
Syntia: Breaking State-of-the-Art
Binary Code Obfuscation via Program Synthesis

Tim Blazytko, Moritz Contag, Cornelius Aschermann, Thorsten Holz

Ruhr-Universität Bochum, Germany
{firstname.lastname}@rub.de

Abstract
In modern businesses, code obfuscation has become a vital tool to protect, for
example, intellectual property against competitors. In general, it attempts to
impede program understanding by making the to-be-protected program more
complex. In this paper, we will give an overview of contemporary (binary)
code obfuscation techniques, including Mixed Boolean-Arithmetic and Virtual
Machines. We further note a common theme in state-of-the-art deobfuscation
techniques: They mostly use a mixed approach of symbolic execution and taint
analysis; two techniques that require precise analysis of the underlying code.
Also, these techniques require a non-trivial amount of domain knowledge. This
limits the applicability of these techniques and hints at the necessity of finding
alternative approaches to tackle the problem of code obfuscation.

Consequently, we introduce program synthesis as a promising technique that
is orthogonal to traditional deobfuscation techniques. As program synthesis can
synthesize code of arbitrary code complexity, it is only limited by the complexity
of the underlying code’s semantic and thus overcomes some of the limitations
traditional approaches suffer from. Our prototype implementation, Syntia, is
guided by Monte Carlo Tree Search (MCTS) and simplifies execution traces by
dividing them into distinct trace windows whose semantics are then “learned”
by the synthesis. To demonstrate the practical feasibility of our approach, we
apply it to modern, commercial protection systems and emerging techniques
such as Mixed Boolean-Arithmetic. Syntia automatically learns the semantics of
489 out of 500 random expressions obfuscated via Mixed Boolean-Arithmetic
and achieves a success rate of more than 94% when synthesizing the semantics
of arithmetic instruction handlers in two state-of-the-art virtualization-based
protection systems, Themida and VMProtect. Finally, we discuss the role of
program synthesis in the landscape of modern deobfuscation techniques.

1 Introduction
Code obfuscation describes the process of applying an obfuscating transformation
to an input program to obtain an obfuscated copy of the program. Said copy
should be more complex than the input program such that an analyst cannot
easily reason about it. An obfuscating transformation is further desired to be
semantics-preserving, i. e., it must not change observable program behavior [12].
Code obfuscation can be leveraged in many application domains, for example in
software protection solutions to prevent illegal copies, or in malicious software
to impede the analysis process. In practice, different kinds of obfuscation tech-
niques are used to hinder the analysis process. Most notably, industry-grade
obfuscation solutions are typically based on Virtual Machine (VM)-based trans-
formations [39,56,58,59], which are considered one of the strongest obfuscating
transformations available [2]. While these protections are not perfect and in
fact are broken regularly, attacking them is still a time-consuming task that
requires highly specific domain knowledge of the individual Virtual Machine
implementation. Consequently, for example, this gives game publishers a head-
start in which enough revenue can be generated to stay profitable. On the other
hand, obfuscated malware stays under the radar for a longer time, until concrete
analysis results can be used to effectively defend against it.

To deal with this problem, prior research has explored many different ap-
proaches to enable deobfuscation of obfuscated code. For example, Rolles pro-
poses static analysis to aid in deobfuscation of VM-based obfuscation schemes [45].
However, it incorporates specific implementation details an attacker has to know
a priori. Further, static analysis of obfuscated code is notoriously known to be
intractable in the general case [12]. Hence, recent deobfuscation proposals have
shifted more towards dynamic analysis [13,62,63]. Commonly, they produce an
execution trace and use techniques such as (dynamic) taint analysis or symbolic
execution to distinguish input-dependent instructions. Based on their results,
the program code can be reduced to only include relevant, input-dependent
instructions. This effectively strips the obfuscation layer. Even though such
deobfuscation approaches sound promising, recent work proposes several ways to
effectively thwart underlying techniques, such as symbolic execution [2]. For this
reason, it suggests itself to explore distinct techniques that may be leveraged for
code deobfuscation.

In this paper, we propose an approach orthogonal to prior work on ap-
proximating the underlying semantics of obfuscated code. Instead of manually
analyzing the instruction handlers used in virtualization-based (VM) obfuscation
schemes in a complex and tedious manner [45] or learning merely the bytecode
decoding (not the semantics) of these instruction handlers [54], we aim at learning
the semantics of VM-based instruction handlers in an automated way. Further-
more, our goal is to develop a generic framework that can deal with different
use cases. Naturally, this includes constructs close to obfuscation, such as Mixed
Boolean-Arithmetic (MBA), different kinds of VM-based obfuscation schemes,
or even analysis of code chunks (so called gadgets) used in Return-oriented
Programming (ROP) exploits.

2

To this extend, we explore how program synthesis can be leveraged to tackle
this problem. Broadly speaking, program synthesis describes the task of automat-
ically constructing programs for a given specification. While there exists a variety
of program synthesis approaches [21], we focus on SMT-based and stochastic
program synthesis in the following, given its proven applicability to problem
domains close to trace simplification and deobfuscation. SMT-based program
synthesis constructs a loop-free program based on first-order logic constraints
whose satisfiability is checked by an SMT solver. For component-based synthesis,
components are described that build the instruction set of a synthesized program;
for instance, components may be bitwise addition or arithmetic shifts. The char-
acteristics of a well-formed program such as the interconnectivity of components
are defined and the semantics of the program are described as a logical formula.
Then, an SMT solver returns a permutation of the components that forms a
well-encoded program following the previously specified intent [22, 24], if it is
satisfiable, i. e., such a permutation does exist.

Instead of relying on a logical specification of program intent, oracle-guided
program synthesis uses an input-output (I/O) oracle. Given the outputs of an
I/O oracle for arbitrary program inputs, program synthesis learns the oracle’s
semantics based on a finite set of I/O samples. The oracle is iteratively queried
with distinguishing inputs that are provided by an SMT solver. Locating
distinguishing inputs is the most expensive task in this approach. The resulting
synthesized program has the same input-output behavior as the I/O oracle [24].
Contrary to SMT-based approaches that only construct semantically correct
programs, stochastic synthesis approximates program equivalence and thus
remains faster. In addition, it can also find partial correct programs. Program
synthesis is modeled as heuristic optimization problem, where the search is
guided by a cost function. It determines, for instance, output similarity of the
synthesized expression and the I/O oracle for same inputs [51].

As program synthesis is indifferent to code complexity, it can synthesize
arbitrarily obfuscated code and is only limited by the underlying code’s semantic
complexity. We demonstrate that a stochastic program synthesis algorithm based
on Monte Carlo Tree Search (MCTS) achieves this in a scalable manner. To
show feasibility of our approach, we automatically learned the semantics of 489
out of 500 MBA-obfuscated random expressions. Furthermore, we synthesize the
semantics of arithmetic instruction handlers in two state-of-the art commercial
virtualization-based obfuscators with a success rate of more than 94%. Finally,
to show applicability to areas more focused on security aspects, we further
automatically learn the semantics of ROP gadgets.

Contributions In summary, we make the following contributions in this paper:

• We introduce a generic approach for trace simplification based on program
synthesis to obtain the semantics of different kinds of obfuscated code.
We demonstrate how Monte Carlo Tree Search (MCTS) can be utilized in
program synthesis to achieve a scalable and generic approach.

3

• We implement a prototype of our method in a tool called Syntia. Based on
I/O samples from assembly code as input, Syntia can apply MCTS-based
program synthesis to compute a simplified expression that represents a
deobfuscated version of the input.

• We demonstrate that Syntia can be applied in several different application
domains such as simplifying MBA expressions by learning their seman-
tics, learning the semantics of arithmetic VM instruction handlers and
synthesizing the semantics of ROP gadgets.

2 Technical Background
Before presenting our approach to utilize program synthesis for recovering the
semantics of obfuscated code, we first review several concepts and techniques we
use throughout the rest of the paper.

2.1 Obfuscation
In the following, we discuss several techniques that qualify as an obfuscat-
ing transformation, namely virtualization-based obfuscation, Return-oriented
Programming and Mixed Boolean-Arithmetic.

2.1.1 Virtualization-based Obfuscation

Contemporary software protection solutions such as VMProtect [59], Themida [39],
and major game copy protections such as SecuROM base their security on the
concept of Virtual Machine-based obfuscation (also known as virtualization-based
obfuscation [45]).

Similar to system-level Virtual Machines (VMs) that emulate a whole system
platform, process-level VMs emulate a foreign instruction set architecture (ISA).
The core idea is to translate parts of a program, e. g., a function f containing
intellectual property, from its native architecture—say, Intel x86—into a custom
VM-ISA. The obfuscator then embeds both the bytecode of the virtualized
function (its instructions encoded for the VM-ISA) along with an interpreter
for the new architecture into the target binary whilst removing the function’s
original, native code. Every call to f is then replaced with an invocation of
the interpreter. This effectively thwarts any naive reverse engineering tool
operating on the native instruction set and forces an adversary to analyze the
interpreter and re-translate the interpreted bytecode back into native instructions.
Commonly, the interpreter is heavily obfuscated itself. As VM-ISAs can be
arbitrarily complex and generated uniquely upon protection time, this process is
highly time-consuming [45].

Components. The (VM) context holds internal variables of the VM-ISA such
as general-purpose registers or the virtual instruction pointer. It is initialized by

4

5b 60 97 84 66 d8 aa 11 22

Bytecode

handler_add8

handler_mul16

handler_not8

…

handler_sub32

Handler Table

Fetch

Decode

Execute

VM Entry
switch from native

to VM context

Native Code
corresponds to

handler_exit

Figure 1: The Fetch–Decode–Execute cycle of a Virtual Machine. Native code
calls into the VM, upon which startup code is executed (VM entry). It performs
the context switch from native to VM context. Then, the next instruction is
fetched from the bytecode stream, mapped to the corresponding handler using
the handler table (decoding) and, finally, the handler is executed. The process
repeats for subsequent VM instructions in the bytecode until the exit handler is
executed, which returns back to native code.

sequence called VM entry, which handles the context switch from native code to
bytecode.

After initialization, the VM dispatcher fetches and decodes the next instruc-
tion and invokes the corresponding handler function by looking it up in a global
handler table (depicted in Figure 1). The latter maps indices, obtained from the
instruction’s bytecode in the decoding step, to handlers addresses. In its most
simple implementation, all handler functions return to a central dispatching loop
which then dispatches the next handler. Eventually, execution flow reaches a
designated handler, VM exit, which performs the context switch back to the
native processor context and transfers control back to native code.

Custom ISA. The design of the target VM-ISA is entirely up to the VM
designer. Still, to maximize the amount of handlers an analyst has to reverse
engineer, VMs often opt for reduced complexity for the individual handlers, akin
to the RISC design principle. To exemplify, consider the following Intel x86
code:

1 mov eax , dword ptr [0 x401000 + ebx * 4]
2 pop dword ptr [eax]

This might get translated into VM-ISA as follows:

5

1 vm_mov T0, vm_context.real_ebx
2 vm_mov T1, 4
3 vm_mul T2, T0, T1
4 vm_mov T3, 0x401000
5 vm_add T4, T2, T3
6 vm_load T5, dword(T4)
7 vm_mov vm_context.real_eax , T5
8 vm_mov T6, T5
9 vm_mov T7, vm_context.real_esp
10 vm_add T8, T7, T1
11 vm_mov vm_context.real_esp , T8
12 vm_load T9, dword(T7)
13 vm_store dword(T6), T9

It favors many small, simple handlers over fewer more complicated ones.

Bytecode Blinding. In order to prevent global analysis of instructions, the
bytecode bc of each VM instruction is blinded based on its instruction type,
i. e., its corresponding handler h, at protection time. Likewise, each han-
dler unblinds the bytecode before decoding its operands: (bc, vm_key) ←
unblindh(blinded_bc, vm_key).

The routine is parameterized for each handler h and updates a global key
register in the VM context. Consequently, instruction decoding can be flow-
sensitive: An adversary is unable to patch a single VM instruction without
re-blinding all subsequent instructions. This, in turn, requires her to extract
the unblinding routines from every handler involved. The individual unblinding
routines commonly consist of a combination of arithmetic and logical operations.

Handler Duplication. In order to easily increase analysis complexity, com-
mon VMs duplicate handlers such that the same virtual instruction can be
dispatched by multiple handlers. In presence of bytecode blinding, these han-
dlers’ semantics only differ in the way they unblind the bytecode, but perform
the same operation on the VM context.

Architectures. In his paper about interpretation techniques, Klint denotes
the aforementioned concept using a central decoding loop as the “classical
interpretation method” [28]. An alternative is proposed by Bell with Threaded
Code (TC) [4]: He suggests inlining the dispatcher routine into the individual
handler functions such that handlers execute in a chained manner, instead of
returning to a central dispatcher. Nevertheless, the dispatcher still indexes a
global handler table. In the context of interpreters for software protection, this
prevents the attacker from readily investigating each atomic step of the VM.
Further, since the dispatcher still indexes the global handler table, the adversary
immediately obtains the addresses of all handler functions.

In Klint’s paper, however, he describes an extension of TC, Direct Threaded
Code (DTC). As in the TC approach, the dispatcher is appended to each handler.
The handler table, though, is inlined into the bytecode of the instruction. Each

6

instruction now directly specifies the address of its corresponding handler. This
way, in presence of bytecode blinding, not all handler addresses are exposed
immediately, but only those used on a certain path in the bytecode.

Attacks. Several academic works have been published that propose novel
attacks on virtualization-based obfuscators [13, 45]. Section 6.2 discusses and
classifies them. In addition, it draws a comparison to our approach.

2.1.2 Return-oriented Programming

In Return-oriented Programming (ROP) [30,53], shellcode is expressed as a so-
called ROP chain, a list of references to gadgets and parameters for those. In the
preliminary step of an attack, the adversary makes esp point to the start of the
chain, effectively triggering the chain upon function return. Gadgets are small,
general instruction sequences ending on a ret instruction; other flavors propose
equivalent instructions. Concrete values are taken from the ROP chain on the
stack. As an example, consider the gadget pop eax; ret: It takes the value on
top of the stack, places it in eax and, using the ret instruction, dispatches the
next gadget in the chain. By placing an arbitrary immediate value imm32 next to
this gadget’s address in the chain, an attacker effectively encodes the instruction
mov eax, imm32 in her ROP shellcode. Depending on the gadget space available
to the attacker, this technique allows for arbitrary computations [40,52].

Automated analysis of ROP exploits is a desirable goal. However, its unique
structure poses various challenges compared to traditional shellcode detection.
In their paper, Graziano et al. outline them and propose an analysis framework
for code-reuse attacks [19]. Amongst others, they mention challenges such as
verbosity of the gadgets, stack-based chaining, lack of immediates, and the
distinction of function calls and regular control flow. Further, they stress how
an accurate emulation of gadgets is important for addressing these challenges.
Considering the aforementioned challenges, at its core, Return-oriented Program-
ming can be seen as an albeit weaker flavor of obfuscated code. In particular, the
chained invocation of gadgets is reminiscent of handlers in VM-based obfuscation
schemes following the threaded code principle.

In addition to its application to exploitation, ROP has seen other fields
of applications such as rootkit development [60], software watermarking [34],
steganography [33], and code integrity verification [1], which reinforces the
importance of automatic ROP chain analysis.

2.1.3 Mixed Boolean-Arithmetic

Zhou et al. propose transformations over Boolean-arithmetic algebras to hide
constants by turning them into more complex, but semantically equivalent
expressions, so called MBA expressions [14,64]. In Section 6.1, we provide details
on their proposal of MBA expressions and show how our approach is still able
to simplify them.

7

2.2 Trace Simplification
Due to the complexity of static analysis of obfuscated code, many deobfuscation
approaches proposed recently make use of dynamic analysis [13, 19, 19, 54, 63].
Notably, they operate on execution traces that record instruction addresses
and accompanying metadata, e. g., register content, along a concrete execution
path of a program. Subsequently, trace simplification is performed to strip
the obfuscation layer and simplify the underlying code. Depending on the
approach, multiple traces are used for simplification or one single trace is reduced
independently.

Coogan et al. [13] propose value-based dependence analysis of a trace in
order to track the flow of values into system calls using an equational reasoning
system. This allows them to reduce the trace to those instructions relevant to
the previously mentioned value flow.

Graziano et al. [19] mainly apply standard compiler transformations such as
dead code elimination or arithmetic simplifications to reduce the trace.

Yadegari et al. [63] use bit-level taint analysis to identify instructions relevant
to the computation of outputs. For subsequent simplification, they introduce
the notion of quasi-invariant locations with respect to an execution. These
are locations that hold the same value at every use in the trace and can be
considered constants when performing constant propagation. Similarly, they use
several other compiler optimizations and adapt them to make use of information
about quasi-invariance to prevent over-simplification.

2.3 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a stochastic, best-first tree search algorithm
that directs the search towards an optimal decision, without requiring much
domain knowledge. The algorithm builds a search tree through reinforcement
learning by performing random simulations that estimate the quality of a node [5].
Hence, the tree grows asymmetrically. MCTS has had significant impact in
artificial intelligence for computer games [16, 35, 50, 57], especially in the context
of Computer Go [17,55].

In an MCTS tree, each node represents a game state; a directed link from
a parent node to its child node represents a move in the game’s domain. The
core algorithm iteratively builds the decision tree in four main steps that are
also illustrated in Figure 2: (1) The selection step starts at the root node and
successively selects the most-promising child node, until an expandable leaf (i. e.,
a non-terminal node that has unvisited children) is reached. (2) Following, one or
more unvisited child nodes are added to the tree in the expansion step. (3) In the
simulation step, node rewards are determined for the new nodes through random
playouts. For this, consecutive game states are randomly derived until a terminal
state (i. e., the end of the game) is reached; the game’s outcome is represented by
a reward. (4) Finally, the node rewards are propagated backwards through the
selected nodes to the root in the backpropagation step. The algorithm terminates

8

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Figure 2: Illustration of a single MCTS round (taken from Browne et al. [5]).

if either a specified time/iteration limit is reached or an optimal solution is
found [5, 8].

Selecting the most-promising child node can be treated as a so called multi-
armed bandit problem, in which a gambler tries to maximize the sum of rewards by
choosing one out of many slot machines with an unknown probability distribution.
Applied to MCTS, the Upper Confidence Bound for Trees (UCT) [5, 17, 29]
provides a good balance between exploration and exploitation. It is obtained by

Xj + C

√
ln n

nj
, (1)

where Xj represents the average reward of the child node j, n the current
node’s number of visits, nj the visits of the child node and C the exploration
constant. The average reward is referred to as exploitation parameter : if C is
decreased, the search is directed towards nodes with a higher reward. Increasing
C, instead, leads to an intensified exploration of nodes with few simulations.

2.4 Simulated Annealing
Simulated Annealing is a stochastic search algorithm that has been used to
effectively solve NP-hard combinatorial problems [27]. The main idea of Simu-
lated Annealing is to approximate a global optimum by iteratively improving an
initial candidate and exploring the local neighborhood. To avoid a convergence
to local optima, the search is guided by a falling temperature T that decreases
the probability of accepting worse candidates over time [25]; in the following, we
assume that a falling temperature depends on a decreasing loop counter.

Figure 3 illustrates this process on the example of finding the darkest area
in a given map. Starting in an initial state (s0), the algorithm always accepts
a candidate that has a better score than the current one (green arrows). If
the score is worse, we accept the worse candidate with some probability (the
red arrow from s2 to s3) that depends on the temperature (loop counter) and

9

Figure 3: Simulated Annealing approximates a global optimum (the darkest area
in the map).

how much worse the candidate is. The higher the temperature, the more likely
the algorithm accepts a significantly worse candidate solution. Otherwise, the
candidate is discarded (e. g., the crossed out red arrow at s4); in this case, we
pick another one in the local neighborhood. This allows the algorithm to escape
from local optima while the temperature is high; for low temperatures (loop
counters closer to 0), it mainly accepts better candidate solutions. The algorithm
terminates after a specified number of iterations.

3 Approach
Given an instruction trace, we dissect the instruction trace into trace windows
(i. e., subtraces) and aim at learning their high-level semantics which can be used
later on for further analysis. In the following, we describe our approach which is
divided into three distinct parts:

1. Trace Dissection. The instruction trace is partitioned into unique sequences
of assembly instructions in a (semi-)automated manner.

2. Random Sampling. We derive random input-output pairs for each trace
window. These pairs describe the trace window’s semantics.

3. Program Synthesis. Expressions that map all provided inputs to their
corresponding outputs are synthesized.

3.1 Trace Dissection
The choice of trace window boundaries highly impacts later analysis stages.
Most notably, it affects synthesis results: if a trace window ends at an interme-
diary computation step, the synthesized formula is not necessarily succinct or
meaningful at all, as it includes spurious semantics.

10

Figure 4: Dissecting a given trace (a) into several trace windows (b). The trace
windows can be used to reconstruct a (possibly disconnected) control-flow graph
(c).

Yet, we note how trace dissection of ROP chains and VM handlers lends
itself to a simple heuristic. Namely, we split traces at indirect branches. In the
ROP case, this describes the transition between two gadgets (commonly, on a
ret instruction), whereas for VM handlers it distinguishes the invocation of the
next handler (cf. Section 6.2). Figure 4 illustrates the approach. Given concrete
trace window boundaries, we can reconstruct a control-flow graph consisting
of multiple connected components. A trace window then describes a particular
path through a connected component.

3.2 Random Sampling
The goal of random sampling is to derive input-output relations that describe
the semantics of a trace window. This happens in two steps: First, we determine
the inputs and outputs of the trace window. Then, we replace the inputs with
random values and obverse the outputs.

Generally speaking, we consider register and memory reads as inputs and
register and memory writes as outputs. For inputs, we apply a read-before-write
principle: inputs are only registers/memory locations that are read before they
have been written; for outputs, we consider the last writes of a register/memory
location as output.

1 mov rax , [rbp + 0x8]
2 add rax , rcx
3 mov [rbp + 0x8], rax
4 add [rbp + 0x8], rdx

Following this principle, the code above has three inputs and two outputs:
The inputs are the memory read M0 in line 1, rcx (line 2) and rdx (line 4). The
two outputs are o0 (line 2) and o1 (line 4).

11

In the next step, we generate random values and obverse the I/O relationship.
For instance, we obtain the outputs (7, 14) for the input tuple (2, 5, 7); for the
inputs (1, 7, 10), we obtain (8, 18).

By default, we use register locations as well as memory locations as inputs
and outputs. However, we support the option to reduce the inputs and outputs
to either register or memory locations. For instance, if we know that registers
are only used for intermediate results, we may ignore them since it reduces the
complexity for the synthesis.

3.3 Synthesis
This section demonstrates how we synthesize the semantics of assembly code;
we discuss the inner workings of our synthesis approach in the next section.

After we obtained the I/O samples, we combine the different samples and
synthesize each output separately. These synthesis instances are mutually
independent and can be completely parallelized.

To exemplify, for the I/O pairs above, we search an expression that transforms
(2, 5, 7) to 7 and (1, 7, 10) to 8 for o0; for o1, the expression has to map (2, 5, 7)
to 14 and (1, 7, 10) to 18. Then, the synthesizer finds o0 = M0 + rcx and
o1 = M0 + rcx + rdx.

4 Program Synthesis
In the last section, we demonstrated how we obtain I/O samples from assembly
code and apply program synthesis to that context. This section describes our
algorithm in detail; we show how we find an expression that maps all inputs to
their corresponding outputs for all observed samples. We use Monte Carlo Tree
Search, since it has been proven to be very effective when working on infinite
decision trees without requiring much domain knowledge.

We consider program synthesis as a single-player game whose purpose is to
synthesize an expression whose input-output behavior is as close as possible to
given I/O samples. In essence, we define a context-free grammar that consists of
terminal and non-terminal symbols. (Partially) derived words of the grammar
are game states; the grammar’s production rules represent the moves of the
game. Terminal nodes are expressions that contain only terminal symbols; these
are end states of the game.

Given a maximum number of iterations and I/O samples, we iteratively
apply the four MCTS steps (cf. Section 2.3), until we find a solution or we
reach the timeout. Starting with a non-terminal expression as root node, we
select the most-promising expandable node. A node is expandable, if there still
exist production rules that have not been applied to this node. We choose a
production rule randomly and expand the selected node. To evaluate the quality
of the new node, we perform a random playout: First, we randomly derive a
terminal expression by successively applying random production rules. Then, we
evaluate the expressions based on the inputs from the I/O pairs and compare

12

the output similarity. The similarity score is the node reward. A reward of 1
ends the synthesis, since the input-output behavior is the same for the provided
samples. Finally, we propagate the reward back to the root.

In the following, we give details on node selection, our grammar, random
playouts and backpropagation. Finally, we discuss the algorithm configuration
and parameter tuning. To demonstrate the different steps of our approach, we
use the following running example throughout this section:

Example 1 (I/O relationship). Working with bit-vectors of size 3 (i. e., modulo
23), we observe for an expression with two inputs and one output the I/O
relations: (2, 2) → 4 and (4, 5) → 1. A synthesized expression that maps the
inputs to the corresponding outputs is f(a, b) = a + b.

4.1 Node Selection
Since we have an infinite search space for program synthesis, node selection
must be a trade-off between exploration and exploitation. The algorithm has to
explore different nodes such that several promising and non-promising candidates
are known. On the other hand, it has to follow more promising candidates to
find deeper expressions. As described in Section 2.3, the UCT (cf. Equation 1)
provides a good balance between exploitation and exploration for many MCTS
applications.

However, we observed that it does not work for our use case: if we set the
exploration constant C to a higher value (focus on exploration), it does not
find deeper expressions; if we set C to a lower value, MCTS gets lost in deep
expressions. To solve this problem, we use an adaption of UCT that is known as
Simulated Annealing UCT (SA-UCT) [48]. The main idea of SA-UCT is to use
the characteristics of Simulated Annealing (cf. Section 2.4) and apply it to UCT.
SA-UCT is obtained by replacing the exploration constant C by a variable T
with

T = C
N − i

N
, (2)

where N is the maximum number of MCTS iterations and i the current
iteration. Then, SA-UCT is defined as

Xj + T

√
ln n

nj
. (3)

T decreases over time, since N−i
N converges to 0 for increasing values of i. As

a result, MCTS places the emphasis on exploration in the beginning; the more
T decreases, the more the focus shifts to exploitation.

4.2 Grammar
Game states are represented by sentential forms of a context-free grammar that
describes valid expressions of our high-level abstraction. We introduce a terminal

13

symbol for each input (which corresponds to a variable that stores this input) and
each valid operator (e. g., addition or multiplication). For every data type that
can be computed we introduce one non-terminal symbol (in our running example,
we only use a single non-terminal value U that represents an unsigned integer).
The production rules describe how we can derive expressions in our high-level
description. Since the sentential forms represent partial expressions, we will
use the term expression to denote the (partial) expression that is represented
by a given sentential form. Sentences of the grammar are final states in the
game since they do not allow any further moves (derivations). They represent
expressions that can be evaluated. We represent expressions in Reverse Polish
Notation (RPN).

Example 2. The grammar in our previous example has two input symbols
V = {a, b}, since each I/O sample has two inputs. If the grammar supports
addition and multiplication O = {+, ∗}, there are four production rules: R =
{U → U U + | U U ∗ | a | b}. An unsigned integer expression U can be mapped
to an addition or multiplication of two such expressions or a variable. The final
grammar is ({U}, Σ = V ∪O, R, U).

Synthesis Grammar. Our grammar is designed to synthesize expressions
that represent the semantics of bit-vector arithmetic, especially for the x86
architecture. For every data type (U8, U16, U32 and U64), we define the set of
operations as O = {+,−,∗,/s,/,%s,%,∧,∨,⊕,�,�,�a,−1,¬, sign_ext, zero_ext,
extract, ++, 1}, where the operations are binary addition, subtraction, multipli-
cation, signed/unsigned division, signed/unsigned remainder, bitwise and/or/xor,
logical left shift, logical/arithmetic right shift as well as unary minus and comple-
ment. The unary operations sign_ext and zero_ext extend smaller data types
to signed/unsigned larger data types. Conversely, the unary operator extract
transforms larger data types into smaller data types by extracting the respective
least significant bits. Since the x86 architecture allows register concatenation
(e. g., for division), we employ the binary operator ++ to concatenate two expres-
sions of the same data type. Finally, to synthesize expressions such as increment
and decrement, we use the constant 1 as niladic operator. The input set V
consists of |V | = n variables, where n represents the number of inputs.

Tree Structure. The sentential form U is the root node of the MCTS tree. Its
child nodes are other expressions that are produced by applying the production
rules to a single non-terminal symbol of the parent. The expression depth
(referred to as layer) is equivalent to the number of derivation steps, as depicted
in Figure 5.

Example 3. The root node U is an expression of layer 0. Its children are a, b,
U U +, and U U ∗, where a and b are terminal expressions of layer 1. Assuming
that the right-most U in an expression is replaced, the children of U U + are
U b +, U a +, U U U + +, and U U U ∗ +. To obtain the layer 3 expression
b a +, the following derivation steps are applied: U ⇒ U U +⇒ U a +⇒ b a +.

14

U

U U * U U +

U b + U U U + + U a +

U U * a + b a +

U U U * +

a b

Figure 5: An MCTS tree for program synthesis that grows towards the most-
promising node b a +, the right-most leaf in layer 3.

+

U3*

U2U1

Figure 6: The left-most U in U3 U2 U1 ∗ + is the top-most-right-most non-
terminal in the abstract syntax tree. (The indices are provided for illustrative
purposes only.)

To direct the search towards outer expressions, we replace the top-most-right-
most non-terminal. If we, instead, substitute always the right-most non-terminal
only, then the search would be guided towards most-promising subexpressions. If
the expression is too nested, the synthesizer would find the partial subexpression
but not the whole expression. The top-most-right-most derivation is illustrated
in Figure 6, which shows the abstract syntax tree (AST) of an expression.

Example 4. The expression (U + (U ∗U)) is represented as U U U ∗ +. If we
successively replace the right-most U , the algorithm is unlikely to find expressions
such as ((a + b) + (b ∗ (b ∗ a))), since it is directed into the subexpression with the
multiplication. Instead, replacing the top-most-right-most non-terminal directs
the search to the top-most addition and then explores the subexpressions.

15

4.3 Random Playout
One of the key concepts of MCTS are random playouts. They are used to
determine the outcome of a node; this outcome is represented by a reward. In
the first step, we randomly apply production rules to the current node, until we
obtain a terminal expression. To avoid infinite derivations, we set a maximum
playout depth. This maximum playout depth defines how often a non-terminal
symbol can be mapped to rules that contain non-terminal symbols; at the latest
we reached the maximum, we map non-terminals only to terminal expressions.
This happens in a top-most-right-most manner. Afterwards, we evaluate the
expression for all inputs from the I/O samples.

Example 5. Assuming a maximum playout depth of 2 and the expression U U ∗,
the first top-most-right-most U is randomly substituted with U U ∗, the second
one with U U +. After that, the remaining non-terminal symbols are randomly
replaced with variables: U U ∗ ⇒ U U U ∗ ∗ ⇒ U U + U U ∗ ∗ ⇒ · · · ⇒
a a + b a ∗ ∗. A random playout for U U + is a b b + +.

For the I/O sample (2, 2) → 4, we evaluate g(2, 2) = 0 for g(a, b) = ((a +
a) ∗ (b ∗ a)) mod (28) and h(2, 2) = 6 for h(a, b) = (a + (b + b)) mod 28.

We set terminal nodes to inactive after their evaluation, since they already
are end states of the game; there is no possibility to improve the node’s reward
by random playouts. As a result, MCTS will not take these nodes into account in
further iterations. The node’s reward is the similarity of the evaluated expressions
and the outputs from the I/O samples. We describe in the following section how
to measure the similarity to the outputs.

4.4 Measuring Similarity of Outputs
To measure the similarity of two outputs, we compare values with different
metrics: arithmetic distance, Hamming distance, count leading zeros, count
trailing zeros, count leading ones and count trailing ones. While the numeric
distance is a reliable metric for arithmetic operations, it does not work well with
overflows and bitwise operations (e. g., xor and shifts). In turn, the Hamming
distance addresses these operations since it states in how many bits two values
differ. Finally, the leading/trailing zeros/ones are strong indicators that two
values are in the same range. We scale each result between a value of 0 and 1.
Since the different metrics compensate each other, we set the total similarity
reward to the average reward of all metrics.

Example 6. Considering I/O pair (2, 2)→ 4, the output similarities for g and
h (as defined in Example 5) are similarity(4, 0) and similarity(4, 6). Limiting
to the metrics of Hamming distance and count leading zeros (clz), we obtain
hamming(4, 0) = hamming(4, 6) = 0.67, clz(4, 0) = 0 and clz(4, 6) = 1.0. There-
fore, the average similarities are similarity(4, 0) = 0.335 and similarity(4, 6) =
0.835. Related to the random playouts, the evaluated node U U + has a higher
reward than U U ∗.

16

During a random playout, we calculate the similarity for all I/O samples.
The final node reward is the average score of all similarity rewards. A reward of
1 finishes program synthesis, since the evaluated expression produces exactly the
outputs from the I/O samples.

4.5 Backpropagation
After obtaining a score by random playout, we do the following for the selected
node and all its parents, up to the root: (1) We update the node’s average
reward. This reward is averaged based on the node’s and its successors’ total
number of random playouts. (2) If the node is fully expanded and its children
are all inactive, we set the node to inactive. (3) Finally, we set the current node
to its parent node.

4.6 Expression Simplification
Since MCTS performs a stochastic search, synthesized expressions are not
necessary in their shortest form. Therefore, we apply some basic standard
expression simplification rules. For example, if the synthesizer constructs integer
values as ((1� 1)� (1 + (1� 1))), we can reduce them to the value 16.

5 Implementation
We implemented a prototype implementation of our approach in our tool Syntia,
which is written in Python. For trace generation and random sampling, we use
the Unicorn Engine [44], a CPU emulator framework. To analyze assembly code
(e. g., trace dissection), we utilize the disassembler framework Capstone [43].
Furthermore, we use the SMT solver Z3 [36] for expression simplification.

Initially, Syntia expects a memory dump, a start and an end address as input.
Then, it emulates the program and outputs the instruction trace. Then, the
user has the opportunity to define its own rules for trace dissection; otherwise,
Syntia dissects the trace at indirect control transfers. Additionally, the user
has to decide if register and/or memory locations are used as inputs/outputs
and how many I/O pairs shall be sampled. Syntia traces register and memory
modifications in each trace window, derives the inputs and outputs and generates
I/O pairs by random sampling. The last step can be parallelized for each trace
window. Finally, the user defines the synthesis parameters. Syntia creates a
synthesis tasks for each (trace window, output) pair. The synthesis tasks are
performed in parallel. The synthesis results are simplified by Z3’s term-rewriting
engine.

6 Experimental Evaluation
In the following, we evaluate our approach in three areas of application. The
experiments have been evaluated on a machine with two Intel Xeon E5-2667

17

CPUs (in total, 12 cores and 24 threads) and 96 GiB of memory. However, we
never have used more than 32 GiB of memory even though parallel I/O sampling
for many trace windows can be memory intensive; synthesis itself never used
more than 6 GiB of memory.

6.1 Mixed Boolean-Arithmetic
Mixed Boolean-Arithmetic (MBA) describes—informally speaking—the mixture
of arithmetic and logical bit-vector operations to build semantically equivalent
expressions that are harder to understand. In the following, we first give a more
formal definition of MBA-obfuscation. Afterwards, we describe the MBA-based
obfuscation in the Tigress Obfuscator and in a real-world DRM system. Finally,
we deobfuscate their obfuscated expressions via program synthesis.

Zhou et al. proposed the concept of MBA expressions [64]. By transforming
simpler expressions and constants into MBA expressions over Boolean-arithmetic
algebras, they can generate semantically-equivalent, but much more complex
code which is arguably hard to reverse engineer. Effectively, this obfuscating
transformation allows them to hide formulas and constants in plain code. In
their paper, they define a Boolean-arithmetic algebra as follows:

Definition 1 (Boolean-arithmetic algebra [64]). With n a positive integer and
B = {0, 1}, the algebraic system (Bn,∧,∨,⊕,¬,≤,≥, >, <,≤s,≥s, >s, <s, 6=, =,
�s,�,�, +,−, ·), where �,� denote left and right shifts, · (or juxtaposition)
denotes multiply, and signed compares and arithmetic right shift are indicated by
s, is a Boolean-arithmetic algebra (BA-algebra), BA[n]. n is the dimension of
the algebra.

Specifically, they highlight how BA[n] includes, amongst others, the Boolean
algebra (Bn,∧,∨,¬) as well as the integer modular ring Z/(2n). As a consequence,
Mixed Boolean-Arithmetic (MBA) expressions over Bn are hard to simplify in
practice. In general, we note that reducing a complex expression to an equivalent,
but simpler one by, e. g., removing redundancies, is considered NP-hard [31].

Zhou et al. represent MBA expressions as polynomials over BA[n]. While
polynomial MBA expressions are conceptually not restricted in terms of com-
plexity, Zhou et al. define linear MBA expressions as those polynomials with
degree 1. In particular, f(x, y) = x− (x⊕ y)− 2(x∨ y) + 12564 is a linear MBA
expression, whereas f(x, y) = x + 9(x ∨ y)yx3 is not.

Implementation in Tigress. In practice, MBA expressions are used in the
Tigress C Diversifier/Obfuscator by Collberg et al. [9] which uses the technique to
encode integer variables and expressions in which they are used [11]. Further,
Tigress also supports common arithmetic encodings to increase an expression’s
complexity, albeit not based on MBAs [10].

For example, the rather simple expression x + y + z is transformed into the
layer 23 expression (((x⊕ y) + ((x∧ y)� 1))∨ z) + (((x⊕ y) + ((x∧ y)� 1))∧ z)
using its arithmetic encoding option. In a second transformation step, Tigress

18

Table 1: Trace window statistics and synthesis performance for Tigress (MBA),
VMProtect (VMP), Themida (flavor Tiger White, TM), and ROP gadgets.

MBA VMP TM ROP
#trace windows 500 12,577 2,448 78
#unique windows 500 449 106 78
#instructions per window 116 49 258 3
#inputs per window 5 2 15 3
#outputs per window 1 2 10 2
#synthesis tasks 500 1,123 1,092 178
I/O sampling time (s) 110 118 60 17
overall synthesis time (s) 2,020 4,160 9,946 829
synthesis time per task (s) 4.0 3.7 9.1 4.7

encodes it into a linear MBA expression of layer 383 (omitted due to complexity).
Such expressions are hard to simplify symbolically.

Evaluation Results for Tigress. We evaluated our approach to simplify
MBA expressions using Syntia. As a testbed, we built a C program which calls
500 randomly generated functions. Each of these random functions takes 5
input variables and returns an expression of layer 3 to 5. Then, we applied the
arithmetic encoding provided by Tigress, followed by the linear MBA encoding.
The resulting program contained expressions of up to 2, 821 layers, the average
layer being 156. The arithmetic encoding is applied to highlight that our approach
is invariant to the code’s increased symbolic complexity and is only concerned
with semantical complexity.

Based on a concrete execution trace it can be observed that the 500 functions
use, on average, 5 memory inputs (as parameters are passed on the stack) and
one register output (the register containing the return value). Table 1 shows
statistics for the analysis run using the configuration vector (1.5, 50000, 50, 0).
The first two components indicate a strong focus on exploration in favor of
exploitation; due to the small number of synthesis tasks, we used 50 I/O samples
to obtain more precise results.

The sampling phases completed in less than two minutes. Overall, the
500 synthesis tasks were finished in about 34 minutes, i. e., in 4.0 seconds per
expression. We were able to synthesize 448 out of 500 expressions (89.6%).
The remaining expressions are not found due to the probabilistic nature of our
algorithm; after 4 subsequent runs, we synthesized 489 expressions (97.8%) in
total.

To get a better feeling for this probabilistic behavior, we compared the
cumulative numbers of synthesized MBA expressions for 10 subsequent runs.
Figure 7 shows the results averaged over 15 separate experiments. On average,
the first run synthesizes 89.6% (448 expressions) of the 500 expressions. A
second run yields 22 new expressions (94.0%), while a third run reveals 10 more

19

0 2 4 6 8 100

100

200

300

400

500

synthesis runs

#
sy
nt
he

siz
ed

ex
pr
es
sio

ns

Figure 7: Subsequent synthesis runs increase the number of synthesized MBA
expressions. Each point represents the average cumulative number of synthesized
expressions from 15 separate experiments.

expressions (96.0%). While converging to 500, the number of newly synthesized
expressions decreases in subsequent runs. Comparing the fifth and the eighth
run, we only found 5 new expressions (from 489 to 494). After the ninth run,
Syntia synthesized 495 (99.0%) of the MBA expressions.

MBA-based Obfuscation in a Commercial DRM System. In their talk
at REcon 2014, Mougey and Gabriel [37] presented their results after reverse
engineering a real-world Digital Rights Management (DRM) system. They found
a complex MBA-obfuscated expression that is shown in Figure 8. This expression
is equivalent to x⊕ 92, where x is a byte value (data type U8).

To synthesize this expression, Syntia’s grammar must include some concept
of constants, since 92 has an enormous impact on the output. For this, we add
add all 256 possible byte values as terminal symbols to the grammar. Then,
Syntia synthesizes the expression within 4 seconds.

This approach cannot be adapted for larger data types than U8, since the set
of production rules becomes too large. Instead, constants can be synthesized
over several layers; the grammar can be extended by a non-terminal symbol for
constants and a set of rules that assembles constants gradually (e.g., one byte
per layer).

6.2 VM Instruction Handler
As introduced in Section 2.1.1, an instruction handler of a Virtual Machine
implements the effects of an atomic instruction according to the custom VM-ISA.
It operates on the VM context and can perform arbitrarily complex tasks. As

20

a := 229x + 247
b := 237a + 214 + ((38a + 85) ∧ 254)
c := (b + ((−2b + 255) ∧ 254)) · 3 + 77
d := ((86c + 36) ∧ 70) · 75 + 231c + 118
e := ((58d + 175) ∧ 244) + 99d + 46
f := (e ∧ 148)
g := (f − (e ∧ 255) + f) · 103 + 13

result := (237 · (45g + (174g ∨ 34) · 229 + 194− 247) ∧ 255)

Figure 8: MBA-based obfuscation in a real-wold DRM system [37] (adapted from
Eyrolles et al. [15]). The expression is equivalent to x⊕92 for x ∈ {0, 1, . . . , 28−1}.

handlers are heavily obfuscated, manual analysis of a handler’s semantics is a
time-consuming task.

Attacking VMs. When faced with virtualization-based obfuscations, an at-
tacker typically has two options. For one, she can analyze the interpreter and, for
each handler, extract all information required to re-translate the bytecode back
to native instruction. Especially in face of handler duplication and bytecode
blinding, this requires her to precisely capture all effects produced by the handlers.
This includes both the high-level semantics with regard to input and output
variables as well as the individual unblinding routines. In his paper, Rolles
discusses how this type of attack requires complete understanding of the VM
and therefore has to be repeated for each virtualization obfuscator [45]. Thus,
we note that this attack does not lend itself easily to full automation. Another
approach is to perform analyses on the bytecode level. The idea is that while an
attacker cannot learn the full semantics of the original code, the analysis of the
interaction of handlers itself reveals enough information about the underlying
code. This allows the attacker to skip details like bytecode blinding as she only
requires the high-level semantics of a handler. Sharif et al. successfully mounted
such an attack to recover the CFG of the virtualized function [54], but do not
take semantics other than virtual instruction pointer updates into account.

We recognize the latter approach as promising and note how Syntia allows
us to automatically extract the high-level semantics of arithmetical and logical
instruction handlers. This is achieved by operating on an execution trace through
the interpreter and simplify its individual handlers—as distinguished by trace
window boundaries—using program synthesis. Especially, we highlight how
obtaining the semantics of one handler automatically yields information about
the underlying native code at all points of the trace where this specific handler
is used to encode equivalent virtualized semantics.

21

Evaluation Setup. We evaluated Syntia to learn the semantics of arithmetic
and logical VM instruction handlers in recent versions of VMProtect [59] (v3.0.9)
and Themida [39] (v2.4.5.0). To this end, we built a program that covers bit-
vector arithmetic for operand widths of 8, 16, 32, and 64 bit. Since we are
interested in analyzing effects of the VM itself, using a synthetic program does
not distort our results. For verification, we manually reverse engineered the VM
layouts of VMProtect and Themida. Note that the commercial versions of both
protection systems have been used to obfuscate the program. These are known
to provide better obfuscation strength compared to the evaluation versions.

We argue that our evaluation program is representative of any program obfus-
cated with the respective VM-based obfuscating scheme. As seen in Section 2.1.1,
common instructions map to a plethora of VM handlers. Consequently, if we
succeed in recovering the semantics of these integral building blocks, we are at
the same time able to recover other variations of native instructions using these
handlers as well.

This motivates the design of our evaluation program, which aims to have a
wide coverage of all possible arithmetic and logical operations. We note that
this may not be the case for real-world test cases, which may not trigger all
interesting VM handlers. To this extent, our evaluation program is, in fact, more
representative than, e. g., malware samples.

6.2.1 VMProtect

In its current version, VMProtect follows the Direct Threaded Code design
principle (cf. Section 2.1.1). Each handler directly invokes the next handler
based on the address encoded directly in the instruction’s bytecode. Hence,
reconstructing the handlers requires an instruction trace. Also, this impacts
trace dissection: since VM handlers dispatch the next handler, they end with an
indirect jump. Unsurprisingly, Syntia could automatically dissect the instruction
trace into trace windows that represent a single VM handler. As evident from
Table 1, there are 449 unique trace windows out of a total of 12, 577 in the
instruction trace.

Further, VMProtect employs handler duplication. For example, the 449
instruction handlers contain 12 instances performing 8-bit addition, 11 instances
for each of addition (for each flavor of 16-, 32-, 64-bit), nor (8-, 64-bit), left and
right shift (32-, 64-bit); amongst multiple others. If Syntia is able to learn one
instance in each group, it is safe to assume that it will successfully synthesize
the full group, as supported by our results.

Similarly, the execution trace is made up of all possible handlers and some of
them occur multiple times. Hence, if we correctly synthesize semantics for, e. g.,
a 64-bit addition, this immediately yields semantics for 772 trace windows (6.2%
of the full trace, 32.0% of all arithmetic and logical trace windows in the trace).
Equivalent reasoning applies to 16-bit nor operations in our trace (3.6% of the
full trace, 18.8% of all arithmetic and logical trace windows). In total, our results
reveal semantics for 19.7% of the full execution trace (2, 482 out of 12, 577 trace
windows). Manual analysis suggests that the remaining trace semantics mostly

22

consists of control-flow handling and stack operations. These are especially used
when switching from the native to the VM context and amount for a large part
of the execution trace.

On average, an individual instruction handler consists of 49 instructions. As
VMProtect’s VM is stack-based, binary arithmetic handlers pop two arguments
from the stack and push the result onto the stack. This tremendously eases
identification of inputs and outputs. Therefore, we mark memory operands as
inputs and outputs and use the configuration vector (1.5, 30000, 20, 0) for the
synthesis. The sampling phase finished in less than two minutes. Overall, the
1, 123 synthesis tasks completed in less than an hour, which amounts to merely
3.7 seconds per task. In total, in our first run, we automatically identified 190
out of 196 arithmetical and logical handlers (96.9%). The remaining 6 handlers
implement 8-bit divisions and shifts. Due to their representation in x86 assembly
code, Syntia needs to synthesize more complex expressions with nested data
type conversions. As the analysis is probabilistic in nature, we scheduled five
more runs which yielded 4 new handlers. Thus, we are able to automatically
pinpoint 98.9% of all arithmetic and logical instruction handlers in VMProtect.

6.2.2 Themida

The protection solution Themida supports three basic VM flavors, namely, Tiger,
Fish, and Dolphin. Each flavor can further be customized to use one of three
obfuscation levels, in increasing complexity: White, Red, and Black. We note that
related work on deobfuscation does not directly mention the exact configuration
used for Themida. In hopes to be comparable, we opted to use the default flavor
Tiger, using level White, in our evaluation. Unlike VMProtect, Tiger White uses
an explicit handler table while inlining the dispatcher routine; i. e., it follows the
Threaded Code design principle (cf. Section 2.1.1). Consequently, trace dissection
again yields one trace window per instruction handler. Even though the central
handler table lists 1, 111 handlers, we identified 106 unique trace windows along
the concrete execution trace.

Themida implements a register-based architecture and stores intermediate
computations in one of many register available in the VM context. This, in turn,
affects the identification of input and output variables. While in the case of
VMProtect, inputs and outputs are directly taken from two slots on the stack,
Themida has a significantly higher number of potential inputs and outputs (i. e.,
all virtual registers in the VM context, 10 to 15 in our case).

Tiger White supports handlers for addition, subtraction, multiplication,
logical left and right shift, bitwise operations and unary subtraction; each
for different operand widths. In contrast to VMProtect, handlers are neither
duplicated nor do they occur multiple times in the execution trace. Hence,
the trace itself is much more compact, spanning 2, 448 trace windows in total;
roughly 5 times shorter than VMProtect’s. Still, Themida’s handlers are much
longer, with 258 instructions on average.

We ran the analysis using the configuration vector (1.8, 50000, 20, 0). Due to
the higher number of inputs, this configuration—in comparison to the previous

23

section—sets a much higher focus on exploration as indicated by higher values
chosen for the first two parameters. Sampling finished in one minute, whereas
the synthesis phase took around 166 minutes. At 1, 092 synthesis tasks, this
amounts to roughly 9.1 seconds per task. Eventually, we automatically learned
the semantics of 34 out of 36 arithmetic and logical handlers (94.4%). The
remaining handlers (8-bit subtraction and logical or) were not found as we were
unable to complete the sampling phase due to crashes in Unicorn engine.

6.3 ROP Gadget Analysis
We further evaluated Syntia on ROP gadgets, specifically, on four samples that
were thankfully provided by Debray [63]. They implement bubble sort, factorials,
Fibonacci, and matrix multiplication in ROP. To have a larger set of samples,
we also used a CTF challenge [42] that has been generated by the ROP compiler
Q [52] and another Fibonacci implementation that has been generated with
ROPC [40].

Syntia automatically dissected the instruction traces into 156 individual
gadgets. Since many gadgets use exactly the same instructions, we unified them
into 78 unique gadgets. On average, a gadget consists of 3 instructions with 3
inputs and 2 outputs (register and memory locations).

Due to the small numbers of inputs and synthesis tasks, we chose the config-
uration vector (1.5, 100000, 50, 0) that sets a very strong focus on exploration
while accepting a higher running time. Especially, we experienced both effects
for the maximum number of MCTS iterations.

Syntia synthesized partial semantics for 97.4% of the gadgets in less than 14
minutes; in total, we were successful in 163 out of the 178 (91.5%) synthesis tasks.
Our synthesis results include 58 assignments, 17 binary additions, 5 ternary
additions, 4 unary minus, 4 binary subtractions, 4 register increments/decrements,
2 binary multiplications and 1 bitwise and. In addition, we found 68 stack pointer
increments due to ret statements. The results do not include larger constants
or operations such as ror as they are not part of our grammar.

7 Discussion
In the following, we discuss different aspects of program synthesis for trace
simplification and MCTS-based program synthesis. Furthermore, we point out
limitations of our approach as well as future work.

Program Synthesis for Trace Simplification. Current research on deob-
fuscation [13,54,62,63] operates on instruction traces and uses a mixed approach
consisting of symbolic execution [62] and taint analysis [61]; two approaches
that require a precise analysis of the underlying code. While techniques exist
that defeat taint analysis [6, 49], recent work shows that symbolic execution can
similarly be attacked [2].

24

Program synthesis is an orthogonal approach that operates on a purely
semantical level as opposed to (binary) code analysis; it is oblivious to the
underlying code constructs. As a result, syntactical aspects of code complexity
such as obfuscation or instruction count do not influence program synthesis
negatively. It is merely concerned with the complexity of the code’s semantics.
The only exception where code-level artifacts matter is the generation of I/O
samples; however, this can be realized with small overhead compared to regular
execution time using dynamic binary instrumentation [38,41].

Commonly, instruction traces contain repetitions of unique trace windows
that can be caused by loops or repeated function calls to the same function.
By synthesizing these trace windows, the synthesized semantics pertain for all
appearances on the instruction trace; the more frequently these trace windows
occur in the trace, the higher the percentage of known semantics in the instruction
trace. We stress how VM-based obfuscation schemes do this to the extreme: a
relatively small number of unique trace windows are used over the whole trace.

In general, the synthesis results may not be precise semantics since we
approximate them based on I/O samples. If these do not reflect the full semantics,
the synthesis misses edge cases. For instance, we sometimes cannot distinguish
between an arithmetic and a logical right shift if the random inputs are no
distinguishing inputs. We point out that this is not necessarily a limitation,
since a human analyst might still get valuable insights from the approximated
semantics.

As future work, we consider improving trace simplification by a stratified
synthesis approach [23]. The main idea is to incrementally synthesize larger parts
of the instruction trace based on previous results and successively approximate
high-level semantics of the entire trace. Further, we note that the work by Sharif
et al. [54] is complementary to our synthesis approach and would also allow
us to identify control flow. Likewise, extending the grammar by control-flow
operations is another viable approach to tackle this limitation.

MCTS-based Program Synthesis. Compared to SMT-based program syn-
thesis, we obtain candidate solutions, even if the synthesizer does not find an
exact result. This is particularly beneficial for applications such as deobfuscation,
since a human analyst can sometimes infer the full semantics. We decided
to utilize MCTS for program synthesis since it has been proven very effective
when operating on large search trees without domain knowledge. However, our
approach is not limited to MCTS, other stochastic algorithms are also applicable.

Drawn from the observations made in Section 6, we infer that the MCTS
approach is much more effective with a configuration that focuses on exploration
instead of exploitation. The SA-UCT parameter ensures that paths with a
higher reward are explored in-depth in later stages of the algorithm. We still try
to improve exploration strategies, for instance with Nested Monte Carlo Tree
Search [35] and Monte Carlo Beam Search [7].

25

Limitations. In general, limits of program synthesis apply to our approach as
well. Non-determinism and point functions—Boolean functions that return 1 for
exactly one input out of a large input domain—cannot be synthesized practically.
This also holds for semantics that have strong confusion and diffusion properties,
such as cryptographic algorithms. These are inherently very complex, non-linear
expressions with a deep nesting level. Our approach is also limited by the choice
of trace window boundaries; ending a trace window in intermediate computation
steps may produce formulas that are not meaningful at all.

8 Related Work
We now review related work for program synthesis, Monte Carlo Tree Search and
deobfuscation. Furthermore, we describe how our work fits into these research
areas.

Program Synthesis. Gulwani et al. [22] introduced an SMT-based program
synthesis approach for loop-free programs that requires a logical specification
of the desired program behavior. Building on this, Jha et al. [24] replaced the
specification with an I/O oracle. Upon generation of multiple valid program
candidates, they derive distinguishing inputs that are used for subsequent oracle
queries. They demonstrated their use case by simplifying a string obfuscation
routine of MyDoom. Godfroid and Taly [18] used an SMT-based approach to
learn the formal semantics of CPU instruction sets; for this, they use the CPU
as I/O oracle.

Schkufza et al. [51] proved that stochastic program synthesis often outper-
forms SMT-based approaches. This is mostly due to the fact that common
SMT-based approaches effectively enumerate all programs of a given size or
prove their non-existence. On the other hand, stochastic approaches focus on
promising parts of the search space without searching exhaustively. Schkufza et
al. use this technique for stochastic superoptimization on the basis of their tool
STOKE. Recent work by Heule et al. [23] demonstrates a stratified approach
to learn the semantics of the x86-64 instruction set, based on STOKE. Their
main idea is to re-use synthesis results to synthesize more complex instructions
in an iterative manner. To the best of our knowledge, STOKE is the only other
stochastic synthesis tool that is able to synthesize low-level semantics. By design,
their code only produces Intel x86 code.

In our case, stochastic techniques have additional properties that are not
achieved by previous tools: we obtain partial results that are often already “close”
to a real solution and might be helpful for a human analyst who tries to under-
stand obfuscated code. Furthermore, we can encode arbitrary complex function
symbols in our grammar (e. g., complex encoding schemes or hash functions); a
characteristic that is not easily reproduced by SMT-based approaches.

In the context of non-academic work, Rolles applied some of the above men-
tioned SMT-based approaches to reverse engineering and deobfuscation [46].

26

Amongst others, he learned obfuscation rules by adapting peephole superopti-
mization techniques [3] and extracted metamorphic code using an oracle-guided
approach. In his recent work, he performs SMT-based shellcode synthesis [47].

Monte Carlo Tree Search. MCTS has been widely studied in the area of
AI in games [16,35,50,57]. Ruijl et al. [48] combine Simulated Annealing and
MCTS by introducing SA-UCT for expression simplification. Lim and Yoo [32]
describe an early exploration on how MCTS can be used for program synthesis
and note that it shows comparable performance to genetic programming. We
extend the research of MCTS-based program synthesis by applying SA-UCT and
introducing node pruning. For our synthesis approach, we designed a context-free
grammar that learns the semantics of Intel x86 code.

Deobfuscation. Rolles provides an academic analysis of a VM-based obfusca-
tor and outlines a possible attack on such schemes in general [45]. He proposes
using static analysis to re-translate the VM’s bytecode back into native instruc-
tions. This, however, requires minute analysis of each obfuscator and hence is
time-consuming and prone to minor modifications of the scheme. Kinder is also
concerned with (static) analysis of VMs [26]. Specifically, he lifts a location-
sensitive analysis to be usable in presence of virtualization-based obfuscation
schemes. His work highlights how the execution trace of a VM, while performing
various computations, always exhibits a recurring set of addresses. As seen in
Section 6, our approach actually benefits from this side effect. In contrast, Sharif
et al. [54] analyze VMs in a dynamic manner and record execution traces. In
contrast to the work of Rolles, their goal is not to re-translate, but to directly
analyze the bytecode itself. Specifically, they aim to reconstruct parts of the
underlying code’s control flow from the bytecode. This approach is closest to our
work as we are, in turn, mostly concerned with arithmetic and logical semantics
of a handler.

More recent results include work by Coogan et al. [13] as well as Yadegari
et al. [63]. Both approaches seek to deobfuscate code based on execution traces by
further making use of symbolic execution and taint tracking. The former approach
is focused on the value flow to system calls to reduce a trace whereas Yadegari
et al. propose a more general approach and aim to produce fully deobfuscated
code. However, to counteract symbolic execution-based deobfuscation approaches,
Banescu et al. propose novel obfuscating transformations that specifically target
their deficiencies [2]. For one, they propose a construct akin to random opaque
predicates [12] that deliberately explodes the number of paths through a function.
A second technique preserves program behavior of the obfuscated program for
specific input invariants only, effectively increasing the input domains and thus
the search space for symbolic executors.

Guinet et al. present arybo, a framework to simplify MBA expressions [20]. In
essence, they perform bit-blasting and use a Boolean expression solver that tries to
simplify the expression symbolically. Eyrolles [15] describes a symbolic approach
that uses pattern matching. Furthermore, she suggests improvements of current

27

MBA-obfuscated implementations that impede these symbolic deobfuscation
techniques [14]. To this effect, we also argue that symbolic simplification is
inherently limited by the complexity of the input expression. However, we
demonstrated that a synthesis-based approach allows fine-tuned simplification,
irrespective of syntactical complexity, while producing approximate intermediate
results.

9 Conclusion
With our prototype implementation of Syntia we have shown that program
synthesis can aid in deobfuscation of real-world obfuscated code. In general,
our approach is vastly different in nature compared to proposed deobfuscation
techniques and hence may succeed in scenarios where approaches requiring
precise code semantics fail.

References
[1] Andriesse, D., Bos, H., and Slowinska, A. Parallax: Implicit Code Integrity Verification

using Return-Oriented Programming. In Conference on Dependable Systems and Networks
(DSN) (2015).

[2] Banescu, S., Collberg, C., Ganesh, V., Newsham, Z., and Pretschner, A. Code Ob-
fuscation against Symbolic Execution Attacks. In Annual Computer Security Applications
Conference (ACSAC) (2016).

[3] Bansal, S., and Aiken, A. Automatic Generation of Peephole Superoptimizers. In ACM
Sigplan Notices (2006).

[4] Bell, J. R. Threaded Code. Communications of the ACM (1973).
[5] Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlf-

shagen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. A Survey of
Monte Carlo Tree Search Methods. IEEE Transactions on Computational Intelligence
and AI in Games (2012).

[6] Cavallaro, L., Saxena, P., and Sekar, R. Anti-Taint-Analysis: Practical Evasion
Techniques against Information Flow based Malware Defense. Secure Systems Lab at
Stony Brook University, Tech. Rep (2007).

[7] Cazenave, T. Monte carlo beam search. IEEE Transactions on Computational Intelli-
gence and AI in Games (2012).

[8] Chaslot, G. Monte-Carlo Tree Search. PhD thesis, Universiteit Maastricht, 2010.
[9] Collberg, C., Martin, S., Myers, J., and Nagra, J. Distributed Application Tamper

Detection via Continuous Software Updates. In Annual Computer Security Applications
Conference (ACSAC) (2012).

[10] Collberg, C., Martin, S., Myers, J., and Zimmerman, B. Documentation for
Arithmetic Encodings in Tigress. http://tigress.cs.arizona.edu/transformPage/docs/
encodeArithmetic.

[11] Collberg, C., Martin, S., Myers, J., and Zimmerman, B. Documentation for Data
Encodings in Tigress. http://tigress.cs.arizona.edu/transformPage/docs/encodeData.

[12] Collberg, C., Thomborson, C., and Low, D. Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs. In ACM Symposium on Principles of Programming Lan-
guages (POPL) (1998).

28

http://tigress.cs.arizona.edu/transformPage/docs/encodeArithmetic
http://tigress.cs.arizona.edu/transformPage/docs/encodeArithmetic
http://tigress.cs.arizona.edu/transformPage/docs/encodeData

[13] Coogan, K., Lu, G., and Debray, S. Deobfuscation of Virtualization-obfuscated
Software: A Semantics-Based Approach. In ACM Conference on Computer and Commu-
nications Security (CCS) (2011).

[14] Eyrolles, N. Obfuscation with Mixed Boolean-Arithmetic Expressions: Reconstruction,
Analysis and Simplification Tools. PhD thesis, Université de Versailles Saint-Quentin-en-
Yvelines, 2017.

[15] Eyrolles, N., Goubin, L., and Videau, M. Defeating MBA-based Obfuscation. In
ACM Workshop on Software PROtection (SPRO) (2016).

[16] Finnsson, H. Generalized Monte-Carlo Tree Search Extensions for General Game Playing.
In AAAI Conference on Artificial Intelligence (2012).

[17] Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver, D., Szepesvári, C., and
Teytaud, O. The Grand Challenge of Computer Go: Monte Carlo Tree Search and
Extensions. Communications of the ACM (2012).

[18] Godefroid, P., and Taly, A. Automated Synthesis of Symbolic Instruction Encodings
from I/O Samples. In ACM SIGPLAN Notices (2012).

[19] Graziano, M., Balzarotti, D., and Zidouemba, A. ROPMEMU: A Framework for
the Analysis of Complex Code-Reuse Attacks. In ACM Symposium on Information,
Computer and Communications Security (ASIACCS) (2016).

[20] Guinet, A., Eyrolles, N., and Videau, M. Arybo: Manipulation, Canonicalization and
Identification of Mixed Boolean-Arithmetic Symbolic Expressions. In GreHack Conference
(2016).

[21] Gulwani, S. Dimensions in Program Synthesis. In Proceedings of the 12th international
ACM SIGPLAN symposium on Principles and practice of declarative programming (2010).

[22] Gulwani, S., Jha, S., Tiwari, A., and Venkatesan, R. Synthesis of Loop-free Programs.
ACM SIGPLAN Notices (2011).

[23] Heule, S., Schkufza, E., Sharma, R., and Aiken, A. Stratified synthesis: Automatically
Learning the x86-64 Instruction Set. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI) (2016).

[24] Jha, S., Gulwani, S., Seshia, S. A., and Tiwari, A. Oracle-guided Component-
based Program Synthesis. In ACM/IEEE 32nd International Conference on Software
Engineering (2010).

[25] Kim, D.-W., Kim, K.-H., Jang, W., and Chen, F. F. Unrelated Parallel Machine
Scheduling with Setup Times using Simulated Annealing. Robotics and Computer-
Integrated Manufacturing (2002).

[26] Kinder, J. Towards Static Analysis of Virtualization-Obfuscated Binaries. In IEEE
Working Conference on Reverse Engineering (WCRE) (2012).

[27] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by Simulated
Annealing. Science (1983).

[28] Klint, P. Interpretation Techniques. Software, Practice and Experience (1981).
[29] Kocsis, L., and Szepesvári, C. Bandit based Monte-Carlo Planning. In European

Conference on Machine Learning (2006).
[30] Krahmer, S. x86-64 Buffer Overflow Exploits and the Borrowed Code Chunks Exploitation

Technique, 2005.
[31] Liberatore, P. The Complexity of Checking Redundancy of CNF Propositional Formulae.

In International Conference on Agents and Artificial Intelligence (2002).
[32] Lim, J., and Yoo, S. Field Report: Applying Monte Carlo Tree Search for Program

Synthesis. In International Symposium on Search Based Software Engineering (2016).
[33] Lu, K., Xiong, S., and Gao, D. RopSteg: Program Steganography with Return Oriented

Programming. In ACM Conference on Data and Application Security and Privacy
(CODASPY) (2014).

29

[34] Ma, H., Lu, K., Ma, X., Zhang, H., Jia, C., and Gao, D. Software Watermarking
using Return-Oriented Programming. In ACM Symposium on Information, Computer
and Communications Security (ASIACCS) (2015).

[35] Marc, Sebag, M., Silver, D., Szepesvári, C., and Teytaud, O. Nested Monte-Carlo
Search. Communications of the ACM (2012).

[36] Microsoft Research. The Z3 Theorem Prover. https://github.com/Z3Prover/z3.
[37] Mougey, C., and Gabriel, F. DRM obfuscation versus auxiliary attacks. REcon

conference, 2014. https://recon.cx/2014/schedule/events/44.html.
[38] Nethercote, N., and Seward, J. Valgrind: A Framework for Heavyweight Dynamic

Binary Instrumentation. In ACM Sigplan Notices (2007).
[39] Oreans Technologies. Themida – Advanced Windows Software Protection System.

http://oreans.com/themida.php.
[40] pakt. ROPC: A Turing complete ROP compiler. https://github.com/pakt/ropc.
[41] Pewny, J., Garmany, B., Gawlik, R., Rossow, C., and Holz, T. Cross-architecture

Bug Search in Binary Executables. In IEEE Symposium on Security and Privacy (2015).
[42] Plaid CTF. ROP Challenge “quite quixotic chest”. https://ctftime.org/task/2305, 2016.
[43] Quynh, N. A., Di, T. S., Nagy, B., and Vu, D. H. Capstone Engine. http://

www.capstone-engine.org.
[44] Quynh, N. A., and Vu, D. H. Unicorn – The Ultimate CPU Emulator. http://

www.unicorn-engine.org.
[45] Rolles, R. Unpacking Virtualization Obfuscators. In USENIX Workshop on Offensive

Technologies (WOOT) (2009).
[46] Rolles, R. Program Synthesis in Reverse Engineering. http://

www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in-reverse-
engineering, 2014.

[47] Rolles, R. Synesthesia: A Modern Approach to Shellcode Generation.
http://www.msreverseengineering.com/blog/2016/11/8/synesthesia-modern-shellcode-
synthesis-ekoparty-2016-talk, 2016.

[48] Ruijl, B., Vermaseren, J. A. M., Plaat, A., and van den Herik, H. J. Combining
Simulated Annealing and Monte Carlo Tree Search for Expression Simplification. In
International Conference on Agents and Artificial Intelligence (2014).

[49] Sarwar, G., Mehani, O., Boreli, R., and Kaafar, D. On the Effectiveness of Dynamic
Taint Analysis for Protecting against Private Information Leaks on Android-based Devices.
Nicta (2013).

[50] Schadd, M. P., Winands, M. H., Tak, M. J., and Uiterwijk, J. W. Single-player
Monte-Carlo Tree Search for SameGame. Knowledge-Based Systems (2012).

[51] Schkufza, E., Sharma, R., and Aiken, A. Stochastic Superoptimization. ACM
SIGPLAN Notices (2013).

[52] Schwartz, E. J., Avgerinos, T., and Brumley, D. Q: Exploit Hardening Made Easy.
In USENIX Security Symposium (2011).

[53] Shacham, H. The Geometry of Innocent Flesh on the Bone: Return-into-libc without
Function Calls (on the x86). In ACM Conference on Computer and Communications
Security (CCS) (2007).

[54] Sharif, M., Lanzi, A., Giffin, J., and Lee, W. Automatic Reverse Engineering of
Malware Emulators. In IEEE Symposium on Security and Privacy (2009).

[55] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.
Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature (2016).

30

https://github.com/Z3Prover/z3
https://recon.cx/2014/schedule/events/44.html
http://oreans.com/themida.php
https://github.com/pakt/ropc
https://ctftime.org/task/2305
http://www.capstone-engine.org
http://www.capstone-engine.org
http://www.unicorn-engine.org
http://www.unicorn-engine.org
http://www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in-reverse-engineering
http://www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in-reverse-engineering
http://www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in-reverse-engineering
http://www.msreverseengineering.com/blog/2016/11/8/synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk
http://www.msreverseengineering.com/blog/2016/11/8/synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk

[56] Sony DADC. SecuROM Software Protection. https://www2.securom.com/Digital-Rights-
Management.68.0.html.

[57] Szita, István and Chaslot, Guillaume and Spronck, Pieter. Monte-Carlo Tree
Search in Settlers of Catan. In Advances in Computer Games (2009).

[58] Tages SAS. SolidShield Software Protection. https://www.solidshield.com/software-
protection-and-licensing.

[59] VMProtect Software. VMProtect Software Protection. http://vmpsoft.com.
[60] Vogl, S., Pfoh, J., Kittel, T., and Eckert, C. Persistent Data-only Malware: Function

Hooks without Code. In Symposium on Network and Distributed System Security (NDSS)
(2014).

[61] Yadegari, B., and Debray, S. Bit-level Taint Analysis. In IEEE International Working
Conference on Source Code Analysis and Manipulation (2014).

[62] Yadegari, B., and Debray, S. Symbolic Execution of Obfuscated Code. In ACM
Conference on Computer and Communications Security (CCS) (2015).

[63] Yadegari, B., Johannesmeyer, B., Whitely, B., and Debray, S. A Generic Approach
to Automatic Deobfuscation of Executable Code. In IEEE Symposium on Security and
Privacy (2015).

[64] Zhou, Y., Main, A., Gu, Y. X., and Johnson, H. Information Hiding in Software
with Mixed Boolean-Arithmetic Transforms. In International Workshop on Information
Security Applications (WISA) (2007).

31

https://www2.securom.com/Digital-Rights-Management.68.0.html
https://www2.securom.com/Digital-Rights-Management.68.0.html
https://www.solidshield.com/software-protection-and-licensing
https://www.solidshield.com/software-protection-and-licensing
http://vmpsoft.com

	Introduction
	Technical Background
	Obfuscation
	Virtualization-based Obfuscation
	Return-oriented Programming
	Mixed Boolean-Arithmetic

	Trace Simplification
	Monte Carlo Tree Search
	Simulated Annealing

	Approach
	Trace Dissection
	Random Sampling
	Synthesis

	Program Synthesis
	Node Selection
	Grammar
	Random Playout
	Measuring Similarity of Outputs
	Backpropagation
	Expression Simplification

	Implementation
	Experimental Evaluation
	Mixed Boolean-Arithmetic
	VM Instruction Handler
	VMProtect
	Themida

	ROP Gadget Analysis

	Discussion
	Related Work
	Conclusion

