


lPengfei Ding & Chenfu Bao

lSecurity	Researcher	&	Developer
@	Baidu X-Lab

lFocused	on	Mobile,	IoT and	
Linux	kernel	security



l Introduction

l Past	Compat Vulnerabilities

l Newly	Identified	Compat Vulnerabilities

l Advices	&	Mitigations	

l Conclusions



l 32-bit	compatibility	mode	in	64-bit	Linux	kernels

system	
call

user	
process

64-bit	process
64-bit
syscall

compat
syscall

32-bit	process



l Mainly used	to	handle	the	differences	in	the	data	
sizes

l Many system calls	haveparameters	with different	
sizes	in	32-bit	and	64-bit	system
l long,	pointer,	…

l Convert	the values	of	these	parameters	to	
corresponding	64-bit	values





l Code	redundancy	requires	more	maintenance	
efforts,	thus	introducing	more	security	risks

l Additional	definition	of	data	structures,	type	
conversion	and	data	processing	logic	expose	new	
attack	surfaces



l Occasionally	discovered

l Mostly	in	device	drivers

l Mostly	caused	by	inconsistency	between	
compat and	non-compat mode
l Inconsistency	of	data	structure	definition
l Inconsistency	of	user	input	validation	logic



l Inconsistency	of	data	structure	definition



memcpy leads	to	stack	overflow!	



l Inconsistency	of	
user	input	
validation	logic

eeprom_init_config
validates	user	input,	
while	its	compat version	
eeprom_init_config32
does	not	validate	user	
input

patch	 url	 :	https://source.codeaurora.org/quic/la/kernel /msm-3 .18/commit/drivers/media /platform/msm/camera_v2/sensor/eepr om? h=rel/msm-3.18.r5&i d=539399acbaecba7af7c411f6 f28a c0189e459bb5



l Inconsistency	of	
user	input	
validation	logic

patch	url	:https://source.codeaurora.org/quic/la/kernel/msm-3.18/commit/drivers/media/platform/msm/camera_v2/sensor/msm_sensor_driver.c?h=rel/msm-3.18.r5&id=17c31f3f3438c9f3e05b0d92c70b2b65d430d6cd

is_compat_task can	
reduce	code	
redundancy,	but	
inconsistency	still	
exists



l Past	research	on	compat	vulnerabilities	only	
focuses	on	normal	program	logic	
	

l In	device	drivers,	compat	and	non-compat	codes	
are	often	mixed	together	
	

l Can	mixed	codes	cause	abnormal	program	logic?



ioctl syscall entry file_operations

compat_ioctl
（fd,cmd32,pstruct32） 32-bit	process

64-bit	process
unlocked_ioctl

（fd,cmd64,pstruct64）



cmd32 common
cmd

cmd64
ioctl goto	kernel file_operations

compat_ioctl
（fd,cmd32,pstruct32）

32-bit	process

64-bit	process

check	user	input&
convert	to	

cmd64	pstruct64

common
function

unlocked_ioctl
（fd,cmd64,pstruct64）

cmd64

check	user	input

cmd32

common	cmd

common	cmd

return	to	
user

convert	to	
pstruct32

64-bit	process

32-bit	process



l compat_ioctlwill	make	conversion according	to	the	value	of	cmd32	

lWhat	if	we	intentionally confuse	compat_ioctl
parameters	with	unlocked_ioctlparameters?	

1.compat_ioctl(fd,	cmd64,	pstruct32)
2.compat_ioctl(fd,	cmd64,	pstruct64)
3.compat_ioctl(fd,	cmd32,	pstruct64)
4.unlocked_ioctl(fd,	cmd32,	pstruct64)
5.unlocked_ioctl(fd,	cmd32,	pstruct32)
6.unlocked_ioctl(fd,	cmd64,	pstruct32)



l unlocked_ioctl does	not	have	conversion
behavior,	cmd32	parameters	will	be	
filtered,	thus	will	not	cause	security	
problems.		

l 4	and	5	are ruled out

l Processing	logic	of	pstruct parameter	in	
ioctl dependson	the	value	of	cmd,	so	we	
ignore	pstruct(pstruct32，pstruct64)
parameter,	only	focusing	on	how	changes	
of	cmd parameter	will	affect	ioctl

1.compat_ioctl(fd,	cmd64,	pstruct32)
2.compat_ioctl(fd,	cmd64,	pstruct64)
3.compat_ioctl(fd,	cmd32,	pstruct64)
4.unlocked_ioctl(fd,	cmd32,	pstruct64)
5.unlocked_ioctl(fd,	cmd32,	pstruct32)
6.unlocked_ioctl(fd,	cmd64,	pstruct32)



compat_ioctl
（fd,cmd64,pstruct）

compat_ioctl
（fd,cmd64,pstruct）

compat_ioctl
（fd,cmd32,pstruct32）

cmd32 common
cmd

cmd64
ioctl goto	kernel file_operations

32-bit	process

64-bit	process

check	user	input	&
convert	to	

cmd64	pstruct64

common
function

unlocked_ioctl
（fd,cmd64,pstruct64）

cmd64

check	user	input common	cmd

common	cmd

return	to	
user

convert	to	
pstruct32

64-bit	process

32-bit	process

cmd32

cmd64



l Existing Linux	syscall fuzzing tools do not support
compat
l Trinity
l Syzkaller

lWe extended Trinity	and	syzkaller and	discovered	
more	vulnerabilities



l Bypassing verification	on	user	input	array	
length	can	lead	to	out-of-bounds	R/W	to	this	
array,	thus causing	privilege	escalation

l Bypassing	verification	on	user	input	pointer	
value	can	lead	to	arbitrary memory read,	thus	
causing	information	leakage



l Operate	kernel	memory	instead	of	user	memory	in	
check & conversion,	which	increases	the	security	risk	
when	check & conversion	is	bypassed
l Kmalloc vs	compat_alloc_user_space

l When	is_compat_task is	used	in	common function,	it	
is	easy	to	cause	logic	confusion,	and	it	is	more	likely	
to	cause	security	problems	when	check	&	conversion	
is	bypassed



The	processing	flow	of	
qualcomm	driver	function
msm_cpp_subdev_fops_compat_ioctl	
to	cmd32:
VIDIOC_MSM_CPP_POP_STREAM_BUFFER32
is	shown	in	the	left	diagram.
If	we	pass	directly	to	its	corresponding	
cmd64:
VIDIOC_MSM_CPP_POP_STREAM_BUFFER,
the	validation	of	user	space	pointer	
ioctl_ptr will	be	bypassed,	so	it	can	be	
assigned	to	any	value	by	the	user,	
resulting	in	arbitrary	address	access	
when	using	memcpy.

static	int	msm_cpp_copy_from_ioctl_ptr(void	*dst_ptr,
struct	msm_camera_v4l2_ioctl_t	*ioctl_ptr)

...
/*	For	compat	task,	source	ptr	is	in	kernel	space	*/
if	(is_compat_task())	{

memcpy(dst_ptr,	ioctl_ptr->ioctl_ptr,	ioctl_ptr->len);

static	long	msm_cpp_subdev_fops_compat_ioctl(struct	file	*file,
unsigned	int	cmd,	unsigned	long	arg)

case	VIDIOC_MSM_CPP_POP_STREAM_BUFFER32:
{
...

if	(copy_from_user(&k32_frame_info,
(void	__user	*)kp_ioctl.ioctl_ptr,
sizeof(k32_frame_info)))	{

...
cmd	=	VIDIOC_MSM_CPP_POP_STREAM_BUFFER;
break;



The	processing	flow	of	
qualcomm driver	function
msm_flash_subdev_do_ioctl
to	cmd32:
VIDIOC_MSM_FLASH_CFG32
is	shown	in	the	left	diagram.
copy_from_user checks	user	space	
pointer	cfg.flash_init_info	.
If	we	pass	directly	to	its	corresponding	
cmd64:VIDIOC_MSM_FLASH_CFG,
the	validation	will	be	bypassed,	so	
cfg.flash_init_info can	be	assigned	to	
any	value	,	resulting	in	arbitrary	
address	access when	it’s dereferenced.

switch	(cmd)	{
case	VIDIOC_MSM_FLASH_CFG32:

cmd	=	VIDIOC_MSM_FLASH_CFG;
...

flash_data.cfg.flash_init_info	=	&flash_init_info;
if	(copy_from_user(&flash_init_info32,

(void	*)compat_ptr(u32->cfg.flash_init_info),
sizeof(struct	msm_flash_init_info_t32)))	{

#ifdef	CONFIG_COMPAT
static	long	msm_flash_subdev_do_ioctl(

struct	file	*file,	unsigned	int	cmd,	void	*arg)

static	int32_t	msm_flash_init(
struct	msm_flash_ctrl_t	*flash_ctrl,
struct	msm_flash_cfg_data_t	*flash_data)

{
...

if	(flash_data->cfg.flash_init_info->flash_driver_type	==
FLASH_DRIVER_DEFAULT)	 {



l Try	to	use	compat_alloc_user_space instead	of	kmalloc during	entire	
user	input check & conversion

l Try	to	avoid	using	is_compat_task	 in	common	function

l Try	to	use	structs	instead	of	pointers	in	user	input	to	minimize	
validation	of	user	input



l Development and	test	engineers	should	strengthen	the	
testing	and	auditing	of	compat	codes

l Fuzz	tools	and	code	auditing	tools	should give	more	
attention	to	compat codes

l Security	researchers can	continue	to explore	
compat attack	on	more	platforms



l Concept	and	security	risks	of	compat,	as	well	as	some	
compat vulnerabilities in	the	past

l New	type	of	compat vulnerabilities	in	Linux	device	drivers

l How	to	discover	this	kind	of	vulnerabilities	and	how	to	
avoid	them	in	development



Thanks!


