-Point Dedicated Hardware: Replacing a switch with an infected one
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In all experiments, the IL-NB8 was the easiest MitM attack to detect. This is because
the Pi must perform additional logic in the kernel in order to bridge each ICMP packet.
In contrast, the IL-DH9 and IP-DH10 were the most difficult to detect, because the packet
interception was performed by dedicated hardware. We also note that there were 15 false
positives in the experiment with the Server and the IL-DH due to a momentary disconnect.
However, these FPs can be easily be mitigated by using an averaging window over the
scores. This is because the mean of the scores’ distribution significantly changes as seen in
Fig. 16. However, the trade-off with using averaging window is that it causes a detection
delay. Here, we found that a window size of one minute reduces the number of false
positives to zero.

5.2. Multiple Intermediary Switches
To evaluate Vesper across multiple intermediary switches, we used an organization’s of-
fice LAN. The LAN consisted of over 379 network hosts connected through 14 large
Ethernet switches, some of which used optical fiber uplinks. The hosts consisted of work-
stations, servers, printers, and IoT devices. The test scenario involved Alice (a desktop
PC), and Bob (the secretary’s PC) which were located on opposite sides of the LAN (sep-
arated by four large switches). The probes were sent for three hours, and the attacks (Eve)
were IL6 MitMs only.

Fig. 14 shows Vesper’s RMSE scores during the day (busy hours) and during the night.
The additional traffic during the day caused several false positives when detecting the IL-
DH9. However, by using an averaging window of 10 seconds, we were able to mitigate
the errors completely. The results show that Vesper can detect IL MitMs sufficiently well
in large noisy LANs, especially during off-hours.

5.3. Long Term Evaluation
In the previous subsections, we examined Vesper’s capability and robustness in detect-
ing various MitM attacks over different network topologies. In order to evaluate Vesper’s
long-term performance, we ran Vesper for seven days over a network which was burdened
with daily traffic. In this scenario, Vesper monitored a surveillance camera over two in-
termediary switches. The first intermediary switch was a large 24 port switch connected
to 17 active office PCs, and up-linked via fiber to a larger LAN (359 network hosts).
The second intermediary switch was an eight-port PoE switch by D-Link which was con-
nected to IP surveillance cameras. At the end of seven days, we performed an IL-NB8

MitM attack and then an IL-DH9 MitM attack. Fig., 20 shows that the fluctuating net-
work traffic harmed the vjit feature, but overall, did not affect Vesper’s MitM detection
performance. We also note that vRTT∗ provided a slightly better detection of the attacks
than vEh

. However, an adversary can easily evade the detection of vRTT∗ by replaying
timed packets or by simply performing an EP-TD7 attack such as ARP poisoning. Fur-
thermore, the impulse response feature vEh

can differentiate between end-point devices
and, in some cases, identical devices (see figures ??, 15, and 19). Therefore, vEh

is a
stronger MitM indicator than vRTT∗. In conclusion, the long term experiment shows that
Vesper can be a practical long-term solution in a real-world network.

5.4. Profile Train Time
A concern with Vesper is that should a change occur in the LAN’s topology, the affected
models in the HP component must be retrained. When retrained during busy hours, in the
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event of an IL6 MitM, we found that Vesper reaches a false positive rate of zero within
seconds (5-15 probes) when applied over one switch, and approximately a minute when
applied across multiple switches (the large office LAN). Therefore, although Vesper is
vulnerable during training, the attacker is challenged with deploying the MitM attack
within a narrow time window. To make this window even smaller, Vesper can send probes
at a faster rate during the grace period. Fig. 18 shows Vesper’s performance over time, in
the case of multiple switches during day-time traffic. The performance was measured in
AUC [28], interpretation: (1.0) Vesper was a perfect detector, (0.5) Vesper was randomly
guessing.

5.5. Probe Length

Fig. 17 shows how the parameter N increases the separation between the normal probes
and anomalous probes. Although the use of longer probes improves accuracy, there is a
trade-off with bandwidth. Vesper sends one probe per second, and a probe has an average
of N(42+1542

2
) bytes. For example, with an N = 1023, the bandwidth used is approx-

imately 810 Kbps. This rate is practical, especially since the probe traffic is contained
within the LAN, and can be sent between hosts which are currently communicating (see
section 4.6). However, a user should consider the number of Vesper instances installed to
appropriately configure N according to his/her limitations.

5.6. Digital Fingerprint

Vesper’s probes capture a unique digital fingerprint of the target end-host, and the network
devices along the way. Even identical devices have different fingerprints due to imper-
fections from the manufacturing process (e.g., clock skew [29]). In Fig. 15, we showed
that Vesper can detect when a switch is swapped with a different one due to the change
in this fingerprint. In Fig. 19, we show that Vesper can detect the change in fingerprint
when a switch is replaced with an identical switch. Interestingly, on many switches, we
were also able to detect when a port on the same switch is changed. This indicates that a
networking device’s fingerprint reflects the control module, and sometimes the electronic
interfaces as well.

24



Fi
gu

re
20

:T
he

re
su

lts
of

a
w

ee
k-

lo
ng

ex
pe

ri
m

en
tw

hi
ch

co
nc

lu
de

s
w

ith
tw

o
di

ff
er

en
tM

itM
at

ta
ck

s.
In

co
lu

m
n

1,
th

e
fe

at
ur

es
(r

ow
s

1-
3)

an
d

re
su

lti
ng

an
om

al
y

sc
or

es
(r

ow
4)

ar
e

pl
ot

te
d

ov
er

tim
e.

T
he

fir
st

re
d

da
sh

ed
lin

e
in

di
ca

te
s

th
e

st
ar

to
f

an
In

-L
in

e
N

et
w

or
k

B
ri

dg
e

(I
L

-N
B

)
M

itM
at

ta
ck

,a
nd

th
e

se
co

nd
re

d
da

sh
ed

lin
e

in
di

ca
te

s
th

e
st

ar
to

f
an

In
-L

in
e

D
ed

ic
at

ed
H

ar
dw

ar
e

(I
L

-D
H

)
M

itM
at

ta
ck

.
In

co
lu

m
n

2,
th

e
di

st
ri

bu
tio

ns
of

th
e

fe
at

ur
es

an
d

th
ei

rr
es

ul
tin

g
an

om
al

y
sc

or
es

ar
e

ill
us

tr
at

ed
.

25



6. Adversarial Attacks
Our base assumption in this talk is that Eve introduces her MitM attack after Vesper has
been deployed. However, even with this assumption, Eve can still attempt to evade de-
tection. In this section, we discuss possible tactics which Eve may perform to evade
detection. We then discuss and demonstrate how Vesper can detect these adversarial at-
tacks.

In general, there are four possible adversarial attacks against Vesper (illustrated in Fig.
21): DoS, Spoof, Replay, and Bypass. Vesper can detect these evasions through the three
features which the FE extracts from each probe. Each feature is strong at detecting some
attacks but weak at detecting the others. However, when combined, the three features
provide good protection against the attacks. Table 2 maps this relationship. The Table
also provides a summary of each feature’s strengths and weaknesses. We will now discuss
the detection capabilities of each feature with respect to each evasion.

6.1. DoS

In a DoS attack against Vesper, Eve drops Echo_Request packets en route to Bob so
that Alice never receives the signal y. All of the features are strong against this attack.
This is because there is a large spike in the features’ values when a signal is lost.

6.2. Spoof

In a spoof attack against Vesper, Eve replies to Echo_Request packets en route to Bob,
on behalf of Bob. In this attack, no additional hops are added to the packet’s route to Bob.
However, if Eve is topologically close to Alice, then there may be fewer hops altogether.

The features are affected by a spoof attack as follows:

vEh
is modest at detecting a spoof attack in the case of an EP with the same topological

distance as Alice↔Bob. This is because there is a possibility that two different
impulses will have the same energy. However, when launched from an IL MitM,
vEh

is strong because the topological placement of the MitM highly affects vEh
.

vrtt∗ This feature is modest in detecting a spoof attack by an EP11 MitM. This is be-
cause in the case where the link Alice↔Eve has the same topological distance as
Alice↔Bob (e.g., same number of hops), vrtt∗ may not be affected. However, if
Alice↔Eve has a greater topological distance, then vrtt∗ may increase. Finally, if

11End-Point: Such as the use of ARP poisoning

DoS

esper

Spoof
Replay

ICMP Path 
During Attack

DoS

esper

Spoof
Replay

ICMP Path 
During Attack

Bypass

Figure 21: The path of the ICMP packets sent from Vesper during each of the adversarial
attacks.
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Table 2: The capabilities of each feature under each evasive attack, and a summary of the
features’ strengths and weaknesses.

 

 

  Adversarial Attack 

  DoS Spoof Replay Bypass 
  EP IL IP EP IL IP EP IL IP EP IL IP 

F
ea

tu
re

 𝑣𝐸ℎ ● ● ● ○ ● ● ● ● ● - ○ ○ 

𝑣𝑟𝑡𝑡∗ ● ● ● ○ ◌ ◌ ○ ○ ◌ - ○ ◌ 
𝑣𝑗𝑖𝑡  ● ● ● ● ● ● ◌ ◌ ◌ - ○ ○ 

 

 

 

 

 

 

Assuming at least 1 sw 

rtt* is weak in spoof of CL because average rtt timing is stasitically the same, but rtt* is modest against 

spoof AW because it depends on the location of the WT (must be placed infront of bob), but then bob will 

detect him if vesper is on bob as well. Veh is string agains all replay attacks because it is dependent on the 

MLS signal which is difficult to predict in real-time. Modest against spoof CL bc although change in 

impulse, we measure energy so there is a possibility of collsion, but strong against AW bc highly 

dependent on placement of AW. Vjit is strong against spoof bc we test the distribution which has less 

collison space.[show in spoof graph].  

The duration of a signal $X$ is not a constant and can be very noisy due the local host’s scheduler. This 

strengthens the detection apabilties of veh and rtt* in the case of a replay attack. The reason is because the 

noise adds an undetermanistic skew in the tx times, which Eve cannot predetermine. However, since 

Alice can be unintentionally mitigate the noise by using a dedicated hardware/software, we consider vrtt* 

a modest feature. 

Detection 

◌ Weak 

○Modest 

●Strong 

EP: End-Point MitM 
IL: In-Line MitM 
IP: In-Point MitM 

  Strengths Weaknesses 

F
e
a

tu
re

 𝑣𝐸ℎ Detecting Replay Attacks Has 1D Collision Space 

𝑣𝑟𝑡𝑡∗ Detecting Additional Hops Detecting Spoof Attacks 

𝑣𝑗𝑖𝑡  Detecting Spoofing Attacks Detecting Replay Attacks 

 

Alice↔Eve has a smaller distance, then Eve may be advanced enough to delay the
response so that the average timing fits the origination distance. Since the relation-
ship is asymmetrical, if both Alice and Bob have an instance of Vesper, then Eve
will be detected by one of them. With regards to the case of an IL12 MitM, vrtt∗ is
weak. This is because Eve cannot have a topological distance which greater than
Alice↔Bob.

vjit is strong in detecting a spoof attack. This is because the distribution of the probe’s
jitter captures of the end-host’s processing behaviors –which is hard to spoof.

We note that it is difficult to detect a spoof attack in the case where an EP MitM is
used, and Eve has the same topological distance as Alice↔Bob. However, even if Eve’s
MitM device has the exact same hardware, firmware, and software as Bob’s device, (1)
Eve will only be able to perform a MitM attack on the link with Bob, but not Carol (who
has a different device), and (2) there are minute differences in Bob’s hardware which truly
give Bob’s device a unique fingerprint, thus making it difficult for Alice to spoof a reply
from Bob.

As mentioned in section 5.6, identical switches and end-devices have unique ‘finger-
prints’ from imperfections in their manufacturing processes [29, 30]. Vesper captures the
fingerprint of Bob in y. To demonstrate the attacker’s challenge in building a MitM device
which captures Bob’s fingerprint, we had many different devices perform a spoof attack
against each other. The experiment was setup in the following way:

1. A set of network hosts Γ from the same LAN are selected, and Vesper is installed
on a separate host (Alice).

2. Vesper (Alice) is trained to protect the link between the local host and host i ∈ Γ
(Bob).

3. After 2000 probes, host j ∈ Γ (Eve) replies to Vesper instead of host i.
4. Vesper’s detection performance id measured after 2000 more probes.
5. Steps 2-4 are repeated for every combination of i, j ∈ Γ. We denote the pair (i, j)

as spoof attack trial.

The above experiment was performed on two different LANs:

Γas An assortment of 100 different networked computers and IoTs in a office LAN over
multiple switches. This set of network hosts was used to see if a diverse set of

12In-Line: Such as an added network bridge
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devices have different signatures. In other words, if Eve uses any random device
to perform her MitM attack, what would be the likelihood of her spoof evasion to
succeed?

Γpi A set of 46 identical Raspberry Pi 3B devices all connected to a single switch. This set
of devices were used in order to determine how likely Eve will succeed at her spoof
attack if she replicates Bob’s device (and places it at the same topological distance
as Alice↔Bob). This experiment also demonstrates how unique the fingerprints
are between a large set of identical devices.

The results for the experiment on Γas and Γpi are summarized in figures 23 and 24.
The performance is measured in AUC, where the value has the following interpretation:
(1.0) Vesper was a perfect detector, (0.5) Vesper couldn’t differentiate between hosts i
and j, and (0.0) Vesper thought that host j was host i. The results show that Vesper is
robust against spoof evasion attacks in all cases. The results on Γas show us that there
is an extremely low likelihood that the attacker’s MitM device will be able to spoof the
victim’s device (or successfully perform an IL13 MitM attack if she uses just any hard-
ware. The results on Γpi show that Vesper can distinguish between 70% of the identical
devices after 10 minutes. Therefore, even if the attacker manages to use the exact same
hardware/software as the victim, Vesper is still likely to detect the change. Furthermore,
Eve will only be able to spoof devices which she has copied (e.g., other Rasp. Pis).

6.3. Replay

In a replay attack against Vesper, Eve replays a previously intercepted response signal y
back to Alice, whenever a probe x is intercepted on its way to Bob.

The features are affected by a replay attack as follows:

vEh
is strong in detecting all replay attacks. This is because the feature is dependent on

the MLS signal, and the MLS sequence is difficult to predict in real-time.14 We
also note that the duration of a signal x is not a constant and can be very noisy
due to Alice’s host’s scheduler. This strengthens the detection capabilities of vEh

in the case of a replay attack because the noise adds a non-deterministic skew to
the tx times –which Eve cannot predetermine.

vrtt∗ This feature is also dependent on the MLS signal. This is because the average RTT
is computed on the packets with a size of 1546 only (and not 46). Since the
replayed signal will have a different modulation, vrtt∗ will be lower than it should.
However, if Alice uses dedicated networking hardware, she may unintentionally
mitigate the noise skew added to the tx times. Therefore, we consider vrtt∗ modest
at detecting replay attacks.

vjit This feature is very weak in detecting replay attacks. This is because vjit is not
dependent on the uniqueness of the MLS signal, and thus can be easily copied.

In Fig. 22b, we present the affect which a replay attack has on each of the features
(top), and Vesper’s final anomaly score (bottom). The figure shows that although vjit fails
at detecting the attack and that vrtt∗ is modestly affected, the final score clearly detects
Eve’s replay evasion due to the combination of vrtt∗ and vEh

.

13In-Line: An attack originating from a device placed mid-wire
14This is true if each subsequent MLS seed is determined by a secure pseudo random number generator,

such as AES-256 in CTR-mode.
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(a) Vesper’s detection of a IL-NB MitM using
bypass evasion.

(b) Vesper’s detection of a replay attack. Top: the features
in ~v. Bottom: The autoencoder’s anomaly scores.

Figure 22: Demonstrations of Vesper’s ability to detect bypass and replay attacks.

6.4. Bypass

In a bypass attack against Vesper, an advanced attacker uses a special IL13 device which
can choose to either (1) interact with the network acting as a MitM (active-mode), or (2)
passively observe traffic acting as a wiretap (passive-mode). To evade detection, Eve is
either (A) always in active-mode and switches to passive-mode when an ICMP request
is received, OR (B) always in passive-mode and switches to active-mode only when Eve
wants to manipulate or inject traffic. Vesper can only detect Eve while she is in active-
mode.

Vesper can detect Eve if she uses (A). This is because, by the time the first ICMP packet
in x is detected by Eve, the frame has already been partially buffered. Therefore, Eve must
pass x[1] through her regular interception process before switching over to passive-mode
(see Fig. 22a for results). Furthermore, if Eve uses (B), then it is likely that Vesper will
detect her. This is because Eve must remain in active-mode for long durations in order
to be effective. For example, to manipulate streaming/live data, maintain a compromised
TCP connection, or to intercept a choice packet.

Another attack may be to learn h in passive-mode, and then apply h to observed probed
in active-mode in a spoof attack. However, it is not likely that Eve will be able to learn
h from her topological location in the network. This is because, Eve observes the ICMP
request packets after they have traversed some portion of the network (switches, cable,
. . .), and ICMP reply packets before they traverse the other portion of the network and
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percentiles.

Alice’s networking stack. Furthermore, Eve will likely leave her fingerprint on the probe
when she spoofs it back to Alice (see Fig. 23).
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7. The Software Tool

You can download the Vesper Tool from https://github.com/ymirsky/
Vesper. The current version (v1.0) implements most of the features described in this
talk. The main features which are currently missing are (1) alerts when Vesper is being
targeted in an adversarial attack, and (2) fine tunning so that Vesper can detect the dif-
ference between identical devices. In later distributions, we will be adding these missing
features.

7.1. Implementation Notes

Here are some notes on the tool’s implementation:

• This is a python implementation of Vesper which wraps C/C++ code using cython.
The C/C++ code is used to perform the ICMP probing quickly and accurately. See
Fig. 25 for a visualization.

• This implementation uses local outlier factor (LOF) for anomaly detection (Black-
Hat’19) and not autoencoders (NDSS’18).

• The current version of vesper has been tuned to detect all of these cases except
IP-DH where the exact same model is being used (i.e., the tool can detect the
difference between two different 1Gps switches, but not identical ones). The tuned
version will be released at a later date.

• This tool currently does not currently implement detection of attacks on Vesper
itself.

• This version of the tool will send probes at a constant rate during training and
execution. Although you can manually change the rate over time, the probes will
constantly be sent (and not just during communications).

• The source code has been tested with Python 2.7.12 on a Linux 64bit machine
(Kali Linux). To port the tool to Windows, some C++ libraries must be changed.

7.2. Installation

To install the tool, first consider that Vesper will only protect the link from the localhost
to other hosts in your LAN (see section 4.6). Later, you will be able to configure which
hosts the localhost will monitor.

Installation and Runtime Requirements:

• Linux (tested on Kali)
• Python 2 & some modules on the Internet
• Root privileges (to open raw sockets)
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Figure 25: The breakdown of the tool’s implementation according to programming lan-
guage.

First install Python 2 (2..7.12 preferred). Then install the python dependencies: We
use cython to wrap C/C++ code and execute it from Python. We also use the prettytable
module to display reports to the console.

To install prettytable and cython, run this command in your terminal:

$ pip install prettytable cython

Note that there are additional python modules which you may need if you are working
with a barebone installation of Python:

$ pip install scipy sklearn matplotlib cython

You are now ready to run Vesper!

7.3. Usage Guide

Since the tool uses raw sockets, you must run vesper with sudo privileges. For example:

$ sudo python vesper.py

The first time you run vesper.py, cython will compile the necessary C++ libraries.
When launched, Vesper will monitor the IPv4 addresses in the local file IPs.csv, unless a
target IP address is provided as an argument. A profile is trained for each host and is saved
to disk (automatically retrieved each time the tool is started). The configuration of the last
run is saved to disk (except the real-time plotting toggle argument). Note, this tool only
works when monitoring a link contained within a LAN (switches only). Do not provide
external IPs. From our experiments, Vesper should also work across multiple switches,
VLANs, and optical uplinks.

For complete instructions on how to use vesper, type into the command line

$ python vesper.py -h

The following will be the output:
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Fig. 26 shows the result of running

$ python vesper.py -i 142.44.32.101 -w 30 -p

Figure 26: A screenshot of the tool in operation. Negative scores indicate abnormality.

7.4. License

Please visit https://github.com/ymirsky/Vesper to read the latest Software
License.
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8. Conclusion
As of today, MitM attacks still pose a great threat to many LANs. In this talk we have
presented a new technique for detecting MitM attacks in LANs via ping echo analysis. We
have shown how the technique can be practically applied via a MitM detection framework
called Vesper. Experimental results show that (1) Vesper is capable of detecting end-point,
in-line, and in-point MitM attacks, and (2) is robust against possible adversarial attacks.
For future work, we plan on applying other ping methods (e.g., TCP SYN), applying noise
mitigation techniques, and extending the technique to work over routers, and applying
Vesper to Wi-Fi networks.

With this talk we have also released a tool which implements most of the functionality
of Vesper. The tool can be downloaded from https://github.com/ymirsky/
Vesper

In general, MitM attacks should be prevented by using secure protocols between ma-
chines, even in a trusted environment. However, we note that Vesper provides an extra
line of defense, and can additionally alert the user of an attacker’s presence.
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9. Additional Figures
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Figure 27: The common hourly, daily, and monthly traffic loads of the 50 port switch used
in the detection experiment where the Data Server was the victim (see Fig. 16).
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Figure 28: The MitM devices used in this paper. Top: Three 1Gbps Ethernet switches
used in the IP-DH experiments, where the middle switch was used in the IL-DH exper-
iments. Bottom: A Raspberry Pi 3B with a battery pack and 1Gbps USB to Ethernet
adapter, used in the IL-NB experiments.

Figure 29: Two of the eight Sony IP surveillance cameras used in the experiments. The
models were: SNC-EM602RC, SNC-EB600, SNC-EM600, and SNC-EB602R.
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Figure 30: A break-down of the device’s operating systems, used in 100 host spoof ex-
periment.
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Figure 32: A break-down of the devices running a Microsoft operating system, used in
100 host spoof experiment.

In-Line MitM using Dedicated 
Hardware (IL-DH), and has a 
bypass to evade detection.

Real-Time OS

port

Send

port

Buffer frame NIC1 NIC2

Application
Change

Contents?
Reference

Figure 33: The packet interception process of an IL-DH MitM device, with a bypass
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Figure 34: The 46 Raspberry Pi 3Bs used in the experiments. All of the devices were
connected to a single Ethernet switch.
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