
The Price of Compatibility: Defeating macOS Kernel
Using Extended File Attributes

Zuozhi Fan (@pattern_F_)

#BHASIA @BLACKHATEVENTS

#BHASIA @BLACKHATEVENTS

• Zuozhi Fan (@pattern_F_)
• Ant Security, Tianqiong Lab
• Started macOS/iOS security from the second half of 2019
• Submitted first vuln to Apple on Dec 10, 2019

About me

#BHASIA @BLACKHATEVENTS

• keywords
• extended file attributes
• compatibility
• defeating macOS

• brevity for extended file attributes
• xattr / extended attribute / attribute

About the talk

#BHASIA @BLACKHATEVENTS

• An interesting feature in Finder
• Color tags & custom tags
• Group file by tags

File tags in Finder

#BHASIA @BLACKHATEVENTS

• User view: file ⟹ (file name + file content)
• FS view: file ⟹ (name, data, size, access time, owner, etc.)

• and advanced data: file tags, stored in xattr
• extra information is called metadata

• commands to view xattr

How to implement it?

#BHASIA @BLACKHATEVENTS

How to?
• e

View xattr

#BHASIA @BLACKHATEVENTS

• Every feature in system should be implemented by code

*xattr syscall

#BHASIA @BLACKHATEVENTS

Show me the code

#BHASIA @BLACKHATEVENTS

It works!

Red tag appears after setxattr(...)

#BHASIA @BLACKHATEVENTS

• Support many types of filesystem
• Apple’s private filesystem HFS+, APFS
• No doubt that they support xattr
• What about FAT and ExFAT?

Wait, other filesystem?

#BHASIA @BLACKHATEVENTS

• The answer is “Yes”
• But FAT is really an old filesystem. How?

Does FAT support xattr?

#BHASIA @BLACKHATEVENTS

• XNU is open source, great!
• xattr is implemented in bsd/vfs/vfs_xattr.c

Deep into XNU

FAT comes here

#BHASIA @BLACKHATEVENTS

• FS without xattr, introduce apple double file
• hidden “._” prefixed file in the same directory

About the compatibility

#BHASIA @BLACKHATEVENTS

• named Apple Double File
• descripted in vfs_xattr.c
• store FAT xattr
• A compatible layer

“._” prefixed xattrfile

#BHASIA @BLACKHATEVENTS

• FAT parses userspace xattrfile in kernel !
• File parsing is very difficult

• doc, pdf, image, audio, etc. thousands of CVEs

• Is there some vulns in apple double file?
• fuzz testing?

• FAT xattrfile is implemented by a few hundred lines of code
• Code audit is enough!

Vulnerability?

#BHASIA @BLACKHATEVENTS

Vulnerability! (CVE-2020)
• e

Vulnerable code (CVE-2020-27904)

MUST: ah->data_start <= attr entry offset <= ah->total_size

#BHASIA @BLACKHATEVENTS

• e

What can we do?

malicious attr entry offset

modify these values when setxattr(...)

#BHASIA @BLACKHATEVENTS

• e

Kernel memory disclosure

1. malicious offset pointing to file header

2. copy user args to file header
3. modify data_start to 64mb

4. calc new file size, now 64mb

5. write 64mb kernel memory to file
6. xattrinfo is only 64kb, so oob-read happens

7. userspace reads xattrfile to inspect kernel memory

#BHASIA @BLACKHATEVENTS

kASLR bypass

offset +0x60: data_start
offset +0x78: ae->offset
// dump 64MB data
err = setxattr(MOUNT_DIR "1.txt", "xattr4", "\xf8\xff\x00\x04", 4, 0, XATTR_REPLACE);

xattrfile 64kb

ipc_kmsg

ikm_next

self-location trick by ipc_kmsg

#BHASIA @BLACKHATEVENTS

kASLR bypass

offset +0x60: data_start
offset +0x78: ae->offset
// dump 64MB data
err = setxattr(MOUNT_DIR "1.txt", "xattr4", "\xf8\xff\x00\x04", 4, 0, XATTR_REPLACE);

xattrfile 64kb

ipc_kmsg

ikm_next

self-location trick by ipc_kmsg

#BHASIA @BLACKHATEVENTS

• xattrfile is stored in big-endian
• oob-swap, not oob-write

Memory corruption?

setxattr to make it bigger

#BHASIA @BLACKHATEVENTS

• oob-timestamp by Brandon Azad

• swap can change integer
• bigger: SWAP(0x1234) => 0x4321
• smaller: SWAP(0x4321) => 0x1234

• oob-swap target: struct ipc_kmsg { ikm_size }
• make kmsg bigger than its original size

What can oob-swap do?

#BHASIA @BLACKHATEVENTS

• ikm_size: 0x8000 => 0x10000，overfree -> [ool ports]
• UaF: ool ports

overfree -> UaF
ikm_size

#BHASIA @BLACKHATEVENTS

• panic immediately
• oob-swap, 12 bytes a time, green mark
• ikm_next is corrupted, lower 16bit is cleared
• kmsg must align to 0x10000
• 64kb

Another problem

here!

#BHASIA @BLACKHATEVENTS

• x86 CPU, pagesize 0x1000 (4kb)
• allocate 0x11000 (17 pages) kmsg continuously
• lower 16bit increased by 0x1000

• 0x1231e000, 0x1232f000, 0x12340000, 0x12351000

• split kmsg aligned to 0x10000 (64kb)

Trick to allocate 64kb aligned data

split

realloc

#BHASIA @BLACKHATEVENTS

• ikm_size: 0x8000 => 0x10000，overfree -> [ool ports]
• UaF: ool ports

overfree -> UaF
ikm_size

#BHASIA @BLACKHATEVENTS

• memory will be restored after write file
• IO operation is slow, that’s why I dump 64mb memory
• race condition

• thread-1: setxattr [oob-swap write_file swap_back]
• thread-2: wait free kmsg, realloc new kobj

Problem, again

oob-swap

race & overfree

swap back!!!

#BHASIA @BLACKHATEVENTS

xattr oob-swap
1. heap spray, memory layout
2. oob-read, kernel memory disclosure, find the position of 64kb
aligned ipc_kmsg
2. Split memory, re-layout [xattrinfo, kmsg, ool ports]
3. Create two threads, overfree by race condition, and get UaF of
ool ports

Exploit strategy

https://github.com/pattern-f/xattr-oob-swap

https://github.com/pattern-f/xattr-oob-swap

#BHASIA @BLACKHATEVENTS

post-exploit, common technique
1. Forge a fake task and a fake port in shared memory
2. Reallocate an OSData page to the hole of overfreed ool ports
page, control the value of one ool port, point it to the fake port
3. Receive ool ports back, get the controllable fake task port
4. Use pid-for-task trick to achieve arbitrary kernel read ability, and
determine the value of kernel task and kernel map
5. Update the fake task to tfp0, i.e. task-for-pid zero, using value of
kernel task or kernel map

Now let’s go

https://github.com/pattern-f/xattr-oob-swap

https://github.com/pattern-f/xattr-oob-swap

#BHASIA @BLACKHATEVENTS

• x86 cpu, no PAC
• build a fake virtual table, then call a fake virtual method
• arbitrary kernel r/w means everything

• you can modify any kobject as you want

• kexec is not that important, by Brandon Azad

About kexec

#BHASIA @BLACKHATEVENTS

• People care about jailbreak
• But this vuln does not work on iOS
• UserFS – filesystem in userspace
• somewhat like a mitigation

About iOS

#BHASIA @BLACKHATEVENTS

• My first vuln about Apple (CVE-2019-8852)
• This issue is fixed in macOS Catalina 10.15.2
• 32 bytes arbitrary kernel read/write after xattrinfo (64kb)
• A perfect vulnerability
• No bug bounty 😢@Apple

Bonus part

#BHASIA @BLACKHATEVENTS

oob-write

come from xattrfile, no check!!!

memcpy

skip this check

#BHASIA @BLACKHATEVENTS

• also oob-read by getxattr, but it doesn’t matter
• A perfect vulnerability, just

• corrupt kmsg
• overfree OSData & ool ports
• bypass ASLR & build tfp0

• done

Exploit strategy

https://github.com/pattern-f/CVE-2019-8852

memory disclosure

build fake port

https://github.com/pattern-f/CVE-2019-8852

#BHASIA @BLACKHATEVENTS

• plugin a USB flash drive with malicious xattrfile
• multi-language screen of death
• crashed on getxattr syscall (oob-read)
• can not exec code, but funny :p

0-click?

#BHASIA @BLACKHATEVENTS

• Filesystem is one of the infrastructures of OS
• Attack from filesystem is possible

• two memory corruption vulns [link] in compatible code
• 0-click panic :p

• xattr is a new attack surface
• parsed by Finder, Archive Utility, Gatekeeper, etc.

• iOS 13 introduces UserFS, a mitigation to protect iPhone

Conclusion

https://github.com/pattern-f

#BHASIA @BLACKHATEVENTS

Thanks~
Q&A

Find the POC on https://github.com/pattern-f
email: pattern_f[at]163.com

https://github.com/pattern-f

