
(Un)protected Broadcasts in
Android 9 and 10

Dr. Ryan Johnson - Kryptowire

Dr. Mohamed Elsabagh - Kryptowire

Dr. Angelos Stavrou - Kryptowire

#BHASIA @BLACKHATEVENTS

#BHASIA @BLACKHATEVENTS

Agenda
Intents

Protected Broadcasts

(Un)protected Broadcast Vulnerability
Notable Instances of the Vulnerability

Resolution
Disclosure

Conclusions

#BHASIA @BLACKHATEVENTS

Who we are
Kryptowire was jump-started by Defense Advanced Research Projects Agency (DARPA) in late 2011 and
R&D supported by Department of Homeland Security Science & Technology (DHS S&T) and National
Institute of Standards and Technology (NIST)

Enterprise Mobile Security: Software Assurance, Developer Integration & Mobile Device Management
(MDM), Threat Feed, & Security Analytics

Ryan Johnson Mohamed Elsabagh Angelos Stavrou

#BHASIA @BLACKHATEVENTS

Content
Provider

Activity

Broadcast
Receiver

Content
Provider

App Components
Android apps are composed of app components

Can be started independently and perform dedicated tasks

Declared in an app’s AndroidManifest.xml file
Activity

Service
Service

<receiver android:name=".NfcBootCompletedReceiver">
<intent-filter>

<action android:name="android.intent.action.BOOT_COMPLETED"/>
</intent-filter>

</receiver>

#BHASIA @BLACKHATEVENTS

Intents
IPC messages sent within and between apps

Explicit Intents specify an exact destination app
component receiver, whereas implicit Intents do not
and rely solely on actions to determine the receiver(s)

App A App B App C

Binder

Intent intent = new Intent("android.intent.action.BOOT_COMPLETED");
sendBroadcast(intent);

Intent intent = new Intent("android.intent.action.BOOT_COMPLETED");
intent.setClassName("com.android.nfc", "com.android.nfc.NfcBootCompletedReceiver");
sendBroadcast(intent);

Implicit

Explicit

#BHASIA @BLACKHATEVENTS

Protected Broadcasts
Prevents unauthorized entities from sending system broadcast Intents with specific actions
• Commonly used by the Android Framework and system apps

Can generally be received by any process that registers for a protected broadcast action,
although the sender can require that the receiver possess a permission in order to receive it

<protected-broadcast android:name="android.net.conn.CONNECTIVITY_CHANGE"/>
<protected-broadcast android:name="android.intent.action.BOOT_COMPLETED"/>
<protected-broadcast android:name="android.intent.action.LOCALE_CHANGED"/>

<receiver android:name=".NfcBootCompletedReceiver">
<intent-filter>

<action android:name="android.intent.action.BOOT_COMPLETED"/>
</intent-filter>

</receiver>

#BHASIA @BLACKHATEVENTS

Who can send protected broadcasts?
final boolean isCallerSystem;
switch (UserHandle.getAppId(callingUid)) {

case ROOT_UID:
case SYSTEM_UID:
case PHONE_UID:
case BLUETOOTH_UID:
case NFC_UID:
case SE_UID:

isCallerSystem = true;
break;

default:
isCallerSystem = (callerApp != null) && callerApp.persistent;
break;

}
// First line security check before anything else: stop non-system apps from
// sending protected broadcasts.
if (!isCallerSystem) {

if (isProtectedBroadcast) {
String msg = "Permission Denial: not allowed to send broadcast "

+ action + " from pid="
+ callingPid + ", uid=" + callingUid;

Slog.w(TAG, msg);
throw new SecurityException(msg);

} ...

Android 9 AOSP snippet from ActivtiyManagerService.java

System processes with specific UIDs and system
apps with the android:persistent attribute set
to true in their AndroidManifest.xml fileUID checks

Only system apps
can be persistent

SecurityException is thrown when
the caller is not part of the system
(i.e., isCallerSystem is false)

https://android.googlesource.com/platform/frameworks/base/+/00d9027/services/core/java/com/android/server/am/ActivityManagerService.java

#BHASIA @BLACKHATEVENTS

Not all system apps are created equal
Android apps have an APK file with a path on the file system

$ adb shell pm list package –f
/system/priv-app/SettingsGoogle/SettingsGoogle.apk=com.android.settings
/system/app/EasterEgg/EasterEgg.apk=com.android.egg
/vendor/app/TimeService/TimeService.apk=com.qualcomm.timeservice
...

Apps contained in a priv-app directory are considered “privileged”
• Can be explicitly granted permissions without user involvement through xml files

https://source.android.com/devices/tech/config/perms-allowlist

#BHASIA @BLACKHATEVENTS

Which app directories can …?
Android
Version

Can Register Protected Broadcasts Cannot Register Protect Broadcasts

11

/system/framework, /system/app, /system/priv-app,
/vendor/app, /vendor/priv-app, /vendor/overlay,
/odm/app, /odm/priv-app, /odm/overlay, /oem/app,

/oem/priv-app, /oem/overlay, /product/app,
/product/priv-app, /product/overlay /system_ext/app,

/system_ext/priv-app, & /system_ext/overlay

/data/app

10
/system/framework, /system/priv-app, /vendor/priv-

app, /odm/priv-app, /product/priv-app, &
/product_services/priv-app

/data/app, /system/app, /vendor/app, /odm/app,
/oem/app, /product/app, /product_services/app,
/vendor/overlay, /product_services/overlay,

/product/overlay, /odm/overlay, & /oem/overlay

9 /system/framework, /system/priv-app, /vendor/priv-
app, /odm/priv-app, & /product/priv-app

/data/app, /system/app, /vendor/app, /odm/app,
/oem/app, & /product/app, /vendor/overlay, &

/product/overlay

8 /system/framework, /system/app, /system/priv-app,
/vendor/app, /oem/app, & /vendor/overlay

/data/app

#BHASIA @BLACKHATEVENTS

PackageManagerService
Back-end service that provides information about installed
apps via the Android Framework APIs

PackageManager → IPackageManager → PackageManagerService

The system uses PackageManagerService to scan the partitions
on system startup for apps and parses their manifests to
determine installed apps and configure their broadcast permissions
• /system, /vendor, /product, /odm, /oem, ...

https://developer.android.com/reference/android/content/pm/PackageManager
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/content/pm/IPackageManager.aidl
https://android.googlesource.com/platform/frameworks/base/+/master/services/core/java/com/android/server/pm/PackageManagerService.java

#BHASIA @BLACKHATEVENTS

// Collect ordinary system packages.
final File systemAppDir = new File(Environment.getRootDirectory(), "app");

scanDirTracedLI(systemAppDir,
mDefParseFlags
| PackageParser.PARSE_IS_SYSTEM_DIR,
scanFlags
| SCAN_AS_SYSTEM,
0);

PackageManagerService (Android 10)
// Collect privileged system packages.
final File privilegedAppDir = newFile(Environment.getRootDirectory(), "priv-app");

scanDirTracedLI(privilegedAppDir,
mDefParseFlags
| PackageParser.PARSE_IS_SYSTEM_DIR,
scanFlags
| SCAN_AS_SYSTEM
| SCAN_AS_PRIVILEGED,
0); 1.

if ((scanFlags & SCAN_AS_PRIVILEGED) == 0) {
// clear protected broadcasts
pkg.protectedBroadcasts = null;
// ignore export request for single user receivers
if (pkg.receivers != null) {

for (int i = pkg.receivers.size() - 1; i >= 0; --i) {
final PackageParser.Activity receiver = pkg.receivers.get(i);
if ((receiver.info.flags & ActivityInfo.FLAG_SINGLE_USER) != 0) {

receiver.info.exported = false;
}

}
}

...
}

Apps in the /system/priv-app directory are
scanned with the SCAN_AS_SYSTEM
and SCAN_AS_PRIVILEGED flags

Apps in the /system/app directory are
scanned with the SCAN_AS_SYSTEM
flag

Apps that were not scanned with the
SCAN_AS_PRIVILEGED flag (i.e., apps
in an app directory) have their protected
broadcast declarations ignored

https://android.googlesource.com/platform/frameworks/base/+/refs/heads/android10-release/services/core/java/com/android/server/pm/PackageManagerService.java

#BHASIA @BLACKHATEVENTS

(Un)protected broadcast vulnerability
System apps that are not present in a priv-app directory on Android 9 and 10 will offer no
protection for the protected broadcast actions the app declares, allowing any app to send them
• CVE-2020-0391 - CVSS 3.X Base Score = 7.3

/system/app/Clutch
/Clutch.apk

system_server

Third-party App

① Clutch.apk declares protected
broadcast(s) in app manifest

② system_server parses protected broadcasts
in all app manifests but ignores any from an app
not contained in a priv-app directory

③ Third-party App sends (un)protected
broadcast Intents with actions that apps in an app
directory that are offered no protection at runtime

④ Clutch.apk apps process (un)protected
broadcast Intents sent from third-party app
resulting in privilege escalation since it
appears to be from an authorized sender

https://nvd.nist.gov/vuln/detail/CVE-2020-0391

#BHASIA @BLACKHATEVENTS

Security exception: Permission Denial:
not allowed to send broadcast
android.perfdump.action.EXT_EXEC_SHELL
from pid=13064, uid=10282

Broadcasting: Intent { act=
android.perfdump.action.EXT_EXEC_SHELL
flg=0x400000 (has extras) }
Broadcast completed: result=0

priv
-app

app

priv-app vs. app directories

<protected-broadcast
android:name="android.perfdump
.action.EXT_EXEC_SHELL"/>

Declared in

Declared in

am broadcast –a android.perfdump.action.EXT_EXEC_SHELL ...Third-party app sends a broadcast
Intent that is declared as protected

#BHASIA @BLACKHATEVENTS

Threat Model
Attack Surface: Exported app components that register for (un)protected broadcast actions
where the extent depends on the apps present on the device and their file system locations

Attack Vector: Broadcasting intents with (un)protected broadcast actions

Attack Requirements: Local app on the device that can broadcast Intents

Attack Goal: Privilege escalation due to sending spoofed broadcast intents that appears to be
from the system when they are really from a third-party app

#BHASIA @BLACKHATEVENTS

Android Versions Affected

Android 9 Android 10 Android 11
Developer
Preview 3

When reported in May 2020

#BHASIA @BLACKHATEVENTS

Google Pixel 4 (Un)protected Broadcasts
Google Pixel 4 Android 10 build contains 3 apps with (un)protected broadcasts
• google/flame/flame:10/QQ2A.200405.005/6254899:user/release-keys

Package Name (Un)protected
Broadcasts App Path on Device

com.qualcomm.qti.uceShimService 4 /product/app/uceShimService/uceShimService.apk

com.google.SSRestartDetector 2 /product/app/SSRestartDetector/SSRestartDetector.apk

com.android.service.ims.presence 4 /system/app/PresencePolling/PresencePolling.apk

#BHASIA @BLACKHATEVENTS

PresencePolling app Overview
Pre-installed app with package name of com.android.service.ims.presence that facilitates Rich
Communication Services (RCS)
• Path: /system/app/PresencePolling/PresencePolling.apk

• Executes with shared UID: android.uid.phone

IP Multimedia Subsystem (IMS) external project hosted on android.googlesource.com and is
present on Google Pixel 3 and Google Pixel 4 devices

Cause file corruption of the internal database that “mirrors” the device’s official contacts provider

https://android.googlesource.com/platform/external/ims/+/refs/heads/master/rcs/presencepolling

#BHASIA @BLACKHATEVENTS

Perfdump app Overview
Pre-installed app with a package name of com.qualcomm.qti.perfdump that profiles
processes using Linux perf tools
• App path: /system/app/Perfdump/Perfdump.apk

• Executes with shared UID: android.uid.system

Vulnerable versions when path is /<partition>/app/Perfdump/Perfdump.apk

• Version code: 8, Version Name: 3.0.1

• Version code: 7, Version Name: 2.1.1

Command injection vulnerability due to a protected-broadcast not being protected at runtime

#BHASIA @BLACKHATEVENTS

Perfdump app Manifest
<protected-broadcast android:name="android.perfdump.action.START_ERROR"/>
<protected-broadcast android:name="android.perfdump.action.DUMP_FINISH"/>
<protected-broadcast android:name="android.perfdump.action.CLEAR_FINISH"/>
<protected-broadcast android:name="android.perfdump.action.EXT_START_TRACE"/>
<protected-broadcast android:name="android.perfdump.action.EXT_DUMP_TRACE"/>
<protected-broadcast android:name="android.perfdump.action.EXT_EXEC_SHELL"/>
<protected-broadcast android:name="android.perfdump.action.EXT_FEEDBACK"/>

<receiver android:name=".StaticReceiver">
<intent-filter>

<action android:name="android.perfdump.action.EXT_START_TRACE"/>
<action android:name="android.perfdump.action.EXT_DUMP_TRACE"/>
<action android:name="android.perfdump.action.EXT_EXEC_SHELL"/>
<action android:name="android.intent.action.DEVICE_STORAGE_LOW"/>
<action android:name="android.intent.action.DEVICE_STORAGE_OK"/>

</intent-filter>
<intent-filter>

<action android:name="android.provider.Telephony.SECRET_CODE"/>
<data android:host="73733867" android:scheme="android_secret_code"/>

</intent-filter>
</receiver>

Protected broadcasts that
the Perfdump app declares

Perfump app component that
registers for protected broadcast
actions that it declares

#BHASIA @BLACKHATEVENTS

Perfdump app Vulnerability Details
Command injection vulnerability - CVE-2020-11164 – CVSS 3.X Base Score = 7.8
• Executes arbitrary commands as system using sh –c <command_to_execute>

Qualcomm advisory ranked the vulnerability as high severity and listed the affected chipsets:

• Agatti, APQ8096AU, APQ8098, Bitra, Kamorta, MSM8909W, MSM8917, MSM8940, Nicobar,
QCA6390, QCM2150, QCS605, Rennell, SA6155P, SA8155P, Saipan, SDA660, SDM429W,
SDM450, SDM630, SDM636, SDM660, SDM670, SDM710, SM6150, SM7150, SM8150,
SM8250, SXR1130, SXR2130

Intent intent = new Intent("android.perfdump.action.EXT_EXEC_SHELL");
intent.setClassName("com.qualcomm.qti.perfdump", "com.qualcomm.qti.perfdump.StaticReceiver");
intent.putExtra("callerPackageName", "com.test");
intent.putExtra("shellCommand", <command_to_execute>);
sendBroadcast(intent);

https://nvd.nist.gov/vuln/detail/CVE-2020-11164
https://www.qualcomm.com/company/product-security/bulletins/october-2020-security-bulletin

#BHASIA @BLACKHATEVENTS

Perfdump app Affected Devices Sample
Vendor Model Product Name Android

Version
App Version

Code
App Version

Name
Sony Xperia 1 802SO 9 8 3.0.1

Nokia 7 Plus B2N_sprout 9 7 2.1.1

Fairphone Fairphone 3 FP3 9 8 3.0.1

Meizu Note 9 meizunote9 9 7 2.1.1

Meizu 16Xs meizu16Xs 9 8 3.0.1

Xiaomi Poco F1 beryllium 9 7 2.1.1

Xiaomi Mi 9 cepheus 9 7 2.1.1

Xiaomi Mi 8 dipper 9 7 2.1.1

Xiaomi Mi 8 Pro equuleus 9 7 2.1.1

Xiaomi Mi Max 3 nitrogen 9 7 2.1.1

Xiaomi Mi Mix 3 perseus 9 7 2.1.1

#BHASIA @BLACKHATEVENTS

QMMI app Overview
Pre-installed app with package name of com.qualcomm.qti.qmmi that allows the user to test
various hardware capabilities
• App path: /system/app/Qmmi/Qmmi.apk

• Executes with shared UID: android.uid.system

Vulnerable version when path is /<partition>/app/Qmmi/Qmmi.apk

• Version code: 400, Version Name: 4.0

Programmatically obtain IMEI1, IMEI2 (if present), Wi-Fi MAC address, Bluetooth address, and
serial number from a zero-permission app - CVE-2021-1929 (Currently reserved)

https://cve.mitre.org/cgi-bin/cvename.cgi%3Fname=CVE-2021-1929

#BHASIA @BLACKHATEVENTS

QMMI app Exploitation Workflow

⓪ QMMI app is located in an app directory
and declares protected broadcasts

① register for the action named
qualcomm.qti.qmmi.UPDATE_MESSAGE

② start MainActivity via Intent

③ register for the action named
qualcomm.qti.qmmi.DIAG_START_TESTCAST

④ send DIAG_START_TESTCAST (un)protected broadcast Intent

⑤ send implicit UPDATE_MESSAGE broadcast Intent containing PII

⑥ sends Intent to to start the default launcher
and push the QMMI app into the background

<protected-broadcast android:name="qualcomm.qti.qmmi.DIAG_START_TESTCAST_ACTION"/>

#BHASIA @BLACKHATEVENTS

The (un)protected broadcast fix
https://android.googlesource.com/platform/frameworks/base/+/860fd4b6a2a4fe5d681bc07f2567f
dc84f0d1580
• com/android/server/pm/PackageManagerService.java

Backported fix to vulnerable devices that are still supported

if ((scanFlags & SCAN_AS_PRIVILEGED) == 0) {
- // clear protected broadcasts
- pkg.protectedBroadcasts = null;

// ignore export request for single user receivers
if (pkg.receivers != null) {

for (int i = pkg.receivers.size() - 1; i >= 0; --i) {
...

if ((scanFlags & SCAN_AS_SYSTEM) != 0) {
...

} else {
// non system apps can't be flagged as core
pkg.coreApp = false;
// clear flags not applicable to regular apps

...
+ // clear protected broadcasts
+ pkg.protectedBroadcasts = null;
...

https://android.googlesource.com/platform/frameworks/base/+/860fd4b6a2a4fe5d681bc07f2567fdc84f0d1580
https://android.googlesource.com/platform/frameworks/base/+/44654288c0bdb6a05ef4a9be123945900f57c761/services/core/java/com/android/server/pm/PackageManagerService.java

#BHASIA @BLACKHATEVENTS

(Un)protected broadcast disclosure timeline

5/08/2020: Initial disclosure to Android Security Team and affected vendors

6/08/2020: Submitted vulnerability report to Google’s IssueTracker

6/09/2020: Submission acknowledged

6/15/2020: Google committed the fix - 860fd4b6a2a4fe5d681bc07f2567fdc84f0d1580

6/18/2020: Google finished their initial assessment and ranked the severity as “High”
8/21/2020: Google assigned CVE-2020-0391 for the vulnerability.

9/08/2020: Google changed the vulnerability status to “fixed” and provided bug bounty

https://android.googlesource.com/platform/frameworks/base/+/860fd4b6a2a4fe5d681bc07f2567fdc84f0d1580
https://nvd.nist.gov/vuln/detail/CVE-2020-0391

#BHASIA @BLACKHATEVENTS

Conclusions
Use defense-in-depth design principle by employing multiple forms of access control
to guard app components that receive protected broadcasts

Providing explicit feedback to developers via a runtime warning for pre-installed apps
may help identify these cases in the future

Ensure there is good communication when making significant changes to the system

#BHASIA @BLACKHATEVENTS

Contact Info

Dr. Ryan Johnson
VP of Research
rjohnson@kryptowire.com

http://www.kryptowire.com

Dr. Mohamed Elsabagh
Director of Research
melsabagh@kryptowire.com

Dr. Angelos Stavrou
Chief Scientific Officer
astavrou@kryptowire.com

http://www.kryptowire.com/

