
Scavenger: Misuse Error Handling
Leading To QEMU/KVM Escape

Gaoning Pan, Xingwei Lin

Xinlei Ying(Ant Security Light-Year Lab), Jiashui Wang(Ant Security Light-Year Lab)

Chunming Wu(Zhejiang University)

#BHASIA @BLACKHATEVENTS

About

Gaoning Pan
● PhD student at Zhejiang University
● Research intern at Ant Security Light-Year Lab
● CTF player at AAA & A*0*E Team
● Research interest: Virtualization security

@hades24495092

Xingwei Lin
● Security researcher at Ant Security Light-Year Lab
● Research interest: Virtualization security

@xwlin_roy

Agenda

● QEMU and Error Handling Code

● Error Handling Code Directed Greybox Fuzzing

● Exploit Development

● Discussion

Agenda

● QEMU and Error Handling Code

● Error Handling Code Directed Greybox Fuzzing

● Exploit Development

● Discussion

QEMU Introduction

● QEMU is a generic and open source machine emulator and virtualizer
● Ia32, x86_64, mips, sparc, arm, risc-v
● Includes a huge collection of emulated devices (including NVMe controller)
● Active community (https://www.qemu.org/)

● Lots of attack surface, especially
device emulation

● High-quality vulnerability allows
attacker to break out from a VM

NVMe Overview

● Defines an optimized Register interface, CMD & Feature set for PCIe SSDs
● Minimize MMIO writes in command Submission and Completion path
● Efficient support for I/O virtualization architectures like SR-IOV

Insightful CVE-2020-25084: USB use-after-free

● This flaw occurs while
setting up the USB
packet

● No check whether
usb_packet_map()
returns an error

● This flaw results in a
denial of service and
potentially exploitable

Insightful CVE-2020-25084: USB use-after-free

Free sgl

Use sgl
UAF

Insightful CVE-2020-25084: USB use-after-free

● If dma_memory_map failed,
it will go to error label

● In the usb_packet_map
function, it will free sgl

QEMU – Error Handling Code
Error Handling

Code

Debug ReportResource
Release

Release locksRelease Memory
or File Handler

QEMU – Error Handling Code
Error Handling

Code

Debug ReportResource
Release

Release locksRelease Memory
or File Handler

QEMU – Error Handling Code
Error Handling

Code

Debug ReportResource
Release

Release locksRelease Memory
or File Handler

QEMU – Error Handling Code
Error Handling

Code

Debug ReportResource
Release

Release locksRelease Memory
or File Handler

Error Handling Code Directed Greybox Fuzzing

Error Handling Code Directed Greybox Fuzzing
Static Analysis

Error Handling Code Directed Greybox Fuzzing

1. Locate the goto statement in the code of virtual device
Static Analysis

Error Handling Code Directed Greybox Fuzzing

1. Locate the goto statement in the code of virtual device
2. Get the caller site to the goto statement and the code body of the goto

statement

Static Analysis

Error Handling Code Directed Greybox Fuzzing

1. Locate the goto statement in the code of virtual device
2. Get the caller site to the goto statement and the code body of the goto

statement
3. The information collected at step.2 is used to as the feedback to the directed

fuzzing engine - AFLGo

Static Analysis

Error Handling Code Directed Greybox Fuzzing

1. Locate the goto statement in the code of virtual device
2. Get the caller site to the goto statement and the code body of the goto

statement
3. The information collected at step.2 is used to as the feedback to the directed

fuzzing engine - AFLGo

Static Analysis

Target sites Seed Distance

Program
Source Code Instrumentation Power

Schedule
Seed

Selection

Fuzzing LoopPreprocessing

Distance-
guided

Scavenger - Uninitialized Free Vulnerability

● The misuse error handling is disovered in the NVMe device (Affected
QEMU < 5.2.0)

● This misuse error handling leads to an uninitialized free vulnerability

● NVMe is use to provide virtual solid-state drives (SSDs) service

● We use it to win TianfuCup 2020 PWN Contest

● Fixed at version 5.2.0 of QEMU, no CVE assigned

● Exploit environment: Ubuntu20.04 Host, Ubuntu20.04 Guest, full
protection such as NX, ASLR and PIE

Scavenger - Uninitialized Free Vulnerability

Expected error handling
sglist malloc/free pair

Scavenger - Uninitialized Free Vulnerability

Misuse error handling
inconsistent malloc/free pair

Uninitialized qsg

About

Gaoning Pan
● PhD student at Zhejiang University
● Research intern at Ant Security Light-Year Lab
● CTF player at AAA & A*0*E Team
● Research interest: Virtualization security

@hades24495092

Xingwei Lin
● Security researcher at Ant Security Light-Year Lab
● Research interest: Virtualization security

@xwlin_roy

Agenda

● QEMU and Error handling code

● Error code directed fuzzing

● Exploit Development

● Discussion

NVMe - Uninitialized Free Vulnerability

What happens in qemu_sglist_destroy()?

● Free the first element sg in uninitialized qsg

PoC
Here’s how we triggered the bug

Where does qsg comes from?

Three paths to trigger uninitialized free in vulnerable nvme_map_prp

nvme_dma_read_prp

nvme_dma_write_prp

nvme_rw

nvme_map_prp(qsg)

Vulnerable function

Is qsg controllable?

1st path : Uninitialized Stack Variable

● Uninitialized qsg resides on stack

1st path : Uninitialized Stack Variable

● But there isn’t any controllable object at the same
depth in stack via other paths

● No attacker-supplied data could be written to qsg

pwndbg> bt
#0 0x00005557be56fcce in nvme_dma_read_prp (n=0x5557c04cbc50, ptr=0x5557c04cd6a8 "\206\200\364\032\061\062\063\064", ' ' <repeats 16
times>, "QEMU NVMe Ctrl", ' ' <repeats 26 times>, "1.0 \006", len=4096, prp1=1979228160, prp2=0) at hw/block/nvme.c:275
#1 0x00005557be5715da in nvme_identify_ctrl (n=0x5557c04cbc50, c=0x7ffd1f60c590) at hw/block/nvme.c:688
#2 0x00005557be57183c in nvme_identify (n=0x5557c04cbc50, cmd=0x7ffd1f60c590) at hw/block/nvme.c:747
#3 0x00005557be571d5e in nvme_admin_cmd (n=0x5557c04cbc50, cmd=0x7ffd1f60c590, req=0x7f9cf421e740) at hw/block/nvme.c:889
#4 0x00005557be571f93 in nvme_process_sq (opaque=0x5557c04cd5f8) at hw/block/nvme.c:922
#5 0x00005557be920751 in timerlist_run_timers (timer_list=0x5557bf708c80) at util/qemu-timer.c:572
#6 0x00005557be9207f8 in qemu_clock_run_timers (type=QEMU_CLOCK_VIRTUAL) at util/qemu-timer.c:586
#7 0x00005557be920ab7 in qemu_clock_run_all_timers () at util/qemu-timer.c:672
#8 0x00005557be919ad4 in main_loop_wait (nonblocking=0) at util/main-loop.c:523
#9 0x00005557be451e0c in qemu_main_loop () at /home/zjusvn/pwn/qemu-5.1.0/softmmu/vl.c:1676
#10 0x00005557be8a1754 in main (argc=18, argv=0x7ffd1f60c7f8, envp=0x7ffd1f60c890) at /home/zjusvn/pwn/qemu-5.1.0/softmmu/main.c:49
#11 0x00007f9d0da47b97 in __libc_start_main (main=0x5557be8a1727 <main>, argc=18, argv=0x7ffd1f60c7f8, init=<optimized out>,
fini=<optimized out>, rtld_fini=<optimized out>, stack_end=0x7ffd1f60c7e8) at ../csu/libc-start.c:310
#12 0x00005557be2ed26a in _start ()

Stack base

Uninitialized data

2nd path : Uninitialized Stack Variable

● Uninitialized qsg resides on stack
● The same as nvme_dma_read_prp
● Uncontrollable qsg

3rd path : Uninitialized Heap Variable

qsg
Total size:

N*0xa0

Offset: 0x40

io_req

● Uninitialized qsg resides on heap
● Controllable by heap Fengshui

1. malloc

2. use

Given a Heap Uninitialized Free Vulnerability

● Can we arbitrarily control what object to free?
● What object are we going to free?

0x414141????

req System Memory

???

An Intuitive Idea: Turning Uninitialized Free to UAF

addr

obj1. Fill memory before

size: N*0xa0
2. Malloc req

3. Free(addr)

req

4. Use after free

addrOffset: 0x40

1. We need a structure with the size of N*0xa0
2. The structure has a pointer at offset of 0x40
3. The pointer points to a guest-controlled object, which we can read or write

after allocation

Requirement

Structure

An Intuitive Idea: Turning Uninitialized Free to UAF

addr

obj1. Fill memory before

size: N*0xa0

Structure

2. Malloc req
3. Free(addr)

req

4. Use after free

addrOffset: 0x40

1. No interesting structures in NVME or other traditional devices
2. Complex device (xhci) has some interesting structures, but they’re in

different heap within different thread

After many tries, we didn't find any appropriate primitive

Interesting Structure on Virtio-gpu

len
pointer

len
pointer

len
pointer

len
pointer

len
pointer

…

Mapping Table

Total size: xxx

● dma_memory_map maps a guest physical memory region into a host virtual address
● QEMU can directly access guest memory in the host process

Inspired by the mapping table on
Virtio-gpu, maybe we needn’t a
R/W primitive in the host process

QEMU Memory Layout

pwndbg> info proc mappings
process 24414
Mapped address spaces:

Start Addr End Addr Size Offset objfile
0x55dcc8f03000 0x55dcc9d1f000 0xe1c000 0x0 ./qemu-5.1.0/x86_64-softmmu/qemu-system-x86_64
0x55dcc9f1e000 0x55dcca0ae000 0x190000 0xe1b000 ./qemu-5.1.0/x86_64-softmmu/qemu-system-x86_64
0x55dcca0ae000 0x55dcca1a0000 0xf2000 0xfab000 ./qemu-5.1.0/x86_64-softmmu/qemu-system-x86_64
0x55dcca1a0000 0x55dcca1c9000 0x29000 0x0
0x55dccacbd000 0x55dccc04a000 0x138d000 0x0 [heap]
0x7f68d4000000 0x7f68d4021000 0x21000 0x0

. . .
0x7f6917e00000 0x7f6997e00000 0x80000000 0x0

. . . [some shared libs]
0x7ffe382b6000 0x7ffe382d7000 0x21000 0x0 [stack]
0x7ffe383da000 0x7ffe383dd000 0x3000 0x0 [vvar]
0x7ffe383dd000 0x7ffe383df000 0x2000 0x0 [vdso]

0xffffffffff600000 0xffffffffff601000 0x1000 0x0 [vsyscall]

● The heap of qemu-kvm process starts with 0x55
● The guest’s physical memory is backed by a single mmap’d region inside the

qemu-kvm process, GVA-->GPA-->HVA

Heap of host process

Guest’s memory

High-Level Overview
What if we free a fake chunk in guest?

Guest

Hypervisor process

fake chunk

1. free2. Add to freelist

3. read/write

Host Heap

● Guest shares the same memory with host

● Guest is aware of host’s operation on
guest’s memory

● Guest can read/write its memory at any time

● Quite easy to make a fake chunk in Guest

● User-space memory naturally provides a reading/writing exploit primitive

Host’s tcache bins

GuestHost

Guest’s fake chunk

Cross Domain Attack

guest_addr

obj

2. Fill the memory before with
address pointing to guest

size: N*0xa0

3. Malloc
uninitialized req

4. Trigger
free(guest_addr),
then we get a guest
chunk in host heap

req

5. Use after free

Offset: 0x40

Host Space

Guest Space

1. Make a fake chunk
with valid chunk header
in guest system

Mapping Table

guest_addr

Attacker has full R/W privileges in guest space!

Exploitation Development

Now the problem is turned to exploit an UAF vulnerability

Remote code execution on host machine

1. Find an information leakage to bypass ASLR
2. Manipulate heap layout to hijack the control flow
3. Execute arbitrary command

Heap Spray

● Spray chunks via malloc primitive
nvme_init_sq to clear tcache bins

● Prevent the following freed chunk to be
consolidated into the larger chunk

● Get a stable heap layout

Bypass ASLR AAAAAAAA
AAAAAAAA

…

2. Malloc a mapping table

size: 0x290

Offset: 0x40

Host Space

Guest Space

1. Make a 0x290 fake chunk in
guest

Mapping Table

Write value to
MMIO interface

size: 0x150

len
guest_addr

len
guest_addr

…

…

Bypass ASLR AAAAAAAA
AAAAAAAA

…

3. Free the mapping table. The freed
chunk will be added to 0x150 tcache bins

size: 0x290

Offset: 0x40

Host Space

Guest Space

Mapping Table

size: 0x150

len
guest_addr

len
guest_addr

…

…

Bypass ASLR AAAAAAAA
AAAAAAAA

…

4. Malloc io_req structure, leaving
uninitialized pointer field

size: 0x290

Offset: 0x40

Host Space

Guest Space

io_req

size: 0x150

guest_addr

Bypass ASLR 0x55dc??????00

AAAAAAAAAA
…

size: 0x290

Offset: 0x40

Host Space

Guest Space

5. Trigger free(guest_addr).
The freed chunk will be added
to host’s 0x290 tcache bins

io_req

size: 0x150

guest_addr

Bypass ASLR 0x55dc??????00

AAAAAAAAAA
…

size: 0x290

Offset: 0x40

Host Space

Guest Space

6. Leak the host’s heap
address by reading the buffer

io_req

size: 0x150

guest_addr

Bypass ASLR

size: 0x290

Offset: 0x40

Host Space

Guest Space

io_req

size: 0x150

guest_addr

7. Malloc another mapping table with
the size of 0x290 to fill in the chunk
located in guest space, the pointer in
this table points to the command
chunk located in guest

len
cmd_addr

len
cmd_addr

…

… “;gnome-
calculator”

pwndbg> info proc mappings
process 24414
Mapped address spaces:

Start Addr End Addr Size Offset objfile
0x55dcc8f03000 0x55dcc9d1f000 0xe1c000 0x0 qemu-system-x86_64
0x55dcc9f1e000 0x55dcca0ae000 0x190000 0xe1b000 qemu-system-x86_64
0x55dcca0ae000 0x55dcca1a0000 0xf2000 0xfab000 qemu-system-x86_64
0x55dcca1a0000 0x55dcca1c9000 0x29000 0x0
0x55dccacbd000 0x55dccc04a000 0x138d000 0x0 [heap]
0x7f68d4000000 0x7f68d4021000 0x21000 0x0

. . .
0x7f6917e00000 0x7f6997e00000 0x80000000 0x0

. . .
[some shared libs]
0x7ffe382b6000 0x7ffe382d7000 0x21000 0x0 [stack]
0x7ffe383da000 0x7ffe383dd000 0x3000 0x0 [vvar]
0x7ffe383dd000 0x7ffe383df000 0x2000 0x0 [vdso]

0xffffffffff600000 0xffffffffff601000 0x1000 0x0 [vsyscall]

Bypass ASLR

size: 0x290

Offset: 0x40

Host Space

Guest Space

io_req

size: 0x150

guest_addr

len
cmd_addr

len
cmd_addr

…

… “;gnome-
calculator”

8. Leak the physical mapping
address by reading the buffer

Bypass ASLR
size: 0x40

Offset: 0x40

Host Space

Guest Space

io_req

size: 0x150

guest_addr

“;gnome-
calculator”

AAAAAAAA
…9. Make a 0x40 fake chunk

10. Construct another uninitialized
io_req with the pointer pointing to
0x40 chunk in guest

Bypass ASLR
size: 0x40

Offset: 0x40

Host Space

Guest Space

io_req

size: 0x150

timer_addr

“;gnome-
calculator”

…
*cb

*opaque
…

11. Trigger free(timer_addr).
And malloc a QEMUTimer to fill
in the chunk located in guest.

timer

Bypass ASLR
size: 0x40

Offset: 0x40

Host Space

Guest Space

io_req

size: 0x150

timer_addr

“;gnome-
calculator”

…
*cb

*opaque
…

12. Leak the QEMU binary
address by reading the buffer

timer

RIP Control
size: 0x40

Offset: 0x40

Host Space

Guest Space

io_req

size: 0x150

timer_addr

“;gnome-
calculator”

…
system@plt
cmd_addr

…

13. Overwrite cb to
system@plt, and opaque to
cmd_addr by writing the buffer

timer

Execute Command
size: 0x40

Offset: 0x40

Host Space

Guest Space

io_req

size: 0x150

timer_addr

“;gnome-
calculator”

…
system@plt
cmd_addr

…

14. Expire the timer to trigger
system(“gnome-calculator”)

timer

Different to previous known QEMU VM escape

● Attack surface: NVMe storage device

● Vulnerability type: Uninitialized free in error handling code

● Exploitation technique: Cross domain attack

How does scavenger compare to CVE-2020-14364, CVE-2019-14378,
CVE-2019-14835, https://github.com/0xKira/qemu-vm-escape?

Scavenger

Further Analysis of Cross Domain Attack

● QEMU can be exploited if the attack has a arbitrary free vulnerability

● Difficult to launch attack if the chunk header is encrypted, like in Windows

● May also affect other hypervisors like VirtualBox

Takeaways

● Error handling code is used extensively in hypervisors, which shows a
new attack vector for bug hunting

● Test hard-to-find bugs exist in error handling code effectively

● Facilitate exploitation with the help of guest space memory

Thank You

#BHASIA @BLACKHATEVENTS

Gaoning Pan, Xingwei Lin

Xinlei Ying(Ant Security Light-Year Lab), Jiashui Wang(Ant Security Light-Year Lab)

Chunming Wu(Zhejiang University)

Exploit Code: https://github.com/hustdebug/scavenger

