black hat ASIA 2018

MARCH 20-23, 2018

MARINA BAY SANDS / SINGAPORE

Shadow-Box v2: The Practical and Omnipotent Sandbox for ARM

Seunghun Han, Jun-Hyeok Park (hanseunghun || parkparkqw)@nsr.re.kr

Wook Shin, Junghwan Kang, HyoungChun Kim (wshin || ultract || khche)@nsr.re.kr

🔰 #BHASIA / @BlackHatEvents

black hat ASIA 2018

Who Are We?

- Senior security researcher at NSR (National Security Research Institute of South Korea)

- Speaker at Black Hat Asia 2017 and HITBSecConf 2016/2017
- Author of the book series titled "64-bit multi-core OS principles and structure, Vol.1&2"
- a.k.a kkamagui, @kkamagui1

- Senior security researcher at NSR
- Embedded system engineer
- Interested in firmware security and IoT security
- a.k.a davepark, @davepark312

Last Year We Presented...

MARCH28-31,2017 MARINA BAY SANDS / SINGAPORE

Myth and Truth about Hypervisor-Based Kernel Protector: The Reason Why You Need Shadow-Box

> Seunghun Han, Jungwhan Kang (hanseunghun || ultract)@nsr.re.kr

black hat Arsenal

MARCH28-31,2017 MARINA BAY SANDS / SINGAPORE

> Shadow-Box: Lightweight Hypervisor-Based Kernel Protector

#BHASIA

Seunghun Han, Jungwhan Kang (hanseunghun || ultract)@nsr.re.kr

We introduced Shadow-box v1

Goal of This Year is...

#BHASIA

We will introduce Shadow-box v2

Background

Design

Implementation

Demo. and Conclusion

(with Black Hat Sound Bytes)

REMIND: Linux Kernel is Everywhere!

REMIND: Security Threats of Linux Kernel

#BHASIA

- The Linux kernel suffers from rootkits and security vulnerabilities
 - Rootkits: EnyeLKM, Adore-ng, Sebek, suckit, kbeast, and so many descendants
 - Vulnerabilities: CVE-2014-3153, CVE-2015-3636, CVE-2016-4557, CVE-2017-6074, etc.

Devices that use Linux kernel share security threats

REMIND: **Jackhat** Melee Combats at the Kernel-level

- Kernel-level (Ring 0) protections are not enough
 - Lots of rootkits and exploits work in the Ring 0 level
 - Protections against them are often easily bypassed and neutralized
 - Kernel Object Hooking (KOH)
 - Direct Kernel Object Manipulation (DKOM)

Protections need an even lower level (Ring -1)

REMIND: Taking the Higher Ground

#BHASIA

- Leveraging virtualization technology (VT)

- VT separates a machine into a host (secure world) and a guest (normal world)
- The host in Ring -1 can freely access/control the guest in Ring 0 (the converse doesn't hold)
- VT-equipped HW: Intel VT-x, AMD AMD-v, ARM TrustZone

Shadow-Box v2 focuses on ARM TrustZone!

ARM TrustZone and Trusted Execution Environment

#BHASIA

- ARM TrustZone

- is a security extension of ARM processor and hardware-based security
- separates a machine into the secure world and normal world

- Trusted Execution Environment (TEE)

- is a secure area of ARM processor
- protects integrity and confidentiality of data in memory and storage

Lords of the TEE

Restrictions on Lords of the TEE (1)

- TEEs are proprietary

- Their source codes are not published
- Use of the source code is restricted

- TEEs are not portable

- They are designed for their own processors
- So, they are not applicable in different processors

Restrictions on Lords of the TEE (2)

- To wrap it up, their TEEs are not suitable for various ARM-based devices
 - There are so many ARM processor vendors such as Broadcom, NXP, MediaTek, Allwinner, etc.
 - Manufacturers choose low-cost ARM SoC for their products
 - The types and vendors of ARM SoC in products are different depending on manufacturing date

We need

an open source and portable TEE!

OP-TEE: Open Portable TEE (1)

- OP-TEE is an open source TEE

- You can change everything that you want
- Linaro supports and maintains OP-TEE

- OP-TEE .org
- Linaro is an association of ARM, Freescale, IBM, Samsung, ST, TI

- OP-TEE supports many kinds of SoCs and devices

- OP-TEE supports more than fourteen devices including Raspberry Pi 3 and QEMU
- OP-TEE has well-defined architecture, so you can port OP-TEE to your device easily

OP-TEE: Open Portable TEE (2)

#BHASIA

- OP-TEE follows GlobalPlatform specifications

- GloabalPlatform makes Trusted Execution Environment (TEE) specifications
- GlobalPlatform is an association of Samsung, Qualcomm, AMD, APPLE, Trustonic, NXP
- Many companies follow the specifications, so you can port your trusted application to other TEE

Background

Design

Implementation

Demo. and Conclusion

(with Black Hat Sound Bytes)

REMIND: **blackhat** Security Architecture in Shadow Play ASIA 2018

We named this architecture "Shadow-box"

Activities in OS

Security Monitor (Shadow-Watcher)

Ring -1 Monitoring Mechanism

(Light-Box)

black hat ASIA 2018 Architecture of Shadow-Box for ARM

Light-Box (Trusted App. and Trusted Kernel)

black hat ASIA 2018

Integrity Measurement Architecture

- Integrity Measurement Architecture (IMA)

- Can check hashes or signatures of files and prevent the system from unauthorized executable files
- Can store measurement value in Trusted Platform Module (TPM)
- Is included Linux Kernel since 2.6.30!
- IMA needs to manage hashes or signatures
 - You need to make hashes or signatures of good executable files
 - IMA is hard to be used for general purpose environment, but it is good for special purpose environment such as embedded systems

What can Shadow-Box v2 Do?

#BHASIA

- Shadow-box v2 (for ARM) protects Linux kernel from

- Unauthorized executable file attacks
 - IMA in kernel verifies signatures of executable files
- Static kernel object attacks
 - Static kernel object = immutable at runtime
 - Code modification and system table modification attacks
- Dynamic kernel object attacks (x86 only and future work!)
 - Dynamic kernel object = mutable at runtime
 - Process hiding and module hiding, function pointer modification attacks

Static Kernel Object Protection (1)

Secure World

Normal World

Static Kernel Object Protection (2)

- Page hash-based integrity monitor

- Is a simple and intuitive mechanism which is widely used!
 - But, the attacker can guess when the page is measured and do transient attack!
- Needs a mechanism to randomize the measurement timing

- So, Shadow-Box randomizes page order

- Shadow-watcher trust application shuffles pages after integrity measurement is completed

Workload-Concerned Kernel Monitoring

- Adaptive mechanism
 - Changes check period for measurement depending on system workload
 - Increases the period to keep performance as workload increases

Remote Attestation

Executable File Verification with IMA

Secure World

Normal World

Background

Design

Implementation

Demo. and Conclusion

(with Black Hat Sound Bytes)

Target Board: Raspberry Pi 3

- Raspberry Pi board

- Is the most famous embedded hardware
- Supports many kinds of OS such as Raspbian, Ubuntu, and Windows 10 core
- Raspberry Pi 3 model B specification
 - Quad Core 1.2GHz Broadcom BCM2837
 - 1GB RAM and HDMI
 - BCM43438 wireless LAN and bluetooth
 - 40-pin extended GPIO

Limitation of Raspberry Pi 3

#BHASIA

- Raspberry Pi is the best board for a prototype, but...

- CPU supports ARM TrustZone feature only
- DRAM and flash controller do not support it
- Raspberry Pi does not have secure boot feature
- The secure world is not really secure and just for a prototype!

- If you want a fully-featured board, choose another board!

 OP-TEE supports many kinds of embedded boards such as Juno board, HiKey board, ATSAMA5D2-XULT board, and i.MX7Dual SabreSD Board

How to Integrate Shadow-Box with Raspberry Pi

Raspbian OS Raspbian's Kernel OP-TEE's Kernel with IMA Patch OP-TEE's Secure Kernel Shadow-Box

Secure Pi is an OPEN SOURCE project!

We always welcome your **CONTRIBUTIONS**!

https://github.com/kkamagui/shadow-box-for-arm

Background

Design

Implementation

Demo. and Conclusion

(with Black Hat Sound Bytes)

Porting x86 Rootkits to ARM (1)

Rootkits need to patch kernel code and read-only data

- They usually hide themselves by patching kernel code or function pointers
- But, kernel has page protection mechanism
- In x86 case, they disable page write protection in the CR3 register!
- In ARM case, they also need to disable page protection, too!

/* Disable write-protection, bit 16 */
unsigned clear_return_cr0(void)

```
unsigned cr0 = 0;
unsigned ret;
asm volatile ("movl %%cr0, %%eax"
:"=a"(cr0)
);
ret = cr0;
cr0 &= 0xfffeffff;
asm volatile ("movl %%eax, %%cr0"
:
:
"a"(cr0)
);
return ret;
```


Porting x86 Rootkits to ARM (2)

- Do we really need to know about the page protection mechanism for patching kernel?
 - Paging mechanism is too much complicated
 - ARM processors have various paging mechanism
- Use live kernel patch functions instead!
 - Linux kernel has kernel patch functions for a live patch
 - x86: text_poke(void *addr, const void *opcode, size_t len)
 - ARM: patch_text(void *addr, unsigned int insn)
 - You do not worry about the paging mechanism anymore!

black hat ASIA 2018

Porting x86 Rootkits to ARM (2)

- Do we really need to know about the page mechanism for patching kernel?
 - Paging mechanism is too much complicated
 - ARM processors have various paging mechanism

- Use live kernel patch functions instead!

OH, THIS IS

- Linux kernel has kernel patch functions for a live patch
 - x86: text_poke(void *addr, const void *opcode, size_t len)
 - ARM: patch_text(void *addr, unsigned int insn)
- You do not worry about the paging mechanism anymore!

Conclusion and Black Hat Sound Bytes

#BHASIA

- Kernel-level (ring 0) threats should be protected in a more privileged level (ring -1)

- Rootkits can neutralize kernel-level (ring 0) protection
- We create a ring -1 level protection mechanism with ARM TrustZone

- Shadow-box v2 is practical and portable

- Shadow-box v2 protects the kernel from rootkits using IMA and OP-TEE
- We made a reference implementation with Raspberry Pi 3
- We named it "Secure Pi" and opened as an open source project

Questions?

CONTRIBUTION!

Project : https://github.com/kkamagui/shadow-box-for-arm Contact: hanseunghun@nsr.re.kr, @kkamagui1 parkparkqw@nsr.re.kr, @DavePark312