
New attack Surface: Use just one

WebAudio Vulnerability to rule the

Safari

1. Background introduction

In the past, Safari vulnerability researchers often focused on the DOM

or JS engine, but some system libraries used by Safari, such as audio,

video, font, etc., haven't received enough attention. There are few

successful cases using vulnerabilities found in these modules to break

Safari. Due to the built-in heap isolation mechanism of Safari, the

heap used by these system libraries is not the same as the heap where

the DOM objects and JS objects are located. As a result, the out-of-

bounds writing vulnerabilities in these modules make it extremely

difficult to overwrite some key JS objects. These vulnerabilities are

difficult to exploit alone without the coordination of an info leak.

But I found that there is a bug that can overwrite JS objects in a

clever way, bypassing Safari's heap isolation, ASLR and other defense

mechanisms, and finally achieve arbitrary code execution. I

demonstrated the attack at the Tianfu Cup International Cyber Security

Competition hosted by the Chengdu Municipal Government of China, and

successfully pwned Safari with only one shot.

2. WebAudio bug hunting

2.1 WebAudio module introduction

The WebAudio module is a library and provides rich API for playing,

encoding, decoding, and transcoding audio on macOS/iOS. We can first

take a look at a classic audio playback process. Take MP3 as an

example:

1. Read an MP3 file from disk

2. Analyze information such as sample rate, bit rate, duration, etc., and

separate audio frames in MP3

3. Decode the separated audio frame to get PCM data

4. Perform sound effect processing on PCM data (equalizer, reverberator,

etc., optional)

5. Decode PCM data into the audio signal

6. Give the audio signal to the hardware for playback

We can see that steps 2, 3, and 5 are all analyzing a piece of the

input buffer, which is very suitable for fuzzing.

Apple provides APIs at different levels for these functions. Some

frameworks in Low-Level Services are mostly libraries that deal with

hardware. We don't care about this. We are mainly concerned about the

frameworks in Mid-Level and High-Level, to see which framework is more

appropriate to build our harness.

The following is a functional description of the middle and high-level

interfaces: (can be circled in the figure for easy display)

Audio File Services: Read basic information such as sampling rate, bit

rate, duration, etc. and separate audio frames, let's call these

processes "audio analysis", complete the 2nd step in the playback

process;

Audio File Stream Services: Similar to Audio File Services, but mainly

for streaming media playback, 2nd step of the playback process;

Audio Converter services: Audio data conversion, 3rd step;

Extended Audio File Services: a combination of Audio File Services and

Audio Converter services;

AVAudioPlayer/AVPlayer (AVFoundation): Advanced interface, which can

complete the entire audio playback process (including local file and

network stream playback, except for step 4);

If we choose an advanced service, such as AVPlayer, we need to use a

graphical interface, which is not convenient for Fuzzing. Audio File

Services, Audio File Stream Services, Audio Converter Services,

Extended Audio File Services are all good choices. For the 2nd step,

compared with Audio File Services, Audio File Stream Services can read

files from the memory which makes our fuzzing much more efficient, so

we finally selected Audio File Stream Services. For 3rd step, the

audio decoding process, I chose the relatively easy-to-use Extended

Audio File Services for Fuzzing.

2.2 Previous work

Audio is not a new attack surface. As early as 2017, riusksk achieved

several CVEs in Audio. In 2019, he achieved 3 more. But other than

that, indeed less attention has been paid to vulnerabilities in Audio.

Before 2019, browser bug hunting was focused on modules such as JS and

wasm.

2.3 Binary Bug Hunting Technology under MacOS

Then let me briefly introduce the binary bug hunting technology I used

on macOS. This year project zero disclosed how they exploited the

vulnerabilities in ImageIO. They wrote an instrumentation tool called

TrapFuzz for it. This tool is very suitable for library fuzzing, and

the fuzz efficiency is pretty high.

The harness needs to be carefully designed. The audio parsing step may

be relatively simple. It can be divided into three steps, open,

analysis and close. But for Audio decoding, various options need to be

set for the output PCM format, such as sampling rate, number of

channels per frame, number of frames per Packet, etc. Since we want to

increase the probability of reproducing our crashes in Safari, we

should refer to parameter settings in it. Another important step is to

collect as many seeds as possible. I have crawled hundreds of

thousands of seeds from the Internet, and then we can start a

enjoyable Fuzzing.

2.4 Results achieved

At present, we have obtained 16 CVEs in total, which includes 9 out-

of-bounds reads and 7 out-of-bounds writes , and there are still tens

of vulnerabilities in progress that have been submitted to Apple. CVE-

2021-1747 is the vulnerability I used in this Tianfu Cup. I used this

vulnerability to achieve arbitrary code execution in Safari.

3. Safari vulnerability exploitation

Let me introduce the cause of the vulnerability I used on the Tianfu

Cup and the exploitation details.

3.1 Crash Analysis

The vulnerability exists in the `ACOpusDecoder::AppendInputData`

function of the WebAudio module, which will cause out-of-bounds write

when parsing CAF files. At position one there is a code similar to the

bounds checking, but it does not take effect, and at position two the

`memcpy` function is called, causing out-of-bounds write.

__int64 __fastcall ACOpusDecoder::AppendInputData(ACOpusDecoder

*this, const void *a2, unsigned int *a3, unsigned int *a4, const

AudioStreamPacketDescription *a5)

{

 ...

 if (a5)

 {

 v8 = a5->mDataByteSize;

 if (!a5->mDataByteSize || !*a4 || (v9 = a5->mStartOffset,

(a5->mStartOffset + v8) > *a3) || this->buf_size) // (1). bound

checking does not take effect here.

 {

 result = 0LL;

 if (!v8)

 {

 this->buf_size = 0;

LABEL_19:

 v13 = 1;

 v12 = 1;

 goto LABEL_20;

 }

 goto LABEL_16;

 }

 if (v9 >= 0)

 {

 memcpy(this->buf, a2 + v9, v8); //（2）. where out-of-bounds

write

 v14 = a5->mDataByteSize;

 this->buf_size = v14;

 result = (LODWORD(a5->mStartOffset) + v14);

 goto LABEL_19;

 }

 ...

}

Let me briefly introduce the CAF file format. Here I draw a simplified

version of the CAF file format. The CAF file starts with the File

Header, and then is composed of various types of Chunk. Each Chunk has

a Chunk Header, which records the size of the Chunk. Desc Chunk mainly

stores some metadata of the file, Data Chunk stores all the Packets,

and Packet Table Chunk records the size of each Packet. During

parsing, the Packet Table Chunk will be read first to obtain the size

of each Packet, and then go to Data Chunk to read the corresponding

Packet.

In order to analyze this vulnerability, I specially wrote a 010 Editor

template to parse the CAF file. This is part of template code.

BigEndian();

struct CAFAudioFormat {

 double mSampleRate;

 uint32 mFormatID;

 uint32 mFormatFlags;

 uint32 mBytesPerPacket;

 uint32 mFramesPerPacket;

 uint32 mChannelsPerFrame;

 uint32 mBitsPerChannel;

};

…

struct File {

 …

 struct CAFFileHeader {

 uint32 mFileType;

 uint16 mFileVersion;

 uint16 mFileFlags;

 } cafFileHdr;

…

} file;

Then we analyze the CAF file that caused the crash, and run it with

the template file of 010 editor, you can see the following output:

The first column is the serial number of the packet, and the second

column is the size of the packet(in both decimal and hexadecimal

format). It can be seen that the size of the 114th packet is a

negative number. It can be speculated that the program runs into a

problem when processing packets with negative sizes. Because the code

is too complicated and there was not much time before Tianfu Cup at

that time, I did not conduct a detailed analysis of the cause of the

vulnerability. Here I mainly share my exploitation process.

3.2 Turn out-of-bounds write into arbitrary

address write

Here I first did a reverse analysis of the relevant code. The buffer

written out of bounds exists in the structure called ACOpusDecoder.

The fields of this structure are as follows:

I first did a reverse analysis of the relevant code. The buffer

written out of bounds exists in the structure called ACOpusDecoder.

The fields of this structure are as follows:

The `buf` field is written out of bounds, which has a total of 1500

bytes. The following fields such as `buf_size`, `controlled_field`,

`log_obj`, and `controlleded` are all controllable.

This is a picture taken from source code of

“ACOpusDecoder::ProduceOutputBufferList” function. The program calls

`opus_packet_get_samples_per_frame` function first, then it calls

`opus_packet_parse_impl` function. The return value is `frame_num`. if

`frame_num` is greater than or equal to zero. We enter the true

branch. Then the program compares v37 and v23, if v37 is less than or

equal to v23, we enter the true branch. In the true branch , program

writes some value to addresses related to `log` object.

Next, we have two goals. One is to go to the location where arbitrary

address write occurs, and the written value must meet certain

conditions; the other is to make the program not crash immediately

after causing arbitrary address write. In the first step, we can do it

by controlling the value of some variables, we need to ensure the

return value of `opus_packet_parse_impl` is greater than or equal to

0, to reach the point where arbitrary address write happens. This step

is relatively simple, only needs to control the value of a few

variables.

Some twists and turns occurred in the second step. After an arbitrary

address writing occurs, we find that the program always crashes in

`opus_decode_frame`. According to the conventional analysis, if we

want to achieve arbitrary address write, it will crash after write

occurs. If we try to avoid the crash, we can't achieve arbitrary

address write. But in the process of reverse engineering, I found a

new bug, the function used for parsing the packet does not check the

length of the packet, and will cause an out-of-bounds parsing. So, I

constructed two packets that overlap each other.

Packet 1 is two bytes. The function used for parsing assumes that each

packet is at least 4 bytes. So, it will be parsed out of bounds to

Packet 2. The 0xf8 in Packet 2 is regarded as the TOC field in Packet

1, and finally, we avoid a crash and achieve arbitrary address write

in the meantime.

3.3 Heap spray，break ASLR！

Usually even with the ability to write arbitrary address, if the

program's ASLR protection is done well, you have to find an

information leak bug to exploit the vulnerability. However, there are

some problems in the implementation of Safari's heap, which leads us

to spray the value we control on a fixed address by heap spray. With

arbitrary address writing, the first thing that comes to mind is to

overwrite the length field in JSArray, or the length field in

ArrayBuffer. Due to Safari's Gigacage mechanism, even if the length

field of ArrayBuffer is overwritten, we cannot read or write

meaningful content, so I finally selected JSArray.

JSArray in Safari uses Butterfly to store its length and content. If

the length of one JSArray is overwritten, then the content of the next

JSArray can be read and written out of bounds, and the two primitives

fakeobj and addrof can be constructed. I first tried to spray 2 G of

memory, and found that my Butterfly sometimes sprays between

0x800000000-0x1000000000, and sometimes sprays between 0x1800000000-

0x1c00000000. Due to the heap isolation mechanism of Safari, different

types of objects are in different heaps. Butterfly is in a heap called

Gigacage in Safari. Some research on the Gigacage heap has found that

the base address of Gigacage is predictable, and there are two types

of Gigacage, one can store Butterfly and the other can store

ArrayBuffer. For these two types of heaps, Gigacage does small

randomization, one is Butterfly is on the upper side, and the other is

ArrayBuffer is on the upper side. As shown below. Let's look at the

situation One, starting from 0x800000000, an unmapped area of 0-4G

will be randomly generated, and then Butterfly's heap will be located

below. In the second case, starting from 0x1800000000, an unmapped

area of 0-4G will be randomly generated, followed by the Bufferfly

heap. In either case, the degree of randomization of the base address

is very small.

I first tested it on a machine with 16G memory. In order to improve

the success rate, I sprayed 4G. But later I found that Safari monitors

the memory used by each render process. If the memory used is too

large, it will be killed. So, I chose to spray 2.5 G finally, but this

will cause the success rate to drop a little. But this is not a big

problem. We are lucky to be able to trigger arbitrary address writing

multiple times by modifying our CAF file, to pull back the success

rate. In order to facilitate the transformation of CAF files, I used

ASM syntax to describe CAF files. ASM syntax supports the definition

of various width values, such as byte, word, dword, qword, and also

supports tags, placeholders, and repeating a value multiple time. This

picture is a part of my ASM file, which defines the CAF file header,

DESC chunk, some values used to trigger the vulnerability, and so on.

Then I will introduce how the exploit process is implemented.

_CAF_FILE_HEADER:

 db 0x63, 0x61, 0x66, 0x66, 0x00, 0x01, 0x00, 0x00

_DESC_CHUNK:

 db 0x64, 0x65, 0x73, 0x63, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x20, 0x40, 0xE7, 0x70, 0x00,

 db 0x00, 0x00, 0x00, 0x00, 0x6F, 0x70, 0x75, 0x73, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 db 0x00, 0x00, 0x03, 0xC0, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00,

0x00, 0x00

…

 db 0x8c, 0x58 ; length of packet which triggers

out-of-bounds address write

 db 0x2 ; length of packet which triggers

arbitrary address write

 db 0x86, 0x2f ; length of packet which prevents

crash

…

times 70000000 db 8 ; length of packets used for padding

 db 0x81, 0x70, 0x81, 0x7F, 0x81, 0x76 ; padding

 db 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x1A ;

negative length used for triggering the vulnerability

3.4 Thanks to multithreading！Give exploit

code enough time to execute before program

crashes

The following sequence diagram explains the entire exploit process. In

the beginning, there was only one JS thread. We do heap spray first,

and constructed the audio file in the memory, then call the

`decodeAudioData` function which performs the audio decode process.

Since Safari decodes the audio in a separate thread, The Audio A

thread will be started here. Let's first assume that the memory layout

after the heap spray is the situation 1 mentioned above. Then the

Audio A thread will trigger arbitrary address write for three times in

address range 0x800000000 to 0x1000000000 , and the JS thread will

detect whether the length of JSArray is changed after two seconds, if

it is changed, it means that the heap layout is indeed case 1, and

then the subsequent exploit code can be executed. If it is not

changed, it means the heap layout is case 2, then call

decodeAudioData() for the second time, start Audio B thread to decode

audio, this time we will trigger arbitrary address write in address

range 0x1800000000 to 0x1c00000000. The JS thread loops to check

whether the length of the JSArray is changed, and if it is changed, it

will execute subsequent exploits. If it fails, it means that the

entire exploit has failed.

Besides, there is a problem that needs to be solved, that is, after

the audio file is decoded, when the free function is called to clean

up the resources, a crash will be triggered. There are several ways to

solve this problem, one is to repair the damaged heap, and the second

is to make the audio decoding time very, very long, and our

exploitation process ends before the decoding is over. The first

approach is too complicated because we need to search the heap and it

takes a certain amount of time to repair the heap. The program may

crash when we are repairing the heap. So, we choose the second

approach at last, I constructed a 600M CAF file with more than 70

million packets. It will take about 50s to decode all of these

packets, which is enough for my exploit.

3.5 Old school, arbitrary address read/write

to arbitrary code execution

After covering the length field of JSArray, we can construct fakeobj

and addrof primitives, and then we can use these two primitives to

construct arbitrary address read and write primitives. At last we

write the shellcode into the JIT area to execute arbitrary code. These

are all old-school things, I won't go into details here. Audiences who

are interested in it can read saelo's article 《Attacking JavaScript

Engines - A case study of JavaScriptCore and CVE-2016-4622》.

4. Conclusion

Throughout the process of discovering and exploiting the WebAudio

vulnerability, I think I can summarize the following three points. One

is that in addition to the DOM and JS engine, there are still many

unconcerned attack surfaces in Safari. The second is that there are

still a lot of low hanging fruits in libraries without source code.

The third is that even with a lot of modern defense mechanisms, they

cannot completely prevent advanced attackers from exploiting

vulnerabilities. Safari's ASLR defense mechanism still needs to be

strengthened.

