
New attack Surface: Use just one 

WebAudio Vulnerability to rule the 

Safari 

1. Background introduction 

In the past, Safari vulnerability researchers often focused on the DOM 

or JS engine, but some system libraries used by Safari, such as audio, 

video, font, etc., haven't received enough attention. There are few 

successful cases using vulnerabilities found in these modules to break 

Safari. Due to the built-in heap isolation mechanism of Safari, the 

heap used by these system libraries is not the same as the heap where 

the DOM objects and JS objects are located. As a result, the out-of-

bounds writing vulnerabilities in these modules make it extremely 

difficult to overwrite some key JS objects. These vulnerabilities are 

difficult to exploit alone without the coordination of an info leak. 

But I found that there is a bug that can overwrite JS objects in a 

clever way, bypassing Safari's heap isolation, ASLR and other defense 

mechanisms, and finally achieve arbitrary code execution. I 

demonstrated the attack at the Tianfu Cup International Cyber Security 

Competition hosted by the Chengdu Municipal Government of China, and 

successfully pwned Safari with only one shot. 

2. WebAudio bug hunting 

2.1 WebAudio module introduction 

The WebAudio module is a library and provides rich API for playing, 

encoding, decoding, and transcoding audio on macOS/iOS. We can first 

take a look at a classic audio playback process. Take MP3 as an 

example: 



 

1. Read an MP3 file from disk 

2. Analyze information such as sample rate, bit rate, duration, etc., and 

separate audio frames in MP3 

3. Decode the separated audio frame to get PCM data 

4. Perform sound effect processing on PCM data (equalizer, reverberator, 

etc., optional) 

5. Decode PCM data into the audio signal 

6. Give the audio signal to the hardware for playback 

 

We can see that steps 2, 3, and 5 are all analyzing a piece of the 

input buffer, which is very suitable for fuzzing. 

Apple provides APIs at different levels for these functions. Some 

frameworks in Low-Level Services are mostly libraries that deal with 

hardware. We don't care about this. We are mainly concerned about the 

frameworks in Mid-Level and High-Level, to see which framework is more 

appropriate to build our harness. 



 

 

The following is a functional description of the middle and high-level 

interfaces: (can be circled in the figure for easy display) 

Audio File Services: Read basic information such as sampling rate, bit 

rate, duration, etc. and separate audio frames, let's call these 

processes "audio analysis", complete the 2nd step in the playback 

process; 

Audio File Stream Services: Similar to Audio File Services, but mainly 

for streaming media playback,  2nd step of the playback process; 

Audio Converter services: Audio data conversion, 3rd step; 

Extended Audio File Services: a combination of Audio File Services and 

Audio Converter services; 



AVAudioPlayer/AVPlayer (AVFoundation): Advanced interface, which can 

complete the entire audio playback process (including local file and 

network stream playback, except for step 4); 

 

If we choose an advanced service, such as AVPlayer, we need to use a 

graphical interface, which is not convenient for Fuzzing. Audio File 

Services, Audio File Stream Services, Audio Converter Services, 

Extended Audio File Services are all good choices. For the 2nd step, 

compared with Audio File Services, Audio File Stream Services can read 

files from the memory which makes our fuzzing much more efficient, so 

we finally selected Audio File Stream Services. For 3rd step, the 

audio decoding process, I chose the relatively easy-to-use Extended 

Audio File Services for Fuzzing. 

2.2 Previous work 

Audio is not a new attack surface. As early as 2017, riusksk achieved 

several CVEs in Audio. In 2019, he achieved 3 more. But other than 

that, indeed less attention has been paid to vulnerabilities in Audio. 

Before 2019, browser bug hunting was focused on modules such as JS and 

wasm. 

2.3 Binary Bug Hunting Technology under MacOS 

Then let me briefly introduce the binary bug hunting technology I used 

on macOS. This year project zero disclosed how they exploited the 

vulnerabilities in ImageIO. They wrote an instrumentation tool called 

TrapFuzz for it. This tool is very suitable for library fuzzing, and 

the fuzz efficiency is pretty high. 

 

The harness needs to be carefully designed. The audio parsing step may 

be relatively simple. It can be divided into three steps, open, 

analysis and close. But for Audio decoding, various options need to be 

set for the output PCM format, such as sampling rate, number of 

channels per frame, number of frames per Packet, etc. Since we want to 



increase the probability of reproducing our crashes in Safari, we 

should refer to parameter settings in it. Another important step is to 

collect as many seeds as possible. I have crawled hundreds of 

thousands of seeds from the Internet, and then we can start a 

enjoyable Fuzzing. 

2.4 Results achieved 

At present, we have obtained 16 CVEs in total, which includes 9 out-

of-bounds reads and 7 out-of-bounds writes , and there are still tens 

of vulnerabilities in progress that have been submitted to Apple. CVE-

2021-1747 is the vulnerability I used in this Tianfu Cup. I used this 

vulnerability to achieve arbitrary code execution in Safari. 

3. Safari vulnerability exploitation 

Let me introduce the cause of the vulnerability I used on the Tianfu 

Cup and the exploitation details. 

3.1 Crash Analysis 

The vulnerability exists in the `ACOpusDecoder::AppendInputData` 

function of the WebAudio module, which will cause out-of-bounds write 

when parsing CAF files. At position one there is a code similar to the 

bounds checking, but it does not take effect, and at position two the 

`memcpy` function is called, causing out-of-bounds write. 

__int64 __fastcall ACOpusDecoder::AppendInputData(ACOpusDecoder 

*this, const void *a2, unsigned int *a3, unsigned int *a4, const 

AudioStreamPacketDescription *a5) 

{ 

  ... 

 

  if ( a5 ) 

  { 

    v8 = a5->mDataByteSize; 



    if ( !a5->mDataByteSize || !*a4 || (v9 = a5->mStartOffset, 

(a5->mStartOffset + v8) > *a3) || this->buf_size ) // (1). bound 

checking does not take effect here. 

    { 

      result = 0LL; 

      if ( !v8 ) 

      { 

        this->buf_size = 0; 

LABEL_19: 

        v13 = 1; 

        v12 = 1; 

        goto LABEL_20; 

      } 

      goto LABEL_16; 

    } 

    if ( v9 >= 0 ) 

    { 

      memcpy(this->buf, a2 + v9, v8);   //（2）. where out-of-bounds 

write 

      v14 = a5->mDataByteSize; 

      this->buf_size = v14; 

      result = (LODWORD(a5->mStartOffset) + v14); 

      goto LABEL_19; 

    } 

    ... 

} 

 



 

 

Let me briefly introduce the CAF file format. Here I draw a simplified 

version of the CAF file format. The CAF file starts with the File 

Header, and then is composed of various types of Chunk. Each Chunk has 

a Chunk Header, which records the size of the Chunk. Desc Chunk mainly 

stores some metadata of the file, Data Chunk stores all the Packets, 

and Packet Table Chunk records the size of each Packet. During 

parsing, the Packet Table Chunk will be read first to obtain the size 

of each Packet, and then go to Data Chunk to read the corresponding 

Packet. 

 

In order to analyze this vulnerability, I specially wrote a 010 Editor 

template to parse the CAF file. This is part of template code. 

 

BigEndian(); 

struct CAFAudioFormat { 

    double mSampleRate; 



    uint32 mFormatID; 

    uint32 mFormatFlags; 

    uint32 mBytesPerPacket; 

    uint32 mFramesPerPacket; 

    uint32 mChannelsPerFrame; 

    uint32 mBitsPerChannel; 

}; 

 

… 

struct File { 

    … 

    struct CAFFileHeader { 

        uint32  mFileType; 

        uint16  mFileVersion; 

        uint16  mFileFlags; 

    } cafFileHdr; 

… 

 

} file; 

 

Then we analyze the CAF file that caused the crash, and run it with 

the template file of 010 editor, you can see the following output: 



 



The first column is the serial number of the packet, and the second 

column is the size of the packet(in both decimal and hexadecimal 

format). It can be seen that the size of the 114th packet is a 

negative number. It can be speculated that the program runs into a 

problem when processing packets with negative sizes. Because the code 

is too complicated and there was not much time before Tianfu Cup at 

that time, I did not conduct a detailed analysis of the cause of the 

vulnerability. Here I mainly share my exploitation process.  

3.2 Turn out-of-bounds write into arbitrary 

address write 

Here I first did a reverse analysis of the relevant code. The buffer 

written out of bounds exists in the structure called ACOpusDecoder. 

The fields of this structure are as follows: 

 

I first did a reverse analysis of the relevant code. The buffer 

written out of bounds exists in the structure called ACOpusDecoder. 

The fields of this structure are as follows: 

The `buf` field is written out of bounds, which has a total of 1500 

bytes. The following fields such as `buf_size`, `controlled_field`, 

`log_obj`, and `controlleded` are all controllable. 

 

This is a picture taken from source code of 

“ACOpusDecoder::ProduceOutputBufferList” function. The program calls 

`opus_packet_get_samples_per_frame` function first, then it calls 

`opus_packet_parse_impl` function. The return value is `frame_num`. if 

`frame_num` is greater than or equal to zero. We enter the true 

branch. Then the program compares v37 and v23, if v37 is less than or 



equal to v23, we enter the true branch. In the true branch , program 

writes some value to addresses related to `log` object.  

Next, we have two goals. One is to go to the location where arbitrary 

address write occurs, and the written value must meet certain 

conditions; the other is to make the program not crash immediately 

after causing arbitrary address write. In the first step, we can do it 

by controlling the value of some variables, we need to ensure the 

return value of `opus_packet_parse_impl` is greater than or equal to 

0, to reach the point where arbitrary address write happens. This step 

is relatively simple, only needs to control the value of a few 

variables. 

 

Some twists and turns occurred in the second step. After an arbitrary 

address writing occurs, we find that the program always crashes in 

`opus_decode_frame`. According to the conventional analysis, if we 

want to achieve arbitrary address write, it will crash after write 

occurs. If we try to avoid the crash, we can't achieve arbitrary 

address write. But in the process of reverse engineering, I found a 

new bug,  the function used for parsing the packet does not check the 

length of the packet, and will cause an out-of-bounds parsing. So, I 

constructed two packets that overlap each other. 



 

 

 

Packet 1 is two bytes. The function used for parsing assumes that each 

packet is at least 4 bytes. So, it will be parsed out of bounds to 

Packet 2. The 0xf8 in Packet 2 is regarded as the TOC field in Packet 

1, and finally, we avoid a crash and achieve arbitrary address write 

in the meantime. 

3.3 Heap spray，break ASLR！ 

Usually even with the ability to write arbitrary address, if the 

program's ASLR protection is done well, you have to find an 

information leak bug to exploit the vulnerability. However, there are 

some problems in the implementation of Safari's heap, which leads us 

to spray the value we control on a fixed address by heap spray. With 

arbitrary address writing, the first thing that comes to mind is to 



overwrite the length field in JSArray, or the length field in 

ArrayBuffer. Due to Safari's Gigacage mechanism, even if the length 

field of ArrayBuffer is overwritten, we cannot read or write 

meaningful content, so I finally selected JSArray. 

 

JSArray in Safari uses Butterfly to store its length and content. If 

the length of one JSArray is overwritten, then the content of the next 

JSArray can be read and written out of bounds, and the two primitives 

fakeobj and addrof can be constructed. I first tried to spray 2 G of 

memory, and found that my Butterfly sometimes sprays between 

0x800000000-0x1000000000, and sometimes sprays between 0x1800000000-

0x1c00000000. Due to the heap isolation mechanism of Safari, different 

types of objects are in different heaps. Butterfly is in a heap called 

Gigacage in Safari. Some research on the Gigacage heap has found that 

the base address of Gigacage is predictable, and there are two types 

of Gigacage, one can store Butterfly and the other can store 

ArrayBuffer. For these two types of heaps, Gigacage does small 

randomization, one is Butterfly is on the upper side, and the other is 

ArrayBuffer is on the upper side. As shown below. Let's look at the 

situation One, starting from 0x800000000, an unmapped area of 0-4G 

will be randomly generated, and then Butterfly's heap will be located 

below. In the second case, starting from 0x1800000000, an unmapped 

area of 0-4G will be randomly generated, followed by the Bufferfly 

heap. In either case, the degree of randomization of the base address 

is very small. 



 

I first tested it on a machine with 16G memory. In order to improve 

the success rate, I sprayed 4G. But later I found that Safari monitors 

the memory used by each render process. If the memory used is too 

large, it will be killed. So, I chose to spray 2.5 G finally, but this 

will cause the success rate to drop a little. But this is not a big 

problem. We are lucky to be able to trigger arbitrary address writing 

multiple times by modifying our CAF file, to pull back the success 

rate. In order to facilitate the transformation of CAF files, I used 

ASM syntax to describe CAF files. ASM syntax supports the definition 

of various width values, such as byte, word, dword, qword, and also 

supports tags, placeholders, and repeating a value multiple time. This 

picture is a part of my ASM file, which defines the CAF file header, 

DESC chunk, some values used to trigger the vulnerability, and so on. 

Then I will introduce how the exploit process is implemented.  

_CAF_FILE_HEADER: 

    db   0x63, 0x61, 0x66, 0x66, 0x00, 0x01, 0x00, 0x00  

_DESC_CHUNK: 

    db 0x64, 0x65, 0x73, 0x63, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 

0x00, 0x20, 0x40, 0xE7, 0x70, 0x00, 



    db 0x00, 0x00, 0x00, 0x00, 0x6F, 0x70, 0x75, 0x73, 0x00, 0x00, 

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 

    db 0x00, 0x00, 0x03, 0xC0, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 

0x00, 0x00  

… 

    db 0x8c, 0x58                 ; length of packet which triggers 

out-of-bounds address write 

    db 0x2                 ; length of packet which triggers 

arbitrary address write 

    db 0x86, 0x2f                 ; length of packet which prevents 

crash 

… 

times 70000000 db 8 ; length of packets used for padding 

    db 0x81, 0x70, 0x81, 0x7F, 0x81, 0x76  ; padding 

    db 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x1A ; 

negative length used for triggering the vulnerability 

3.4 Thanks to multithreading！Give exploit 

code enough time to execute before program 

crashes 

The following sequence diagram explains the entire exploit process. In 

the beginning, there was only one JS thread. We do heap spray first, 

and constructed the audio file in the memory, then call the 

`decodeAudioData` function which performs the audio decode process. 

Since Safari decodes the audio in a separate thread, The Audio A 

thread will be started here. Let's first assume that the memory layout 

after the heap spray is the situation 1 mentioned above. Then the 

Audio A thread will trigger arbitrary address write for three times in 

address range 0x800000000 to 0x1000000000 , and the JS thread will 

detect whether the length of JSArray is changed after two seconds, if 

it is changed, it means that the heap layout is indeed case 1, and 



then the subsequent exploit code can be executed. If it is not 

changed, it means the heap layout is case 2, then call 

decodeAudioData() for the second time, start Audio B thread to decode 

audio, this time we will trigger arbitrary address write in address 

range 0x1800000000 to 0x1c00000000. The JS thread loops to check 

whether the length of the JSArray is changed, and if it is changed, it 

will execute subsequent exploits. If it fails, it means that the 

entire exploit has failed. 

 

Besides, there is a problem that needs to be solved, that is, after 

the audio file is decoded, when the free function is called to clean 

up the resources, a crash will be triggered. There are several ways to 

solve this problem, one is to repair the damaged heap, and the second 

is to make the audio decoding time very, very long, and our 

exploitation process ends before the decoding is over. The first 

approach is too complicated because we need to search the heap and it 

takes a certain amount of time to repair the heap. The program may 

crash when we are repairing the heap. So, we choose the second 

approach at last, I constructed a 600M CAF file with more than 70 



million packets. It will take about 50s to decode all of these 

packets, which is enough for my exploit. 

3.5 Old school, arbitrary address read/write 

to arbitrary code execution 

After covering the length field of JSArray, we can construct fakeobj 

and addrof primitives, and then we can use these two primitives to 

construct arbitrary address read and write primitives. At last we 

write the shellcode into the JIT area to execute arbitrary code. These 

are all old-school things, I won't go into details here. Audiences who 

are interested in it can read saelo's article 《Attacking JavaScript 

Engines - A case study of JavaScriptCore and CVE-2016-4622》. 

 

4. Conclusion 

Throughout the process of discovering and exploiting the WebAudio 

vulnerability, I think I can summarize the following three points. One 

is that in addition to the DOM and JS engine, there are still many 

unconcerned attack surfaces in Safari. The second is that there are 

still a lot of low hanging fruits in libraries without source code. 

The third is that even with a lot of modern defense mechanisms, they 

cannot completely prevent advanced attackers from exploiting 

vulnerabilities. Safari's ASLR defense mechanism still needs to be 

strengthened. 

 


