blgc’zk ha'l:

ASIA =

MARCH =20-=23, 2018

MARINA BAY SANDS / SINGARPORE

| Don't Want to Sleep Tonight:
Subverting Intel TXT with S3 Sleep

Seunghun Han, Jun-Hyeok Park
(hanseunghun || parkparkgw)@nsr.re.kr

Wook Shin, Junghwan Kang, HyoungChun Kim
(wshin || ultract || khche)@nsr.re.kr

¥ #BHASIA / @BlackHatEvents

-
bl:fa'c’:khat Who Are We?

ASIA 2018

- Senior security researcher at NSR (National Security Research
Institute of South Korea)

- Speaker at Black Hat Asia 2017 and HITBSecConf 2016/2017

- Author of the book series titled “64-bit multi-core OS principles
and structure, Vol.1&2"
- a.k.a kkamagui, @kkamaguil

- Senior security researcher at NSR

- Embedded system engineer

- Interested in firmware security and loT security
- ak.a davepark, @davepark312

-~
.

bla‘n.c’:khat Goal of This Presentation

ASIA 2018

- We present new attack vector, “S3 Sleep” to subvert

hardware-based security

- S3 sleeping state cuts off the power of CPU and devices

- We Iintercept control flow while system wakes up and subvert
hardware-based security

- We present new vulnerability, “Lost Pointer” (CVE-2017-

16837)

- “Lost pointer” is a software vulnerability in tBoot which is a
reference implementation of Intel TXT
- We explain the vulnerability in detail and show mitigation

Background
Boot Protection Mechanisms

Intel Trust Execution Technology (TXT)
and tBoot

Lost Pointer Vulnerability and Demao.

Mitigation and Conclusion
(with Black Hat Sound Bytes)

Y
.

bl:fu'?:khat Saving Power Is Important!

ASIA 2018

- Power Consumption == Cost
- Many companies worry about power consumption, because ...
- Low Power Consumption = Low Electricity Fee!

- Power Consumption == Running Time
- Your laptop works on BATTERY!
- Low Power Consumption = Long Running Time = Inner Peace!
- We wish the battery could last a day, but, ...

-
blgc’:khat‘ Saving Power Is Important!

ASIA 2018

- Power Consumption == Cost

F

- Many companies wc
‘ consum
acturina !

1USEe ...

€ Advanced Configuration and Pow

PIack®®® Interface (ACPI) Sleeping States

Wake Up
S1
Sleep Sleeping

Boot
Y
Sleeping
GO (S0) Sleep
Working
Slee Sleeping
Power SMI D
Button
' S4
OEM &4 W\ Sleeping
BIOS Handler Sleep

G1 (S1-S4)

s —

2. tes

blackhat Impacts of ACPI Sléeping St

ASIA 2018

- Impacts of ACPI sleeping states are as follows:
- SO: Normal, no context Is lost
- S1: Standby, the CPU cache is lost
- S2: Standby, the CPU Is
- S3: Suspend, CPU and devices are
- S4: Hibernate, the CPU, devices, and RAM are

- Sb: Soft Off, all parts are

> -s =

£ ros

blackhat Impacts of ACPI Sléeping St

ASIA 2018

- Impacts of ACPI sleeping states are as follows:
- SO: Normal, no context Is lost
- S1: Standby, the CPU cache is lost

POWER OFF 71

- Sb: Soft Off, all parts are

bisekhat ACPI Sleeping State and Securityi‘“ "

AS A =S #BHASIA

- Sleeping states cut off the power of CPU, devices, and
RAM!

- If the OS works with sleeping states, security hardware
must do so

- Because of power off, their states need to be restored
and reinitialized for waking up

If we Intercept sleep and wake up,
we can do something interesting!

.0 Attack Surface of S3 Sleeping/State™
AT in Linux Kernel *

Notify Power Manager Chain(Sleep)
- pm_notifier_call _chain()
- 64bit Mode, Multiple CPU

Notify Device Chain(Sleep)
- dpm_prepare(), dpm_suspend(), dpm_suspend_late()
- 64bit Mode, Single CPU

Sleep,
- acpi_os_enter_sleep()

% Wake Up (Vector of ACPI) and Resume Kernel

- Real Mode, Single CPU

Notify Device Chain(Resume)
- dpm_resume_noirq(), dpm_resume()
- 64bit Mode, Single CPU

Notify Power Manager Chain(Resume)
- pm_notifier_call _chain()
- 64bit Mode, Multiple CPU

.0 Attack Surface of S3 Sleeping/State™
AT in Linux Kernel '

Notify Power Manager Chain(Sleep)
- pm_notifier_call _chain()
- 64bit Mode, Multiple CPU

Notify Device Chain(Sleep)
- dpm_prepare(), dpm_suspend(), dpm_suspend_late()
- 64bit Mode, Single CPU

Sleep,
- acpi_os_enter_sleep()

You can intercept control flow by
registering a callback function!

- D4VIL IVIDUE, Oolllylc virru

Notify Power Manager Chain(Resume)
- pm_notifier_call _chain()
- 64bit Mode, Multiple CPU

Now,

we got the power to change
control flow!

Let’s get into
a more privileged level!

Background
Boot Protection Mechanisms

Intel Trust Execution Technology (TXT)
and tBoot

Lost Pointer Vulnerability and Demao.

Mitigation and Conclusion
(with Black Hat Sound Bytes)

’

bla‘n.c’:khat Boot Protection Mechanisms

ASIA 2018

- Secure boot of

Unified Extensible Firmware Interface (UEFI)
- CHECKS a cryptographic signature of the binary executed in the
next step PRIOR TO the execution
- Stops the execution if the executable file has no valid signhature

- Measured boot
- MEASURES a hash of the binary executed in the next step PRIOR
TO the execution, and then stores the measurement to the secure
storage of Trusted Platform Module (TPM)
- CHECKS the platform hashes in TPM AFTER the boot process

blekhat Trusted Platform Module (TP)

ASIA 2018

- TPM is designed to provide hardware-based

security functions and build up a trusted platform

- It Is a tamper-resistant device and has a random number generator,
encryption functions, Platform Configuration Registers (PCRS), etc.

- It has been widely deployed in commercial products

- Trusted Computing Group makes MANY specifications about TPM

- PCRs of TPM store hashes and reveal the system status

- They can be used to seal data (like BitLocker) and verified by remote
attester

T

bisakhat Trusted Platform Module (TPNM)

ASIA 2018

- TPM Is designed to provide hardware-based

security functions and build up a trusted platform
- It Is a tamper-resistant device and has a random number generator,

PCRs are stored safely and...

They cannot be reset
!

o Illby VAII U UooLULU LU vl uailau \III\\I I_JILI_U\J[\bI} (CUNIVIER'AARERAGAY Lly 1T CvlliIvilG

attester

O Static and Dynamic

plackhat Root of Trust for Measurement

- Root of Trust for Measurement (RTM) of TCG architecture Is
the trust anchor of a measurement chain

- Static RTM makes a chain from Core RTM (CRTM)
- CRTM In protected firmware block starts at power-on state or restart

- Dynamic RTM makes a chain at runtime without power-on

or restart

- It executes a special code module (DRTM Configuration Environment,
DCE) and it ensures the platform is in a trustworthy state

- DCE executes a Dynamically Launched Measured Environment (DLME)

Background
Boot Protection Mechanisms

Intel Trust Execution Technology (TXT)
and tBoot

Lost Pointer Vulnerability and Demao.

Mitigation and Conclusion
(with Black Hat Sound Bytes)

blbekhat Intel Trusted Executlon Envirc nme

AS A =S #BHASIA

- Intel Trusted Execution Technology (TXT) is the DRTM tech.

- Intel just uses different terminologies

- ex) DCE = Secure Initialization Authenticated Code Module (SINIT ACM)
DLME = Measured Launched Environment (MLE)

- It extends hashes of SINIT ACM and MLE to TPM

- Intel TXT has a special command (SENTER and SEXIT) to
enter trustworthy state and exit from it

- SENTER checks if SINIT ACM has a valid signature
- Intel publishes SINIT ACM on the website

bla‘n.c’:khat Trusted Boot (tBoot)

ASIA 2018

- tBoot Is a reference implementation of Intel TXT
- It Is an open source project (https://sourceforge.net/projects/tboot/)
- It has been included many Linux distros such as RedHat, SUSE, and
Ubuntu

- tBoot can verify OS and VMM

- It measures TXT and OS components and stores hashes to TPM

- Measured results in PCRs of TPM can be verified by remote
attestation server such as Intel Open CIT

- It Is typically used in server environments

bl£3=k hat

ASIA 2018

b

Boot Process with tBoot

CPU :
—» : Execution
Microcode - ==p : Measurement
A |
SENTER :
I tBoot
: v
Pre- I Post- Kernel
cRTM > PO L) GrUB - Launch |1 | STT 1 Launch — Do
Code |, Code initrd
| | | | |
! : : ! PCR#18, |
| | | | e
| | el I | PCR #19 1
| ———— e — I [T —— | -
}
' TPM
v v

Static PCRs (PCR#0-15)

Dynamic PCRs (PCR#17-22)

IMAGINE SECURE WORLD

WITH TRUSTED BOOT!

Background
Boot Protection Mechanisms

Intel Trust Execution Technology (TXT)
and tBoot

Lost Pointer Vulnerability and Demao.

Mitigation and Conclusion
(with Black Hat Sound Bytes)

blbekhat Previous Works on tBoot (1,

ASIA 2018

- “Attacking Intel trusted execution technology”, Black Hat

DC (2009)
- System Management Mode (SMM) code attack

- “Another way to circumvent Intel trusted execution

technology”, Invisible Things Lab (2009)
- DMA remapping table (DMAR table) attack

- “Attacking Intel TXT via SINIT code execution hijacking”,

Invisible Things Lab (2011)
- Also DMAR table attack

-
blz‘a?:khat‘ Previous Works on tBoot (2

ASIA 2018

- “Breaking hardware-enforced security with hypervisor”,

Black Hat USA (2016)
- SENTER emulation with malicious hypervisor

Many researchers have aimed at
Intel TXT and tBoot!

But, they only focused on the boot process!

O Sleep and Waking Up Sequeng

black hat

ASIA 2018

— > s
= \
| |

il

tBoot

Seal S3 key and MAC of Kernel Memory with Post-Launch PCRs
- seal_post_k_state() = g_tpm->seal()

Save Static PCRs(0~16)
- tpm->save_state()

Shutdown Intel TXT
- txt_shutdown()

Sleep.
- shutdown_system()

Wake Up, Restore Static PCRs, and Resume tBoot
- Real Mode, Single CPU

Launch MLE again and then, Unseal S3 key and MAC with P-Launch
PCRs

- begin_launch() = txt_s3_launch_environment()

- post_launch() = s3 launch() = verify_integrity() = g_tpm->unseal()

Extend PCRs and Resume Kernel
- verify_integrity() = extends_pcrs() = g_tp m 9 eXte N d ()

- s3 launch()-> prot to real()

g

. ~ S - shutdown_system()
& B

Sleep and Waking Up Sequen
blhak hat P e

ASIA 2018

Seal S3 key and MAC of Kernel Memory with Post-Launch PCRs
- seal_post_k_state() = g_tpm->seal()
Save Static PCRs(0~16)
- tpm->save_state()
Shutdown Intel TXT ..
- txt_shutdown()
. AT
- p Sleep.

=

) Wake Up, Restore Static PCRs, and Re
- Real Mode, Single CPU -
Launch MLE again and then, Unseal S ‘ »
PCRs Noal Ban, o ;
- begin_launch() = txt_s3_launch_enviroineiy
- post_launch() = s3_launch() = verify_integrity() = g@wnseal()
Extend PCRs and Resume Kernel

- verify_integrity() = extends_pcrs() = g_tp m 9 eXte N d ()
- s3 launch()-> prot to real()

#BHASIA

O “Lost Pointer” Vulnerability

blackhat (CVE-2017-16837)

Multiboot Header

_mle_start

00840234
00840238

g_tpm
num_Llines

0084023c cursor_y _mle_end cie -

0084023d cursor_x Initialized Data

00840240 d g_saved_mtrrs ('data) S

9984@26@ g_S in 1t StrUCt tpm_lf *g_tpm : vin ission t.pmlL-'_;:;Lti.ij‘it_.rj;z:;:::_pe:-.:mis5i-c:-n,

00840264
00840268
0084026c¢C
00840270
00840280
008402c0
00840460

g_using_da struct tpm_if tpm_12_if
g_elog 2 1 struct tpm_if tpm_20 _if
g_elog_2
g_elog Uninitialized Data
g_rsdp (.bss)

tpm_12_if
tpm_20_if

rerify creation,

oI O o0 OO0 o oo oo

Y
TIMEOUT D,

Memory Layout of tBoot

. i .
0o ~ “Lost Pointer” Vulnerability
biackhat (CVE-2017-16837)
ASIA 2018

Multiboot Header

_mle_start

Measured by Intel TXT!

00840234
00840238
0084023c
0084023d
00840240
00840260
00840264
00840268
0084026c¢C
00840270
00840280
008402c0
00840460

g_tpm
num_Llines
cursor_y
cursor_x

_mle _end

Initialized Data
(.data)

g_saved_mtrrs
g_sinit struct tpm_if *g_tpm
g_using_da struct tpm_if tpm_12_if

9—31{09—;—1 struct tpm_if tpm_20_if
g_€Log_

g_elog Uninitialized Data
g_rsdp (.bss)

tpm_12_if
tpm_20_if

UNMEASURED!

o0 O o0 OO0 o oo o g

Memory Layout of tBoot

O Hijack the Control Flow and

Jtecungt Exploit tBoot!

Multiboot Header Hook tpm_12_if structure for g_tpm
_mle_start (extend_pcr > hook_extend_pcr)
Code (.text) !

Hook tpm_20 _if structure for g_tpm

Read-Only Data (extend_pcr = hook_extend_pcr)
(.rodata)
_mle_end ——
Initialized Data bool hook_extend_pcr(pcr, hash)
(.data) { for tpm_12 if and tpm_20 if
struct tpm__|f g_tpm_ hash18 = a good hash for PCR 18
struct tpm_if tpm_12_if hash19 = a good hash for PCR 19
struct tpm_if tpm_20 if
if (pcr == 18)
return org_extend_pcr(pcr,
hash18);

else if (pcr == 19)
return org_extend_pcr(pcr,

hash19);
Uninitialized Data |™., else
(.bss) return org_extend_pcr(pcr,
2 hash);

Memory Layout of tBoot

O -
black hat Put it all together!

ASIA 2018

Bad PCRs
(18, 19)
R AV
Load L oad " Load Insert
Power On —> = —> Modified —> Kernel
Grub tBoot
Kernel Module
Good PCRs TPM is
(18, 19) RESET!
» Syst Patch Regist
. "V “Extend ystem atc egister
Recorded Sleep and tpm_if of Fggg to Sleep
PCRs in tBoot Wake Up tBoot P Notification
In Notifier
Chain
Resume

Kernel - Good PCRs - Bad PCRs

IMAGINE SECURE WORLD (78

COMPUTING GROUP

8C D5 46 92 35 72 82 49 (8 93
AA 80 CD 6E 39 57 C3 3B 22 75

F3
FC

2C

69
PCR-02: 8B 14 FE 1B 2F 64 BC @1 65 44 BA 02 23 8F F@ 5F 5A EOQ 19 4A
PCR-03: 3A 3F 78 OF 11 A4 B4 99 69 FC AA 80 CD 6E 39 57 (3 3B 22 75

E
9

PCR-00: 5C A8 82 83 6E 28 @D 8
PCR-01: 3A 3F 78 OF 11 A4 B4 9

CYSSLUSSSSSSATXSSSS
NESSSSSSSSSRESSSSS
"W SS3SSSSSSeYESSSS
CuSS2SSSSSSSh2SSSS
hNSSESSSSSSI"=SSSS
A SSSRSSSSSSSIRSSSS
i 8 PSS -SSSSSS5-S8SSS
. -SSESSSSSSLEIXSSSS
s SSYSSSSSSE81SSSS
RT 2PSSHSSSSSSZ2HRSSSS
_ 5 SSSSSSSSSKS58S8SSS
L FJSSISSSSSSKREISSSS
mmﬁuwwwwwwwwwﬂ%%%%%%

g SSHSSSSSSSSIRSSSS
ﬁrB%% SSSSSSZSRSSSS
B PSSSSSSSSSARASSSS

BSSISSSSSSTEBSSSS
SFSSSSSSSTTSSSS

13 E9 11 4F 9E
B
14

8 AC 43 FF FD @7
5

C

%%?

SEmaSSiSSSSSSTIsSSSS
CIFcSSTSSSSSSIITSSSS
38852388 NMINENNASINT
OF Of Y OF OX O DX OF OF X X OX O OX OF O X X O X
QOO OUOUDOLOOOLODOLUDODOUOLUDOUOOLOODOLOUOLDUULU
(o T o TR = WRRY = NN = TN = W o Winy = NN « TN = TN = T o WONY = T = TN = TN = T o NN = TN « T =

Background
Boot Protection Mechanisms

Intel Trust Execution Technology (TXT)
and tBoot

Lost Pointer Vulnerability and Demao.

Mitigation and Conclusion
(with Black Hat Sound Bytes)

O Mitigation —

blackhat \1casure Function Pointers (1)

Multiboot Header

_mle_start
Cod
(o . Measured by
Intel TXT!
Read-Only Data
(.rodata)
_mle_end

Initialized Data
(.data)
struct tpm_if *g_tpm
struct tpm_if tpm_12 if
struct tpm_if tpm_20 _if

_mle_end-

Uninitialized Data
(.bss)

Memory Layout of tBoot

O ' Mitigation —
blackhat \easure Function Pointers (2)

-extern struct tpm if tpm 12 if; -—- a/tboot/common/tpm 12.c
-extern struct tpm if tpm 20 if; +++ b/tboot/common/tpm 12.c
-extern struct tpm if *g tpm; @@ -1914,8 +1914,7 @@

+extern const struct tpm if fp tpm 12 if fp; Extract Data frOm \[e)V/<] |nterfaceS to
+extern const struct tpm if fp tpm 20 if fp; TPM Interfaces } Read'only Area

+extern uint8 t g tpm ver; B

+extern struct tpm if data tpm if data;

extern uint8 t g tpm family; -struct tpm ifg e 12 if =

+const struct tpm if fp tpm 12 if fp
extern bool tpm validate locality(uint32 t locality); .init = tpml? init.
@@ -501,6 +510,8 @@

extern bool tpm relinquish locality erb(uint32 t

--- a/tboot/common/tpm 20.c 12 /Jpcr_read,
+++ b/tboot/common/tpm 20.c pyil2_pcr extend,
@@ -2615,7 +2615,7 @@ {0

extern bool tpm workaround crb(void); S
N . return true; pml2_save_state,

extern bool txt is launched(void);

+extern struct tpm if *get tpm(void); 12 cap pecrs,

+extern const struct tpm if fp *get tpm fp(void); check,

-struct tpm if tpm 20 if = {
= TIMEOUT A,

TIMEOUT E,
TIMEOUT C,
TIMEOUT D,

+const struct tpm if fp tpm 20 if fp
.1nit = tpm20 1nit,
.pcr read = tpm20 pcr read,

.pcr extend = tpm20 pcr extend,

O , Conclusion and
agighst Black Hat Sound Bytes

- ACPI| S3 sleeping states turn off the CPU and the TPM
- When the system wakes up, it should turn on security function of
CPU and recover PCRs of TPM

- tBoot does not measure all function pointers!
- “Lost Pointer” vulnerability can be used to forge the PCR values
while system sleeps and wakes up
- tBoot should measure all data related to the control flow

- Update your tBoot to the latest version!
- Or disable the sleep feature in your BIOS!

o -
blackhat Questions ?

ASIA 2018

EMAIL!

Contact: hanseunghun@nsr.re.kr, @kkamaguil
parkparkgw@nsr.re.kr, @davepark312

bl.—gc’:khat Reference

ASIA 2018

- Trusted Computing Group. “TCG D-RTM Architecture.” 2013.

- Trusted Computing Group. “TCG PC Client Specific Implementation Specification for
Conventional BIOS.” 2012.

- Intel. “Intel Trusted Execution Technology (Intel TXT).” 2017.

- Wojtczuk, Rafal, and Joanna Rutkowska. “Attacking intel trusted execution technology.”
Black Hat DC. 2009.

- Wojtczuk, Rafal, Joanna Rutkowska, and Alexander Tereshkin. “Another way to circumvent
Intel trusted execution technology.” Invisible Things Lab. 2009.

- Wojtczuk, Rafal, and Joanna Rutkowska. “Attacking Intel TXT via SINIT code execution
hijacking.” Invisible Things Lab. 2011.

- Sharkey, Joseph. “Breaking hardware-enforced security with hypervisors.” Black Hat USA.
2016.

