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Background

https://www.statista.com/statistics/233415/global-market-share-of-applications-processor-suppliers/
https://www.telecomlead.com/telecom-chips/qualcomm-captures-over-50-share-in-5g-smartphone-processor-market-94776

https://www.telecomlead.com/telecom-chips/qualcomm-captures-over-50-share-in-5g-smartphone-processor-market-94776
https://www.telecomlead.com/telecom-chips/qualcomm-captures-over-50-share-in-5g-smartphone-processor-market-94776
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So Why Hexagon?

Hexagon is widely used in Qualcomm platform

Especially, Baseband/aDSP are pretty high value targets



Why Fuzzing Hexagon?

• Closed source

• No Hexagon decompiler

• No known effective Hexagon fuzzer (Coverage guided)

• Really complicated system (Baseband)

• Suitable for Fuzzing (aDSP)

• Feasible (will show you in this presentation)

→ Big Potential



Hexagon Basic

• A Journey into Hexagon: Dissecting Qualcomm Basebands, 
2018, Seamus Burke

• Exploring Qualcomm Baseband via ModKit, 2018, Tencent 
Blade Team

• Attacking Hexagon: Security Analysis of Qualcomm’s 
aDSP, 2019, Dimitrios Tatsis

• Advanced Hexagon Diag and getting started with 
baseband vulnerability research, 2020, Alisa Esage
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Possible Solution Of Fuzzer

Actually a problem of closed source target with odd processor

• 1 Dynamic Injection
• Inject code into the REAL running target

• 2 Virtualization
• Emulate the target 

• 3 Symbolize Execution
• 4 AI…
• 5 Blackbox fuzzer
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Possible Solutions For Hexagon Fuzzer
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Tradeoff (No Silver Bullet)

Dynamic Injection
• Cons

• High cost
• Low stability
• Low flexibility
• Low Performance
• Low Scalability
• Target should be debuggable

• Pros
• Real running status
• Real hardware
• Deeper Code Coverage

Virtualization
• Cons

• High cost (if no emulator available)
• Hardware dependency
• Fake running status

• Pros
• High stability
• High flexibility
• High performance
• High Scalability



WE CHOOSE

DYNAMIC INJECTION!



Why We Choose Dynamic Injection

• No Hexagon emulator when we start the work
• QEMU-Hexagon: Automatic Translation of the ISA Manual 

Pseudcode to Tiny Code Instructions, 2019, Niccolò Izzo, rev.ng & 
Taylor Simpson, Qualcomm Innovation 

• Qualcomm Baseband is difficult to emulator
• Heavily rely on hardware and running environment
• Looks like infeasible
• Even if feasible, it’s hard to improve the code coverage

• The first challenge of dynamic injection is INJECTION
• However, we have a sophisticate debugger allow us to inject code 

into Hexagon processor



Dynamic Injection (Simple explanation)

Jump to engine

Feedback Engine



Dynamic Injection (Simple explanation)
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Dynamic Injection (Simple explanation)
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Overall Architecture
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Hexagon Modem
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Hexagon Modem
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Hexagon Modem Android
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Trouble Shooting

• Stability of the debugger and feedback engine
• Fix bug, fix bug…
• (Stack depth, General register and condition register preserve, 

make sure the original instruction is execute correctly, etc.)
• Good news is that you can eventually find and solve all the bugs

• Cost & Scalability & Performance
• Using development board instead of phone
• So you can deploy lots of fuzzers simultaneously
• Also be aware of reduce the overhead of the fuzzer



Fruits

• 5+ Vulnerabilities
• Fuzzer is still running
• Will fuzze more components

• Lots of crashes

• Lots of asserts…



Related Works (Fuzzing)

• BaseSAFE: Baseband SAnitized Fuzzing through Emulation, 
2020, Dominik Maier, Lukas Seidel, Shinjo Park

• Emulating Samsung's Baseband for Security Testing, 2020, 
Grant Hernandez, Marius Muench

• Attacking Hexagon: Security Analysis of Qualcomm’s 
aDSP, 2019, Dimitrios Tatsis



Related Works(Qualcomm Baseband)

• Reverse engineering a Qualcomm baseband, 2011, Guillaume 
Delugré

• All your baseband belongs to us, 2016, Ralf Weinmann

• A Journey into Hexagon: Dissecting Qualcomm Basebands, 
2018, Seamus Burke

• Exploring Qualcomm Baseband via ModKit, 2018, Tencent Blade 
Team

• Exploiting Qualcomm WLAN and Modem Over The Air, 2019, 
Tencent Blade Team

• Advanced Hexagon Diag and getting started with baseband 
vulnerability research, 2020, Alisa Esage
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Xiling Gong of Google
Bo Zhang of Tencent Blade Team

https://blade.tencent.com

https://blade.tencent.com/

