
Seunghun Han, Jun-Hyeok Park
(hanseunghun || parkparkqw)@nsr.re.kr

I Don't Want to Sleep Tonight:

Subverting Intel TXT with S3 Sleep

Wook Shin, Junghwan Kang, HyoungChun Kim

(wshin || ultract || khche)@nsr.re.kr

Who Are We?

- Senior security researcher at NSR (National Security Research

Institute of South Korea)

- Speaker at Black Hat Asia 2017 and HITBSecConf 2016/2017

- Author of the book series titled “64-bit multi-core OS principles

and structure, Vol.1&2”

- a.k.a kkamagui, @kkamagui1

- Senior security researcher at NSR

- Embedded system engineer

- Interested in firmware security and IoT security

- a.k.a davepark, @davepark312

Goal of This Presentation

- We present new attack vector, “S3 Sleep” to subvert

hardware-based security

- S3 sleeping state cuts off the power of CPU and devices

- We intercept control flow while system wakes up and subvert

hardware-based security

- We present new vulnerability, “Lost Pointer” (CVE-2017-

16837)

- “Lost pointer” is a software vulnerability in tBoot which is a

reference implementation of Intel TXT

- We explain the vulnerability in detail and show mitigation

Background

Boot Protection Mechanisms

Intel Trust Execution Technology (TXT)

and tBoot

Lost Pointer Vulnerability and Demo.

Mitigation and Conclusion
(with Black Hat Sound Bytes)

Saving Power is Important!

- Power Consumption == Cost

- Many companies worry about power consumption, because …

- Low Power Consumption = Low Electricity Fee!

- Power Consumption == Running Time

- Your laptop works on BATTERY!

- Low Power Consumption = Long Running Time = Inner Peace!

- We wish the battery could last a day, but, …

Saving Power is Important!

- Power Consumption == Cost

- Many companies worry about power consumption, because …

- Low Power Consumption = Low Electricity Fee =

Low Manufacturing Cost!

- Power Consumption == Running Time

- Your laptop works on BATTERY!

- Low Power Consumption = Long Running Time = Inner Peace!

- We wish the battery could last a day, but, …

! !!

G2 (S5)
Soft Off

G0 (S0)
Working

S1
Sleeping

S2
Sleeping

S3
Sleeping

S4
SleepingOEM S4

BIOS Handler

G1 (S1-S4)

Boot

Power

Button
SMI

Wake Up

Sleep

Sleep

Sleep

Sleep

Advanced Configuration and Power

Interface (ACPI) Sleeping States

- Impacts of ACPI sleeping states are as follows:

- S0: Normal, no context is lost

- S1: Standby, the CPU cache is lost

- S2: Standby, the CPU is POWERED OFF

- S3: Suspend, CPU and devices are POWERED OFF

- S4: Hibernate, the CPU, devices, and RAM are POWERED

OFF

- S5: Soft Off, all parts are POWERED OFF

Impacts of ACPI Sleeping States

- Impacts of ACPI sleeping states are as follows:

- S0: Normal, no context is lost

- S1: Standby, the CPU cache is lost

- S2: Standby, the CPU is POWERED OFF

- S3: Suspend, CPU and devices are POWERED OFF

- S4: Hibernate, the CPU, devices, and RAM are POWERED

OFF

- S5: Soft Off, all parts are POWERED OFF

POWER OFF ?!

Impacts of ACPI Sleeping States

- Sleeping states cut off the power of CPU, devices, and

RAM!

- If the OS works with sleeping states, security hardware

must do so

- Because of power off, their states need to be restored

and reinitialized for waking up

ACPI Sleeping State and Security

If we intercept sleep and wake up,

we can do something interesting!

Attack Surface of S3 Sleeping State

in Linux Kernel
Notify Power Manager Chain(Sleep)

Notify Device Chain(Sleep)

- pm_notifier_call_chain()

- 64bit Mode, Multiple CPU

- dpm_prepare(), dpm_suspend(), dpm_suspend_late()

- 64bit Mode, Single CPU

- acpi_os_enter_sleep()

Sleep, De-Power of CPU and Devices

Notify Device Chain(Resume)

Notify Power Manager Chain(Resume)

Wake Up (Vector of ACPI) and Resume Kernel

- Real Mode, Single CPU

- dpm_resume_noirq(), dpm_resume()

- 64bit Mode, Single CPU

- pm_notifier_call_chain()

- 64bit Mode, Multiple CPU

Attack Surface of S3 Sleeping State

in Linux Kernel
Notify Power Manager Chain(Sleep)

Notify Device Chain(Sleep)

Notify Device Chain(Resume)

Notify Power Manager Chain(Resume)

Wake Up (Vector of ACPI) and Resume Kernel

- pm_notifier_call_chain()

- 64bit Mode, Multiple CPU

- dpm_prepare(), dpm_suspend(), dpm_suspend_late()

- 64bit Mode, Single CPU

- Real Mode, Single CPU

- dpm_resume_noirq(), dpm_resume()

- 64bit Mode, Single CPU

- pm_notifier_call_chain()

- 64bit Mode, Multiple CPU

- acpi_os_enter_sleep()

Sleep, De-Power of CPU and Devices

You can intercept control flow by

registering a callback function!

Now,

we got the power to change

control flow!

Let’s get into

a more privileged level!

Background

Boot Protection Mechanisms

Intel Trust Execution Technology (TXT)

and tBoot

Lost Pointer Vulnerability and Demo.

Mitigation and Conclusion
(with Black Hat Sound Bytes)

- Secure boot of

Unified Extensible Firmware Interface (UEFI)

- CHECKS a cryptographic signature of the binary executed in the

next step PRIOR TO the execution

- Stops the execution if the executable file has no valid signature

- Measured boot

- MEASURES a hash of the binary executed in the next step PRIOR

TO the execution, and then stores the measurement to the secure

storage of Trusted Platform Module (TPM)

- CHECKS the platform hashes in TPM AFTER the boot process

Boot Protection Mechanisms

- TPM is designed to provide hardware-based

security functions and build up a trusted platform

- It is a tamper-resistant device and has a random number generator,

encryption functions, Platform Configuration Registers (PCRs), etc.

- It has been widely deployed in commercial products

- Trusted Computing Group makes MANY specifications about TPM

- PCRs of TPM store hashes and reveal the system status

- They can be used to seal data (like BitLocker) and verified by remote

attester

Trusted Platform Module (TPM)

- TPM is designed to provide hardware-based

security functions and build up a trusted platform

- It is a tamper-resistant device and has a random number generator,

encryption functions, Platform Configuration Registers (PCRs), etc.

- It has been widely deployed in commercial devices

- Trusted Computing Group makes MANY specifications about TPM

- PCRs of TPM store hashes and reveal the system status

- They can be used to seal data (like BitLocker) and verified by remote

attester

Trusted Platform Module (TPM)

PCRs are stored safely and…

They cannot be reset

while the system is running!

- Root of Trust for Measurement (RTM) of TCG architecture is

the trust anchor of a measurement chain

- Static RTM makes a chain from Core RTM (CRTM)

- CRTM in protected firmware block starts at power-on state or restart

- Dynamic RTM makes a chain at runtime without power-on

or restart

- It executes a special code module (DRTM Configuration Environment,

DCE) and it ensures the platform is in a trustworthy state

- DCE executes a Dynamically Launched Measured Environment (DLME)

Static and Dynamic

Root of Trust for Measurement

Background

Boot Protection Mechanisms

Intel Trust Execution Technology (TXT)

and tBoot

Lost Pointer Vulnerability and Demo.

Mitigation and Conclusion
(with Black Hat Sound Bytes)

- Intel Trusted Execution Technology (TXT) is the DRTM tech.

- Intel just uses different terminologies

- ex) DCE = Secure Initialization Authenticated Code Module (SINIT ACM)

DLME = Measured Launched Environment (MLE)

- It extends hashes of SINIT ACM and MLE to TPM

- Intel TXT has a special command (SENTER and SEXIT) to

enter trustworthy state and exit from it

- SENTER checks if SINIT ACM has a valid signature

- Intel publishes SINIT ACM on the website

Intel Trusted Execution Environment

- tBoot is a reference implementation of Intel TXT

- It is an open source project (https://sourceforge.net/projects/tboot/)

- It has been included many Linux distros such as RedHat, SUSE, and

Ubuntu

- tBoot can verify OS and VMM

- It measures TXT and OS components and stores hashes to TPM

- Measured results in PCRs of TPM can be verified by remote

attestation server such as Intel Open CIT

- It is typically used in server environments

Trusted Boot (tBoot)

Boot Process with tBoot

CRTM
BIOS/UEFI

Code
GRUB

Pre-

Launch

Code

Kernel

initrd

tBoot

Tools

Static PCRs (PCR#0-15) Dynamic PCRs (PCR#17-22)

SINIT

ACM

Post-

Launch

Code

CPU

tBoot

TPM

Microcode

SENTER

: Execution

: Measurement

PCR #17
PCR #18,

PCR #19

IMAGINE SECURE WORLD

WITH TRUSTED BOOT!

Background

Boot Protection Mechanisms

Intel Trust Execution Technology (TXT)

and tBoot

Lost Pointer Vulnerability and Demo.

Mitigation and Conclusion
(with Black Hat Sound Bytes)

- “Attacking Intel trusted execution technology”, Black Hat

DC (2009)

- System Management Mode (SMM) code attack

- “Another way to circumvent Intel trusted execution

technology”, Invisible Things Lab (2009)

- DMA remapping table (DMAR table) attack

- “Attacking Intel TXT via SINIT code execution hijacking”,

Invisible Things Lab (2011)

- Also DMAR table attack

Previous Works on tBoot (1)

- “Breaking hardware-enforced security with hypervisor”,

Black Hat USA (2016)

- SENTER emulation with malicious hypervisor

Previous Works on tBoot (2)

Many researchers have aimed at

Intel TXT and tBoot!

But, they only focused on the boot process!

Sleep and Waking Up Sequence of

tBoot
Seal S3 key and MAC of Kernel Memory with Post-Launch PCRs

Save Static PCRs(0~16)

- seal_post_k_state() g_tpm->seal()

- tpm->save_state()

- shutdown_system()

Shutdown Intel TXT

- txt_shutdown()

Sleep. De-Power of CPU and the TPM!

Launch MLE again and then, Unseal S3 key and MAC with P-Launch

PCRs

Extend PCRs and Resume Kernel

Wake Up, Restore Static PCRs, and Resume tBoot

- Real Mode, Single CPU

- begin_launch() txt_s3_launch_environment()

- post_launch() s3_launch() verify_integrity() g_tpm->unseal()

- verify_integrity() extends_pcrs() g_tpmextend()
- s3_launch()->_prot_to_real()

Sleep and Waking Up Sequence of

tBoot
Seal S3 key and MAC of Kernel Memory with Post-Launch PCRs

Save Static PCRs(0~16)

Launch MLE again and then, Unseal S3 key and MAC with P-Launch

PCRs

Extend PCRs and Resume Kernel

Wake Up, Restore Static PCRs, and Resume tBoot

- seal_post_k_state() g_tpm->seal()

- tpm->save_state()

- Real Mode, Single CPU

- begin_launch() txt_s3_launch_environment()

- post_launch() s3_launch() verify_integrity() g_tpm->unseal()

- verify_integrity() extends_pcrs() g_tpmextend()
- s3_launch()->_prot_to_real()

- shutdown_system()

Shutdown Intel TXT

- txt_shutdown()

Sleep. De-Power of CPU and the TPM! ?!

“Lost Pointer” Vulnerability
(CVE-2017-16837)

Memory Layout of tBoot

Multiboot Header

Code (.text)

Read-Only Data

(.rodata)

Uninitialized Data

(.bss)

Measured by Intel TXT!

_mle_start

_mle_end

…

Initialized Data

(.data)

struct tpm_if *g_tpm

struct tpm_if tpm_12_if

struct tpm_if tpm_20_if

“Lost Pointer” Vulnerability
(CVE-2017-16837)

Measured by Intel TXT!

_mle_start

_mle_end

UNMEASURED!

… ?! …

Memory Layout of tBoot

Multiboot Header

Code (.text)

Read-Only Data

(.rodata)

Uninitialized Data

(.bss)

…

Initialized Data

(.data)

struct tpm_if *g_tpm

struct tpm_if tpm_12_if

struct tpm_if tpm_20_if

Hijack the Control Flow and

Exploit tBoot!

Memory Layout of tBoot

Multiboot Header

Code (.text)

Read-Only Data

(.rodata)

Uninitialized Data

(.bss)

_mle_start

_mle_end

…

Initialized Data

(.data)

struct tpm_if *g_tpm

struct tpm_if tpm_12_if

struct tpm_if tpm_20_if

Shell Code for

Forging Measurements

Hook tpm_12_if structure for g_tpm

(extend_pcr hook_extend_pcr)

Hook tpm_20_if structure for g_tpm

(extend_pcr hook_extend_pcr)

bool hook_extend_pcr(pcr, hash)
for tpm_12_if and tpm_20_if

{
hash18 = a good hash for PCR 18
hash19 = a good hash for PCR 19

if (pcr == 18)
return org_extend_pcr(pcr,

hash18);
else if (pcr == 19)

return org_extend_pcr(pcr,
hash19);

else
return org_extend_pcr(pcr,

hash);
}

Put it all together!

Resume

Kernel

Subvert

the System : Good PCRs : Bad PCRs

Insert

Kernel

Module

Extend

Recorded

PCRs in tBoot

Good PCRs
(18, 19)

Power On
Load

Grub

Load

tBoot

Load

Modified

Kernel

Bad PCRs
(18, 19)

Patch

tpm_if of

tBoot

System

Sleep and

Wake Up

Register

Sleep

Notification

Force to

Sleep

In Notifier
Chain

TPM is
RESET!

Put it all together!

Resume

Kernel

Subvert

the System : Good PCRs : Bad PCRs

Insert

Kernel

Module

Extend

Recorded

PCRs in tBoot

Good PCRs
(18, 19)

Power On
Load

Grub

Load

tBoot

Load

Modified

Kernel

Bad PCRs
(18, 19)

Patch

tpm_if of

tBoot

System

Sleep and

Wake Up

Register

Sleep

Notification

Force to

Sleep

In Notifier
Chain

TPM is
RESET!

IMAGINE SECURE WORLD

… AND KEEP IT UP, DUDE!

with Your Belief!

DEMO

Background

Boot Protection Mechanisms

Intel Trust Execution Technology (TXT)

and tBoot

Lost Pointer Vulnerability and Demo.

Mitigation and Conclusion
(with Black Hat Sound Bytes)

Mitigation –

Measure Function Pointers (1)

Memory Layout of tBoot

Multiboot Header

Code

(.text)

Read-Only Data

(.rodata)

Uninitialized Data

(.bss)

Measured by

Intel TXT!

_mle_start

_mle_end

…

Initialized Data

(.data)

struct tpm_if *g_tpm

struct tpm_if tpm_12_if

struct tpm_if tpm_20_if
_mle_end …

Mitigation –

Measure Function Pointers (2)

Extract Data from

TPM Interfaces

Move Interfaces to

Read-Only Area

Conclusion and

Black Hat Sound Bytes

- ACPI S3 sleeping states turn off the CPU and the TPM

- When the system wakes up, it should turn on security function of

CPU and recover PCRs of TPM

- tBoot does not measure all function pointers!

- “Lost Pointer” vulnerability can be used to forge the PCR values

while system sleeps and wakes up

- tBoot should measure all data related to the control flow

- Update your tBoot to the latest version!

- Or disable the sleep feature in your BIOS!

Questions ?

Contact: hanseunghun@nsr.re.kr, @kkamagui1

parkparkqw@nsr.re.kr, @davepark312

EMAIL!

- Trusted Computing Group. “TCG D-RTM Architecture.” 2013.

- Trusted Computing Group. “TCG PC Client Specific Implementation Specification for

Conventional BIOS.” 2012.

- Intel. “Intel Trusted Execution Technology (Intel TXT).” 2017.

- Wojtczuk, Rafal, and Joanna Rutkowska. “Attacking intel trusted execution technology.”

Black Hat DC. 2009.

- Wojtczuk, Rafal, Joanna Rutkowska, and Alexander Tereshkin. “Another way to circumvent

Intel trusted execution technology.” Invisible Things Lab. 2009.

- Wojtczuk, Rafal, and Joanna Rutkowska. “Attacking Intel TXT via SINIT code execution

hijacking.” Invisible Things Lab. 2011.

- Sharkey, Joseph. “Breaking hardware-enforced security with hypervisors.” Black Hat USA.

2016.

Reference

