
The Rise of Potatoes:
Privilege Escalations in Windows Services

Antonio Cocomazzi

System Engineer, SentinelOne

#BHASIA @BLACKHATEVENTS

#BHASIA @BLACKHATEVENTS

whoami

➔ System Engineer @ SentinelOne

➔ Passionate about IT security and constantly trying to learn
and experiment new cool stuff, especially on Windows
Systems

➔ CTF player and proud member of @DonkeysTeam

@splinter_code

@antonioCoco

#BHASIA @BLACKHATEVENTS

Why this talk

➔ Windows Service Accounts usually holds “impersonation privileges” which
can be (easily) abused for privilege escalation once compromised

➔ “Rotten/JuicyPotato” exploits do not work anymore in latest Windows
releases

➔ Any chance to get our potatoes alive and kicking, again?

#BHASIA @BLACKHATEVENTS

Agenda
➔ Basic Concepts:

◆ Windows Services
◆ Windows Service Accounts
◆ WSH (Windows Service Hardening)
◆ Impersonation

➔ From Service to System
◆ RogueWinRm
◆ RoguePotato
◆ Juicy2
◆ Other non-”potatoes” techniques

➔ Relaying potatoes authentication
➔ Mitigations
➔ Conclusion

#BHASIA @BLACKHATEVENTS

Windows Services

➔ What is a service?
◆ Particular process that runs in a separate Session and without user interaction.
◆ The classic Linux daemon, but for windows

➔ Why so important?
◆ Most of the Windows core components are run through a service
◆ DCOM, RPC, SMB, IIS, MSSQL, etc…
◆ Being daemons they will be an exposed attack surface

➔ Must be run with a Service Account User

➔ Configurations are under HKLM\SYSTEM\CurrentControlSet\Services

#BHASIA @BLACKHATEVENTS

Windows Services

➔ How you recognize a service?
◆ Child process of services.exe (SCM)
◆ Process in Session 0
◆ From source code perspective: SvcInstall(),

SvcMain(), SvcCtrlHandler(), SvcInit()…

➔ How the NT Kernel recognize a service…
◆ S-1-5-6 Service

A group that includes all security principals that
have logged on as a service.

#BHASIA @BLACKHATEVENTS

Windows Services Accounts

➔ Windows Service Accounts have the password managed internally by the
operating system

➔ Service Account types:
◆ Local System
◆ Local Service / Network Service Accounts
◆ Managed Service & Virtual Accounts

➔ Allowed to logon as a Service, logon type 5

➔ Could be also a normal user who has been granted the right “Log on as a
Service”

#BHASIA @BLACKHATEVENTS

Windows Services Accounts

#BHASIA @BLACKHATEVENTS

Windows Services Hardening (WSH)

➔ Until Windows Server 2003/XP every service was run as SYSTEM

➔ If you compromise a service you have compromised also the whole
machine

➔ WSH to the rescue, at least that was the initial goal

➔ Great references by @tiraniddo [1] and @cesarcer [2]

[1] https://www.tiraniddo.dev/2020/01/empirically-assessing-windows-service.html
[2] https://downloads.immunityinc.com/infiltrate-archives/WindowsServicesHacking.pdf

#BHASIA @BLACKHATEVENTS

Windows Services Hardening (WSH)
➔ Limited Service Accounts

◆ Introduction of the LOCAL SERVICE and NETWORK SERVICE accounts, less privileges than
SYSTEM account.

➔ Reduced Privileges
◆ Services run only with specified privileges (least privilege)

➔ Write-Restricted Token
➔ Per-Service SID

◆ Service access token has dedicated and unique owner SID. No SID sharing across different
services

➔ Session 0 Isolation
➔ System Integrity Level
➔ UIPI (User interface privilege isolation)

#BHASIA @BLACKHATEVENTS

Impersonation
➔ “Impersonation is the ability of a thread to execute in a security context that is

different from the context of the process that owns the thread.” MSDN

➔ Basically it allows to execute code on behalf of another user

➔ Token forged by impersonation are known as secondary token or impersonation
token

➔ Your process token must hold the SeImpersonatePrivilege (“Impersonate a Client
After Authentication”) to perform the impersonation

➔ It is the prerequisite for all the techniques will be shown

#BHASIA @BLACKHATEVENTS

Impersonation

➔ Impersonation assigns a token to a thread, replace the token used in access
checks for the majority of system calls [1]

[1] https://conference.hitb.org/hitbsecconf2017ams/materials/D2T3%20-%20James%20Forshaw%20-
%20Introduction%20to%20Logical%20Privilege%20Escalation%20on%20Windows.pdf

#BHASIA @BLACKHATEVENTS

Impersonation

➔ You are wondering now: what is the link between Services and the
impersonation privileges?

#BHASIA @BLACKHATEVENTS

From Service to SYSTEM

#BHASIA @BLACKHATEVENTS

RogueWinRm

➔ Release Date: 6 December 2019

➔ Authors: @decoder_it - @splinter_code – 0xEA (@DonkeysTeam)

➔ Brief Description
◆ Force the BITS service to authenticate to a Rogue WinRm HTTP server in a NTLM

challenge/response authentication resulting in a SYSTEM token stealing. [1]

➔ Requirements
◆ WinRm Port (5985) available for listening
◆ By default impact only Windows clients, no Windows Servers

[1] https://decoder.cloud/2019/12/06/we-thought-they-were-potatoes-but-they-were-beans/

#BHASIA @BLACKHATEVENTS

RogueWinRm

➔ When a BITS object get initialized a weird behavior happens
➔ BITS object could be created through a DCOM activation using its CLSID or by a

simple “bitsadmin /list”

#BHASIA @BLACKHATEVENTS

RogueWinRm

➔ RogueWinRm is a minimal webserver that performs NTLM authentication over
HTTP

Image from --> https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/

#BHASIA @BLACKHATEVENTS

#BHASIA @BLACKHATEVENTS

RoguePotato

➔ Release Date: 11 May 2020

➔ Authors: @decoder_it - @splinter_code

➔ Brief Description
◆ Tricks the DCOM activation service in contacting a remote Rogue Oxid Resolver to force RPCSS

writing to a controlled named pipe getting a NETWORK SERVICE token. After that it uses Token
Kidnapping to steal a SYSTEM token from the process space of RPCSS [1]

➔ Requirements
◆ The machine can make an outbound connection on port 135
◆ SMB Running
◆ DCOM Running

[1] https://decoder.cloud/2020/05/11/no-more-juicypotato-old-story-welcome-roguepotato/

#BHASIA @BLACKHATEVENTS

RoguePotato: the attack flow 1/4

Step 1

#BHASIA @BLACKHATEVENTS

RoguePotato: the attack flow 1/4

➔ Tricking the DCOM activation service [1]
◆ Pick a CLSID to create an object activation request
◆ Once the object is created, initializes it to a marshalled object. (IStorage)
◆ In the marshalled object (OBJREF_STANDARD) we specify the string binding for a remote oxid

resolver. This will be the ip of our remote rogue oxid resolver
◆ When the COM object will unmarshal the object (CoGetInstanceFromIStorage) it will trigger an

oxid resolution request to our rogue oxid resolver in order to locate the binding information of
the object

[1] Credits to @tiraniddo --> https://bugs.chromium.org/p/project-zero/issues/detail?id=325

#BHASIA @BLACKHATEVENTS

RoguePotato: the attack flow 2/4

Step 1 Step 2

#BHASIA @BLACKHATEVENTS

RoguePotato: the attack flow 2/4

➔ Forward the resolution coming to the remote host (port 135) back to the
local host where the Rogue Oxid Resolver runs

➔ Write the code of the malicious ResolveOxid2() in order to return a
poisoned answer:
◆ Force the usage of RPC over SMB (ncacn_np) instead of RPC over TCP (ncacn_ip_tcp)
◆ Return the binding information exploiting a path validation bypass [1]:

ncacn_np:localhost/pipe/roguepotato[\pipe\epmapper]

➔ Result: the activator (RPCSS), instead of using the default named pipe
\pipe\epmapper, will use a non-existent named pipe
\pipe\roguepotato\pipe\epmapper for locating the endpoint information

[1] Credits to @itm4n and @jonasLyk --> https://itm4n.github.io/printspoofer-abusing-impersonate-privileges/

#BHASIA @BLACKHATEVENTS

RoguePotato: the attack flow 3/4

Step 1 Step 2 Step 3

#BHASIA @BLACKHATEVENTS

RoguePotato: the attack flow 3/4

➔ Create listener on the free named pipe
\\.\pipe\roguepotato\pipe\epmapper and wait for the connection from
RPCSS, then we call ImpersonateNamedPipeClient() to impersonate the
client

➔ Should we expect a surprise?

#BHASIA @BLACKHATEVENTS

RoguePotato: the attack flow 3/4

#BHASIA @BLACKHATEVENTS

RoguePotato: the attack flow 4/4

Step 1 Step 2 Step 3 Step 4

#BHASIA @BLACKHATEVENTS

RoguePotato: the attack flow 4/4

➔ The last step of the chain, the Token Kidnapping [1]

➔ Get the PID of the “RPCSS” service

➔ Open the process, list all handles and for each handle try to duplicate it
and get the handle type

➔ If handle type is “Token” and token owner is SYSTEM, try to impersonate
and launch a process with CreateProcessAsUser() or
CreateProcessWithToken()

[1] Credits to @cesarcer --> https://dl.packetstormsecurity.net/papers/presentations/TokenKidnapping.pdf

#BHASIA @BLACKHATEVENTS

RoguePotato: SYSTEM shell popping :D

SYSTEM feeling

POC: https://github.com/antonioCoco/RoguePotato

Step 1

Step 2

Step 3
Step 4

#BHASIA @BLACKHATEVENTS

Juicy2

➔ Release Date: 30 May 2020

➔ Authors: @decoder_it - @splinter_code

➔ Brief Description
◆ Tricks the DCOM activation service in contacting a remote Rogue Oxid Resolver to force a specific

DCOM component to authenticate to an arbitrary RPC server, resulting in a SYSTEM token
stealing [1] [2]

➔ Requirements
◆ The machine can make an outbound connection on port 135
◆ DCOM Running
◆ By default affects only Windows clients, no Windows Servers

[1] https://decoder.cloud/2020/05/30/the-impersonation-game/
[2] https://github.com/decoder-it/juicy_2

#BHASIA @BLACKHATEVENTS

Juicy2

Step 1 Step 2 Step 3 Step 4

➔ Similar to RoguePotato, but uses RPC over TCP (ncacn_ip_tcp) instead of RPC over SMB (ncacn_np)
➔ JuicyPotato reloaded, it works for windows > 1803 with some limitations

#BHASIA @BLACKHATEVENTS

Juicy2

Step 1 Step 3Step 2

ncacn_ip_tcp:127.0.0.1[9999]

#BHASIA @BLACKHATEVENTS

Juicy2

➔ Most of CLSIDs returns an Identification token, pretty useless…
➔ Why this behavior?

typedef struct _RPC_SECURITY_QOS {

unsigned long Version;
unsigned long Capabilities;
unsigned long IdentityTracking;
unsigned long ImpersonationType;

} RPC_SECURITY_QOS, *PRPC_SECURITY_QOS;

➔ By default: ImpersonationType=RPC_C_IMP_LEVEL_IDENTIFY
➔ Can be overridden at code level (server side) or by controlling the regkey

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost

#BHASIA @BLACKHATEVENTS

Juicy2

➔ Any CLSID that override this behavior?

ActiveX Installer service, no Windows Server

#BHASIA @BLACKHATEVENTS

Other non-”potatoes” techniques

Network Service Impersonation
➔ Release Date: 25 April 2020

➔ Authors: @tiraniddo

➔ Brief Description
◆ If you can trick the “Network Service” account to write to a named pipe over the “network” and

are able to impersonate the pipe, you can access the tokens stored in RPCSS service (which is
running as Network Service and contains a pile of treasures) and “steal” a SYSTEM token. [1]

[1] https://www.tiraniddo.dev/2020/04/sharing-logon-session-little-too-much.html
[2] https://itm4n.github.io/printspoofer-abusing-impersonate-privileges/

PrintSpoofer
➔ Release Date: 2 May 2020

➔ Authors: @itm4n - @jonasLyk

➔ Brief Description
◆ An exposed RPC interface of the Print Spooler service is vulnerable to a path validation bypass in

which you can trick the service to write to a controlled named pipe and then impersonating the
connection resulting in a SYSTEM token stealing. [2]

#BHASIA @BLACKHATEVENTS

Relaying Potatoes Authentication

#BHASIA @BLACKHATEVENTS

Basic idea

➔ What if we relay the RPC authentication triggered by a potato exploit
instead of impersonating ? --> No more impersonation privileges required!

➔ Machine authentication (NETWORK SERVICE/LOCAL SYSTEM) is not that
useful…

➔ Some CLSID to the rescue! If activated from session 0:
◆ BrowserBroker Class {0002DF02-0000-0000-C000-000000000046}
◆ AuthBrokerUI {0ea79562-d4f6-47ba-b7f2-1e9b06ba16a4}
◆ Easconsent.dll {5167B42F-C111-47A1-ACC4-8EABE61B0B54}
◆ ….

➔ We can trigger an NTLM authentication over RPC from the user
interactively logged on in Session 1 :D

#BHASIA @BLACKHATEVENTS

DCE/RPC NTLM Relay cross protocols

➔ “NTLM relay is a technique of standing between a client and a server to
perform actions on the server while impersonating the client” [1]

➔ In recent years most of the research/mitigations about NTLM Relaying
were on SMB, HTTP, LDAP… What about RPC ?

➔ RPC -> HTTP and RPC -> LDAP cross protocol relay works!
◆ It requires the RPC authentication level is set to RPC_AUTHN_LEVEL_CONNECT (0x2)
◆ We need to deal also with NTLM mitigations: MIC and SIGNING
◆ In our scenario two interesting NTLM authentications took place:

- Oxid Resolution (IObjectExporter::ResolveOxid2 call)
- IRemUnknown Interface (IRemUnknown2::RemRelease call)

[1] https://en.hackndo.com/ntlm-relay/

#BHASIA @BLACKHATEVENTS

Dealing with MIC and SIGNING restrictions

Oxid Resolution

Victim DCOM Malicious Attacker

#BHASIA @BLACKHATEVENTS

Dealing with MIC and SIGNING restrictions

Oxid Resolution

Victim DCOM Malicious Attacker

#BHASIA @BLACKHATEVENTS

Dealing with MIC and SIGNING restrictions

Oxid Resolution

Victim DCOM Malicious Attacker

#BHASIA @BLACKHATEVENTS

Dealing with MIC and SIGNING restrictions

Oxid Resolution

Victim DCOM Malicious Attacker

☺

#BHASIA @BLACKHATEVENTS

RemotePotato0 - EOP use case by relaying potato
authentication to LDAP protocol

#BHASIA @BLACKHATEVENTS

RemotePotato0: Demo

#BHASIA @BLACKHATEVENTS

Mitigations

➔ Change the sid type of the service to “WRITE RESTRICTED” [1]
sc.exe sidtype SampleService restricted

➔ Use virtual service accounts [2] (or create your own [3])
sc.exe config SampleService obj= "NT SERVICE\SampleService"

➔ Remove the impersonation privileges by specifying the only required privileges
for the service(Least-Privilege) [1] [2]

sc.exe privs SampleService SeChangeNotifyPrivilege/SeCreateGlobalPrivilege

[1] https://www.tiraniddo.dev/2020/01/empirically-assessing-windows-service.html
[2] https://decoder.cloud/2020/11/05/hands-off-my-service-account/
[3] https://www.tiraniddo.dev/2020/10/creating-your-own-virtual-service.html

#BHASIA @BLACKHATEVENTS

Conclusion

➔ For Sysadmins: never rely on default WSH configuration for segregating the services.
Remember that also MS do not consider it a security boundary but just a “safety
boundary”?????

➔ For Penetration Testers: always run “whoami /priv” when you land to a new server
and check for the SeImpersonatePrivilege. It’s a 1 click privesc to SYSTEM :D

➔ For service providers: do not sell web servers (IIS) by creating a new virtual host on
a shared machine, please…

➔ “if you have Impersonation privileges you are SYSTEM!” @decoder_it

#BHASIA @BLACKHATEVENTS

Thank You

splintercod3@gmail.com

@splinter_code

Feel free to reach out! :D

