
In-Depth Analyzing and Fuzzing 
for 

Qualcomm Hexagon Processor

Xiling Gong of Google

Bo Zhang of Tencent Blade Team

• This presentation belongs to Tencent Blade Team

• Xiling Gong is on behalf of himself



Agenda

• Background
• Why Fuzzing Qualcomm Hexagon
• Hexagon Basic

• The Hexagon Fuzzer
• Possible Solutions and Tradeoff
• Our Solution and Why
• Overall Architecture 
• Key Components Explanation
• Trouble Shooting
• Fruits

• Demo



Background

https://www.statista.com/statistics/233415/global-market-share-of-applications-processor-suppliers/
https://www.telecomlead.com/telecom-chips/qualcomm-captures-over-50-share-in-5g-smartphone-processor-market-94776

https://www.telecomlead.com/telecom-chips/qualcomm-captures-over-50-share-in-5g-smartphone-processor-market-94776
https://www.telecomlead.com/telecom-chips/qualcomm-captures-over-50-share-in-5g-smartphone-processor-market-94776


Qualcomm SOC

Application 
Processor

Bluetooth

Modem

WLAN NPU

Vision

Video

NFC aDSP

Subsystems using Hexagon

Baseband (Modem, WLAN)
aDSP (Audio, Camera, and other 
stuffs)
NPU (AI)



So Why Hexagon?

Hexagon is widely used in Qualcomm platform

Especially, Baseband/aDSP are pretty high value targets



Why Fuzzing Hexagon?

• Closed source

• No Hexagon decompiler

• No known effective Hexagon fuzzer (Coverage guided)

• Really complicated system (Baseband)

• Suitable for Fuzzing (aDSP)

• Feasible (will show you in this presentation)

→ Big Potential



Hexagon Basic

• A Journey into Hexagon: Dissecting Qualcomm Basebands, 
2018, Seamus Burke

• Exploring Qualcomm Baseband via ModKit, 2018, Tencent 
Blade Team

• Attacking Hexagon: Security Analysis of Qualcomm’s 
aDSP, 2019, Dimitrios Tatsis

• Advanced Hexagon Diag and getting started with 
baseband vulnerability research, 2020, Alisa Esage



高通Hexagon处理器



Hexagon



Hexagon



Hexagon Instruction



Agenda

• Background
• Why Qualcomm Hexagon
• Hexagon basic

• The Hexagon Fuzzer
• Possible Solution and Tradeoff
• Our solution and why
• Overall Architecture 
• Key Components Explanation
• Trouble Shooting
• Fruits

• Demo



Possible Solution Of Fuzzer

Actually a problem of closed source target with odd processor

• 1 Dynamic Injection
• Inject code into the REAL running target

• 2 Virtualization
• Emulate the target 

• 3 Symbolize Execution
• 4 AI…
• 5 Blackbox fuzzer



Possible Solutions Of Hexagon Fuzzer

Closed 

Source

Odd 

Processor

Code 

Coverage



Possible Solutions For Hexagon Fuzzer

Closed 
Source

Odd 
Processo

r

Dynamic injection 
Inject code into running real target

Virtualization
Emulate the target

Code 
CoverageFeedBack



Tradeoff (No Silver Bullet)

Dynamic Injection
• Cons

• High cost
• Low stability
• Low flexibility
• Low Performance
• Low Scalability
• Target should be debuggable

• Pros
• Real running status
• Real hardware
• Deeper Code Coverage

Virtualization
• Cons

• High cost (if no emulator available)
• Hardware dependency
• Fake running status

• Pros
• High stability
• High flexibility
• High performance
• High Scalability



WE CHOOSE

DYNAMIC INJECTION!



Why We Choose Dynamic Injection

• No Hexagon emulator when we start the work
• QEMU-Hexagon: Automatic Translation of the ISA Manual 

Pseudcode to Tiny Code Instructions, 2019, Niccolò Izzo, rev.ng & 
Taylor Simpson, Qualcomm Innovation 

• Qualcomm Baseband is difficult to emulator
• Heavily rely on hardware and running environment
• Looks like infeasible
• Even if feasible, it’s hard to improve the code coverage

• The first challenge of dynamic injection is INJECTION
• However, we have a sophisticate debugger allow us to inject code 

into Hexagon processor



Dynamic Injection (Simple explanation)

Jump to engine

Feedback Engine



Dynamic Injection (Simple explanation)

Jump to engine

Environment Preserve
(Registers, etc.)

Do Jobs
(Feedback)

Environment Restore
(Registers, etc.)

Execute Original 
Instructions

Jump back to normal 
code flow

Feedback Engine



Dynamic Injection (Simple explanation)

Jump to engine

Feedback EngineJump to engine

Jump to engine Feedback Engine

Feedback Engine

Jump to engine Feedback Engine

Feedback Engine

Jump to engine



Overall Architecture

PC
Analyzer
Patch Generator

Hexagon
Debugger Engine
Feedback Engine

Android
Debugger
Libfuzzer



Hexagon Modem

Jump to engine

Feedback 
Engine

Jump to engine

Jump to engine

Jump to 
engine

Jump to engine

Jump to engine

Jump to engine

Jump to engine

Android

PC Hit

LibFuzzer

Test Sample

Shared 
Memory

Sample 
Consumer



Hexagon Modem

Jump to engine

Jump to engine

Jump to engine

Jump to 
engine

Jump to engine

Jump to engine

Jump to engine

Jump to engine

Android

Debugger

PC

Debugger 
Engine

Patch Code

Static Analyser

Generate Patch

Jump to engine

Original Code

Feedback Engine 
Code



Hexagon Modem Android

Debugger
Client

PC

Static Analyzer

Patch Generator

Modem
Firmware

Debugger 
Engine

Feedback 
Engine

Sample 
Consumer

LibFuzzer

Dynamic Info 
Collector



Trouble Shooting

• Stability of the debugger and feedback engine
• Fix bug, fix bug…
• (Stack depth, General register and condition register preserve, 

make sure the original instruction is execute correctly, etc.)
• Good news is that you can eventually find and solve all the bugs

• Cost & Scalability & Performance
• Using development board instead of phone
• So you can deploy lots of fuzzers simultaneously
• Also be aware of reduce the overhead of the fuzzer



Fruits

• 5+ Vulnerabilities
• Fuzzer is still running
• Will fuzze more components

• Lots of crashes

• Lots of asserts…



Related Works (Fuzzing)

• BaseSAFE: Baseband SAnitized Fuzzing through Emulation, 
2020, Dominik Maier, Lukas Seidel, Shinjo Park

• Emulating Samsung's Baseband for Security Testing, 2020, 
Grant Hernandez, Marius Muench

• Attacking Hexagon: Security Analysis of Qualcomm’s 
aDSP, 2019, Dimitrios Tatsis



Related Works(Qualcomm Baseband)

• Reverse engineering a Qualcomm baseband, 2011, Guillaume 
Delugré

• All your baseband belongs to us, 2016, Ralf Weinmann

• A Journey into Hexagon: Dissecting Qualcomm Basebands, 
2018, Seamus Burke

• Exploring Qualcomm Baseband via ModKit, 2018, Tencent Blade 
Team

• Exploiting Qualcomm WLAN and Modem Over The Air, 2019, 
Tencent Blade Team

• Advanced Hexagon Diag and getting started with baseband 
vulnerability research, 2020, Alisa Esage



THANK YOU!

Xiling Gong of Google
Bo Zhang of Tencent Blade Team

https://blade.tencent.com

https://blade.tencent.com/

