
Seunghun Han, Jun-Hyeok Park
(hanseunghun || parkparkqw)@nsr.re.kr

Shadow-Box v2:

The Practical and Omnipotent Sandbox for ARM

Wook Shin, Junghwan Kang, HyoungChun Kim

(wshin || ultract || khche)@nsr.re.kr

Who Are We?

- Senior security researcher at NSR (National Security Research

Institute of South Korea)

- Speaker at Black Hat Asia 2017 and HITBSecConf 2016/2017

- Author of the book series titled “64-bit multi-core OS principles

and structure, Vol.1&2”

- a.k.a kkamagui, @kkamagui1

- Senior security researcher at NSR

- Embedded system engineer

- Interested in firmware security and IoT security

- a.k.a davepark, @davepark312

Last Year We Presented…

We introduced Shadow-box v1

Goal of This Year is…

X86

VT-x, VT-d
(Virtualization Technology)

Shadow-Box for x86

Linux

TrustZone
(Virtualization Technology)

Shadow-Box for ARM

Linux

We will introduce Shadow-box v2

IMA

Background

Design

Implementation

Demo. and Conclusion
(with Black Hat Sound Bytes)

REMIND:

Linux Kernel is Everywhere!

REMIND:

Security Threats of Linux Kernel

- The Linux kernel suffers from rootkits and security

vulnerabilities

- Rootkits: EnyeLKM, Adore-ng, Sebek, suckit, kbeast, and so many

descendants

- Vulnerabilities: CVE-2014-3153, CVE-2015-3636, CVE-2016-4557,

CVE-2017-6074, etc.

Devices that use Linux kernel

share security threats

- Kernel-level (Ring 0) protections are not enough

- Lots of rootkits and exploits work in the Ring 0 level

- Protections against them are often easily bypassed and neutralized

- Kernel Object Hooking (KOH)

- Direct Kernel Object Manipulation (DKOM)

Protections need

an even lower level (Ring -1)

REMIND:

Melee Combats at the Kernel-level

- Leveraging virtualization technology (VT)

- VT separates a machine into a host (secure world) and a guest

(normal world)

- The host in Ring -1 can freely access/control the guest in Ring 0

(the converse doesn’t hold)

- VT-equipped HW: Intel VT-x, AMD AMD-v, ARM TrustZone

Shadow-Box v2 focuses on

ARM TrustZone!

REMIND:

Taking the Higher Ground

- ARM TrustZone

- is a security extension of ARM processor and hardware-based

security

- separates a machine into the secure world and normal world

- Trusted Execution Environment (TEE)

- is a secure area of ARM processor

- protects integrity and confidentiality of data in memory and storage

ARM TrustZone and

Trusted Execution Environment

Lords of the TEE

TEE of KNOX QSEE

RED OCEAN…

OH, NO…

Restrictions on Lords of the TEE (1)

- TEEs are proprietary

- Their source codes are not published

- Use of the source code is restricted

- TEEs are not portable

- They are designed for their own processors

- So, they are not applicable in different processors

Restrictions on Lords of the TEE (2)

- To wrap it up, their TEEs are not suitable for various

ARM-based devices

- There are so many ARM processor vendors such as Broadcom,

NXP, MediaTek, Allwinner, etc.

- Manufacturers choose low-cost ARM SoC for their products

- The types and vendors of ARM SoC in products are different

depending on manufacturing date

We need

an open source and portable TEE!

OP-TEE: Open Portable TEE (1)

- OP-TEE is an open source TEE

- You can change everything that you want

- Linaro supports and maintains OP-TEE

- Linaro is an association of ARM, Freescale, IBM, Samsung, ST, TI

- OP-TEE supports many kinds of SoCs and devices

- OP-TEE supports more than fourteen devices including Raspberry

Pi 3 and QEMU

- OP-TEE has well-defined architecture, so you can port OP-TEE to

your device easily

- OP-TEE follows GlobalPlatform specifications

- GloabalPlatform makes Trusted Execution Environment (TEE)

specifications

- GlobalPlatform is an association of Samsung, Qualcomm, AMD,

APPLE, Trustonic, NXP

- Many companies follow the specifications, so you can port your

trusted application to other TEE

OP-TEE: Open Portable TEE (2)

Architecture of OP-TEE

Secure World Normal World

OP-TEE

Trusted Kernel

Static

Trusted Application

Dynamic Trusted

Application

TEE Internal APIs

Linux Kernel

OP-TEE Driver

Client

Application

TEE Client API

Tee-

supplicant

Kernel

User

Background

Design

Implementation

Demo. and Conclusion
(with Black Hat Sound Bytes)

Activities in OS

Ring -1 Monitoring Mechanism (Light-Box)

REMIND:

Security Architecture in Shadow Play

Security Monitor
(Shadow-Watcher)

Ring -1 Monitoring Mechanism

Activities in OS

Security Monitor

(Light-Box)

(Shadow-Watcher)

We named this architecture

“Shadow-box”

REMIND:

Security Architecture in Shadow Play

User

Shared

Area

Light-Box (Lightweight Hypervisor)

User
(Read/Write

Permission)

Shared Kernel
(Read-only

Permission)

Guest (Ring 0~3)Host (Ring -1)

Shared Kernel Only Shared Kernel and User

Shared Kernel
(Read/Write

Permission)

Shadow-

Watcher

(Monitor)

Monitor, control

Architecture of Shadow-Box for x86

Light-Box (Trusted App. and Trusted Kernel)

User

Application

Normal

Kernel

Normal World (Ring 0~3)Secure World (Ring -1)

Trusted

Kernel

Shadow-

Watcher

(Trusted App.)

Monitor

Shadow-

Watcher Client

IMA

SMC call

Architecture of Shadow-Box for ARM

- Integrity Measurement Architecture (IMA)

- Can check hashes or signatures of files and prevent the system

from unauthorized executable files

- Can store measurement value in Trusted Platform Module (TPM)

- Is included Linux Kernel since 2.6.30!

- IMA needs to manage hashes or signatures

- You need to make hashes or signatures of good executable files

- IMA is hard to be used for general purpose environment, but it is

good for special purpose environment such as embedded systems

Integrity Measurement Architecture

What can Shadow-Box v2 Do?

- Shadow-box v2 (for ARM) protects Linux kernel from

- Unauthorized executable file attacks

- IMA in kernel verifies signatures of executable files

- Static kernel object attacks

- Static kernel object = immutable at runtime

- Code modification and system table modification attacks

- Dynamic kernel object attacks (x86 only and future work!)

- Dynamic kernel object = mutable at runtime

- Process hiding and module hiding, function pointer modification attacks

Static Kernel Object Protection (1)

Normal WorldSecure World

Shadow-Watcher

Client

Shadow-Box

Trusted App.

OP-TEE

Trusted Kernel

OP-TEE Driver

Linux Kernel

1. Request
3. Compare Hashes

4. Return the Result

Periodic Kernel

Integrity Monitor

Remote Attestation

2. Calculate Page Hashes

Light-Box Trusted App.

Integrity Checker

Page

Hashes
Keys

Measured

Results

- Page hash-based integrity monitor

- Is a simple and intuitive mechanism which is widely used!

- But, the attacker can guess when the page is measured and do

transient attack!

- Needs a mechanism to randomize the measurement timing

- So, Shadow-Box randomizes page order

- Shadow-watcher trust application shuffles pages after

integrity measurement is completed

Static Kernel Object Protection (2)

Workload-Concerned

Kernel Monitoring
- Adaptive mechanism

- Changes check period for measurement depending on system

workload

- Increases the period to keep performance as workload increases

Check Period
(time) Maximum Check Period

(Check Infrequently)

Minimum Check Period
(Check Frequently)

CPU Workload

Remote Attestation

Normal WorldSecure World

Shadow-Watcher

Client

Shadow-Box

Trusted App.

OP-TEE Driver

Linux Kernel

2. Send the Request
3. Get Encrypted Results of Measurement

4. Return the Encrypted

Result

Periodic Kernel

Integrity Monitor

Integrity Checker

5. Bypass the Results

1. Request

with Encrypted Nonce

Remote

Server

Remote Attestation

OP-TEE

Trusted Kernel

Light-Box Trusted App.

Page

Hashes
Keys

Measured

Results

Keys

Executable File Verification with IMA

Normal WorldSecure World

Shadow-

Watcher

Client

Shadow-Box

Trusted App.

OP-TEE

Trusted Kernel

Page

Hashes
Keys

Measured

Results

OP-TEE

Driver

Linux Kernel

Signed

App.

Modified

App.

Unsigned

App.

IMA

Verify and Execute

Monitor

Light-Box Trusted App.

Integrity Checker

Background

Design

Implementation

Demo. and Conclusion
(with Black Hat Sound Bytes)

- Raspberry Pi board

- Is the most famous embedded hardware

- Supports many kinds of OS such as

Raspbian, Ubuntu, and Windows 10 core

Target Board: Raspberry Pi 3

- Raspberry Pi 3 model B specification

- Quad Core 1.2GHz Broadcom BCM2837

- 1GB RAM and HDMI

- BCM43438 wireless LAN and bluetooth

- 40-pin extended GPIO

- Raspberry Pi is the best board for a prototype, but…

- CPU supports ARM TrustZone feature only

- DRAM and flash controller do not support it

- Raspberry Pi does not have secure boot feature

- The secure world is not really secure and just for a prototype!

- If you want a fully-featured board, choose another board!

- OP-TEE supports many kinds of embedded boards such as Juno

board, HiKey board, ATSAMA5D2-XULT board, and i.MX7Dual

SabreSD Board

Limitation of Raspberry Pi 3

How to Integrate Shadow-Box with

Raspberry Pi

Raspbian OS

Raspbian’s Kernel

OP-TEE’s Kernel with IMA Patch

OP-TEE’s Secure Kernel

Shadow-Box

= Secure Pi

-
+

+
+

How to Integrate Shadow-Box with

Raspberry Pi?

Raspbian OS

Raspbian’s Kernel

OP-TEE’s Kernel with IMA Patch

OP-TEE’s Secure Kernel

Shadow-Box

= Secure Pi

-
+

+
+

Secure Pi is

an OPEN SOURCE project!

We always welcome your

CONTRIBUTIONS!

https://github.com/kkamagui/shadow-box-for-arm

Background

Design

Implementation

Demo. and Conclusion
(with Black Hat Sound Bytes)

- Rootkits need to patch kernel code

and read-only data

- They usually hide themselves by patching

kernel code or function pointers

- But, kernel has page protection mechanism

- In x86 case, they disable page write

protection in the CR3 register!

- In ARM case, they also need to disable

page protection, too!

Porting x86 Rootkits to ARM (1)

- Do we really need to know about the page protection

mechanism for patching kernel?

- Paging mechanism is too much complicated

- ARM processors have various paging mechanism

- Use live kernel patch functions instead!

- Linux kernel has kernel patch functions for a live patch

- x86: text_poke(void *addr, const void *opcode, size_t len)

- ARM: patch_text(void *addr, unsigned int insn)

- You do not worry about the paging mechanism anymore!

Porting x86 Rootkits to ARM (2)

- Do we really need to know about the page protection

mechanism for patching kernel?

- Paging mechanism is too much complicated

- ARM processors have various paging mechanism

- Use live kernel patch functions instead!

- Linux kernel has kernel patch functions for a live patch

- x86: text_poke(void *addr, const void *opcode, size_t len)

- ARM: patch_text(void *addr, unsigned int insn)

- You do not worry about the paging mechanism anymore!

Porting x86 Rootkits to ARM (2)

EXACTLY WHAT I WANT!

OH, THIS IS

DEMO

Conclusion and

Black Hat Sound Bytes

- Kernel-level (ring 0) threats should be protected in

a more privileged level (ring -1)

- Rootkits can neutralize kernel-level (ring 0) protection

- We create a ring -1 level protection mechanism with ARM TrustZone

- Shadow-box v2 is practical and portable

- Shadow-box v2 protects the kernel from rootkits using IMA and

OP-TEE

- We made a reference implementation with Raspberry Pi 3

- We named it “Secure Pi” and opened as an open source project

Questions ?

Project : https://github.com/kkamagui/shadow-box-for-arm

Contact: hanseunghun@nsr.re.kr, @kkamagui1

parkparkqw@nsr.re.kr, @DavePark312

C O N T R I B U T I O N !

