
Back To The Epilogue
How to Evade Windows' Control Flow Guard 

with Less than 16 Bytes

Andrea Biondo *
Prof. Mauro Conti
Daniele Lain *

SPRITZ Group
University of Padua, IT



- Return to function epilogue

- Evade Windows’ Control Flow Guard

- With less than 16 bytes

GOALS





CFI VIOLATION!



FINE GRAINED



FINE GRAINED COARSE GRAINED



CONTROL FLOW GUARD
OVERVIEW

- Microsoft’s CFI implementation

- Deployed since Windows 8.1

- Coarse-grained (single target set)

- Forward-edge only



CONTROL FLOW GUARD
INTERNALS

1. Compile time: instrument calls and build target set
a. Check mode
b. Dispatch mode





CONTROL FLOW GUARD
INTERNALS

1. Compile time: instrument calls and build target set
a. Check mode
b. Dispatch mode

2. Load time: build bitmap, populate function pointers

3. Run time: checks in ntdll





CONTROL FLOW GUARD
INTERNALS

- Fast checking through a bitmap

- 2 bits map to 16 aligned bytes of target address space
- 00: No target allowed
- 01: Export suppression
- 10: Aligned allowed target
- 11: All targets allowed











CONTROL FLOW GUARD
KNOWN ATTACKS

- Code reuse on modules built without CFG support
- Return address overwrite
- Improper protection of JITed code

- 11 by default on memory mappings
- Lack of instrumentation in JITed code

- Unintended allowed calls (sensitive APIs)
- Making check/dispatch function pointers R/W
- Possibly R/W sections assumed to be RO
- I’M OUT OF SLIDE SPACE SEND HELP 







BACK TO THE EPILOGUE
THE IDEA

- What if an allowed target is not 16-byte aligned?

- Can’t be 10, must be 11 → unintended targets?
- (MJ0011 noted this back in 2014)

- Unaligned targets are still there in system libraries





ANATOMY OF A FUNCTION

Prologue
Body

Epilogue

func2

Prologue
Body

Epilogue

func1

Deallocate stack frame

Allocate stack frame

Business logic

...

...



BACK TO THE EPILOGUE
THE IDEA

- We can reach instructions close to the entry point

- Prologues are boring

- Epilogues mess with the stack and return
- Profit?



- Return to function epilogue

- Evade Windows’ Control Flow Guard

- With less than 16 bytes

GOALS



BACK TO THE EPILOGUE
THE PLAN

- Epilogues increment stack pointer and return
- PR gadgets





BACK TO THE EPILOGUE
THE PLAN

- Epilogues increment stack pointer and return
- PR gadgets

- Pivot return address into attacker-controlled data

- No backward-edge CFI → profit!









BACK TO THE EPILOGUE
64-BIT: THE PROBLEM

- First four arguments not on the stack

- Scumbag RPA foils our evil plan





BACK TO THE EPILOGUE
64-BIT: THE IDEA

- Spill attacker-controlled values to RPA

- Need to call PR at the caller’s stack depth
- Seems hard :(

Compiler optimizations to the rescue:
Tail jumps!



BACK TO THE EPILOGUE
64-BIT: THE PLAN

- Find CFG-valid functions that:
a. Spill attacker-controlled registers to the RPA
b. Have manageable side effects
c. End with an attacker-controlled indirect tail jump

- We call them S gadgets

- Symbolic execution + taint tracking
- <insert jankiest taint tracking ever>
- <insert more analysis buzzwords>





- Return to function epilogue

- Evade Windows’ Control Flow Guard

- With less than 16 bytes

GOALS



CONTROL FLOW GUARD
KNOWN ATTACKS

- Code reuse on modules built without CFG support
- Return address overwrite
- Improper protection of JITed code

- 11 by default on memory mappings
- Lack of instrumentation in JITed code

- Unintended allowed calls (sensitive APIs)
- Making check/dispatch function pointers R/W
- Possibly R/W sections assumed to be RO
- I’M OUT OF SLIDE SPACE SEND HELP 

CONTROL ONLY AN ARGUMENT TO A

CORRUPTED CALL

LOAD MODULE WITH GADGETS



EVALUATION

- Systematically evaluated Windows’ system libraries
- Loaded by a large number of processes

- Pattern matching PR gadgets





EVALUATION

msvcrt.dll (!!!)
MSVP9DEC.dll

jscript9.dll
msmpeg2vdec.dll

32-bit 57 PR GADGETS

64-bit 22 PR GADGETS

Load vuln lib → whole program vulnerable



EVALUATION

- S gadgets via symex

- 985 different ones
- IE & Edge JS engines - jscript9.dll, Chakra.dll
- IE & EDGE HTML parsers - mshtml.dll, edgehtml.dll
- Skype codecs
- ...



EDGE EXPLOIT

- CVE-2016-7200
- Array.filter Infoleak
- Leak address of object

- CVE-2016-7201
- FillFromPrototypes type confusion
- Arbitrary memory R/W



EDGE EXPLOIT
GADGET SELECTION

- P16R0 from msmpeg2vdec.dll
- S2 from chakra.dll

- Spills rdx (2nd arg) to rsp+16
- Calls fptr @ +0x50 in vtable of object in rcx (1st arg)



EDGE EXPLOIT
ASLR BYPASS (chakra.dll)

1. Leak address of JavaScript object
2. Read vtable pointer from object
3. Read function pointer from vtable

Now we have a code pointer in chakra.dll.



EDGE EXPLOIT
ASLR BYPASS (msmpeg2vdec.dll)

1. Derandomize msvcrt.dll from chakra.dll’s IAT
2. Derandomize ntdll.dll from msvcrt.dll’s IAT
3. Look up msmpeg2vdec.dll in ntdll’s loaded 

modules hash table



EDGE EXPLOIT
CONTROLLING ARGUMENTS

- Most functions accept Var arguments
- Var is either a pointer to object or a double

1. Create array → elements will be Vars
2. Corrupt array element via write primitive
3. Use corrupted element as argument



EDGE EXPLOIT
CONTROL FLOW HIJACKING

1. Hijack JavascriptFunction vtable
a. HasInstance @ +0x200 → S gadget
b. @ +0x50 → PR gadget

2. Call instanceof
a. LHS: JavascriptFunction (1st arg to HasInstance)
b. RHS: controlled Var (2nd arg to HasInstance)





- Return to function epilogue

- Evade Windows’ Control Flow Guard

- With less than 16 bytes

GOALS





BLACK HAT SOUND BYTES

- Attack your mitigations!

- Be careful in what you shrug off as not dangerous

- Seemingly small issues might not be so small after all



an attack by

ANDREA BIONDO
MAURO CONTI
DANIELE LAIN

UNIVERSITY OF PADUA - SPRITZ GROUP


