BREAKING THE ATTACK GRAPH:

HOW TO LEVERAGE GRAPH'S TO STRENGTHEN SECURITY IN A DOMAIN ENVIRONMENT

MARINA SIMAKOV

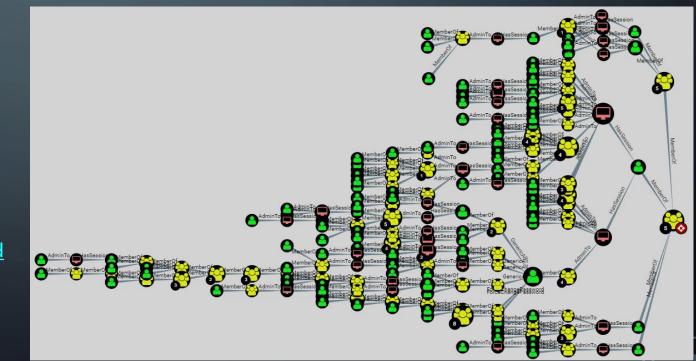
licrosoft

AGENDA

• How attack tools use graphs & their limitations

- BloodHound
- GoFetch

• How defenders can use graphs


- Prevention: reduce attack surface
- Detection: reconnaissance & lateral movement
- Investigation

BLOODHOUND

• Scans the network:

- Local Administrators
- Domain group memberships
- Active sessions
- ACLs
- Finds shortest paths to domain admins

https://github.com/BloodHoundAD/BloodHound @_wald0, @CptJesus, and @harmj0y

GOFETCH

• Automates the lateral movement process

• Input:

- A path generated by BloodHound
- Output:
 - Domain admin credentials
- The length of the path is not a factor

https://github.com/GoFetchAD/GoFetch @TalTheMaor

ATTACKERS VS. DEFENDERS

	ATTACKERS	DEFENDERS
Permissions (data gathering)	Limited (domain user)	Unlimited
Access to network resources	Limited (dependent on env & hardening)	Unlimited
Graph	Partial	Full
Result	Valuable insights & Complex attack paths	

HOW CAN DEFENDERS USE GRAPHS?

Prevention

Detection

- Detect vulnerable nodes:
 - Users
 - Computers
- Disconnect them from as many attack paths as possible

- Study logon patterns
- Detect anomalies:
 - Reconnaissance
 - Lateral movement

Investigation

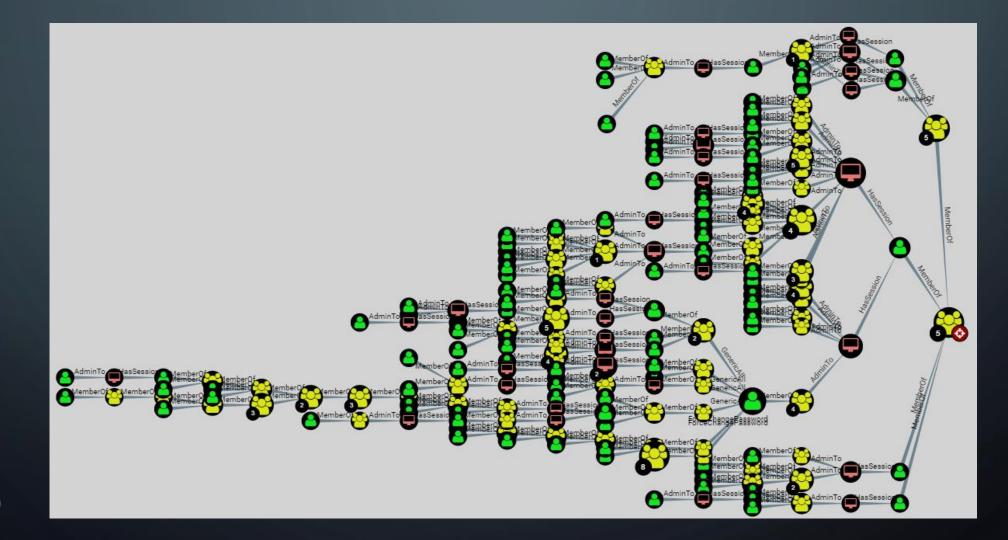
- Discover the attack path
- Find additional compromised machines \users

DATA SOURCES

- 1. Domain group memberships
- 2. Local group memberships on domain machines
- 3. Existing credentials on each machine (NTLM \setminus Kerberos)
 - Logon events (SIEM \setminus DC)
 - Network traffic to DC (successful AS & TGS requests)
 - No need to constantly query machines
 - Use a single data source

PREVENTION PETECTION °, INVESTIGATION

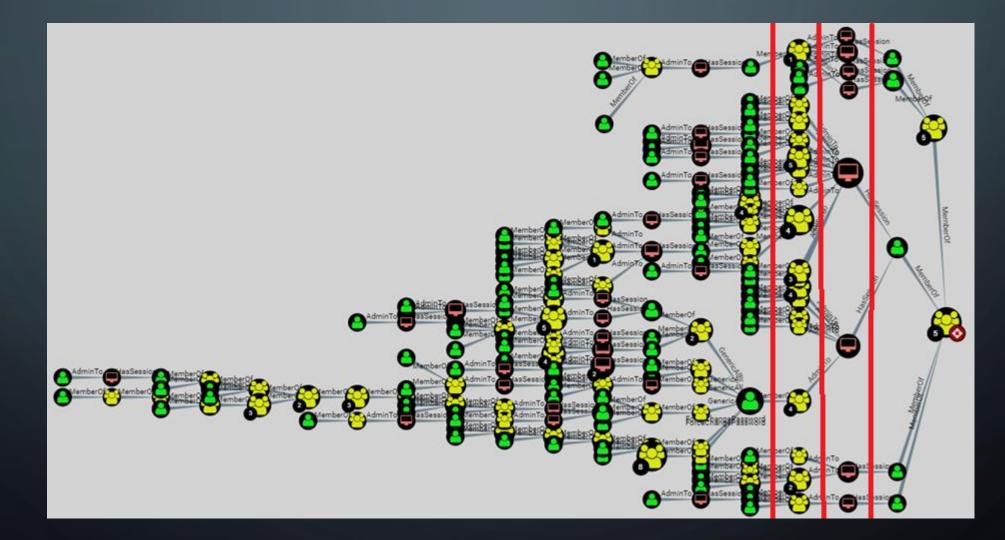
PREVENTION

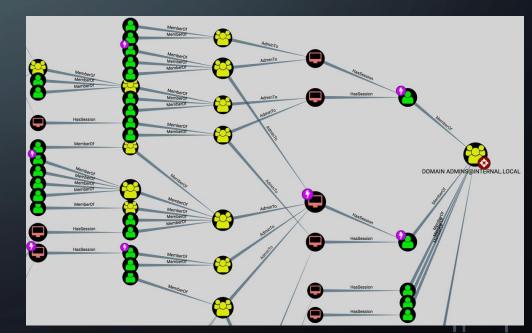

- Goal: reduce attack surface
- <u>How:</u>
 - Discover **vulnerable nodes** in the network
 - Disconnect them from as many attack paths as possible

• **Problem:** Computing all the paths is hard

- Running time
- Resources
- Constantly changing
- <u>Solution:</u>
 - Compute only the last layers
 - Disconnect one of the last edges in the paths

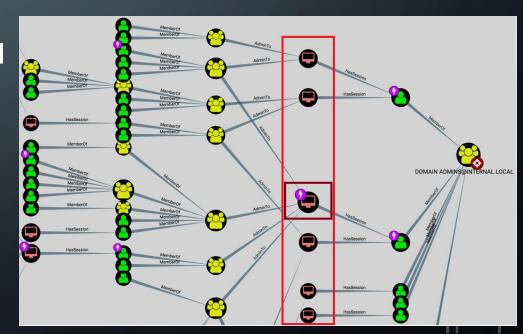
PREVENTION


О


0

PREVENTION

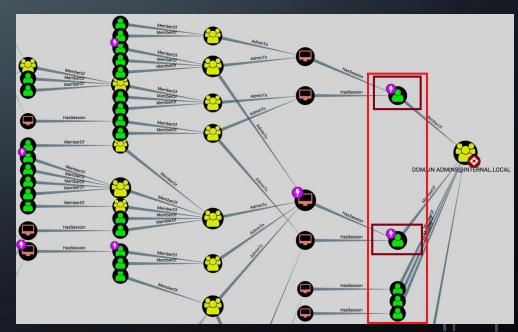
Ο


 Vulnerable node: a node which has a high probability of being compromised during an attack

 Vulnerable node: a node which has a high probability of being compromised during an attack

• Vulnerable Computer:

- Has a session of a high privileged account
- Has many low privileged accounts with local admin privileges


 Vulnerable node: a node which has a high probability of being compromised during an attack

• Vulnerable Computer:

- Has a session of a high privileged account
- Has many low privileged accounts with local admin privileges

• <u>Vulnerable User:</u>

- A high privileged account
- Has sessions on vulnerable computers

• The status of a node can change based on:

- User behavior
- Computer configuration

Track the status of nodes over time

- What percentage of the time is the node considered vulnerable?
- Constant issue or a one-time occurrence?
- Rank the nodes by vulnerability

Secure the most vulnerable nodes

- Deception traps (Tom Sela, @4x6hw https://www.youtube.com/watch?v=elf8NK1GR-M)
- Disconnect the vulnerable nodes from the attack graph

PREVENTION: DISCONNECTING NODES

	Configuration changes
How?	 Examine local admins and their logon patterns Remove redundant members
When?	 Machines with many high privileged sessions Inactive local admins

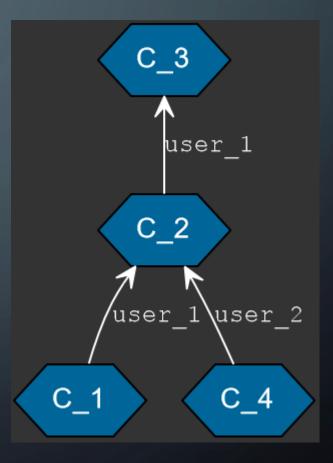
PREVENTION: DISCONNECTING NODES

	Configuration changes	Behavioral changes
How?	 Examine local admins and their logon patterns Remove redundant members 	 Network logon Logon to vulnerable machine using a less privileged account Remote Cred-Guard Log off
When?	 Machines with many high privileged sessions Inactive local admins 	• Ideally: always 😇

PREVENTION: DISCONNECTING NODES

	Configuration changes	Behavioral changes	Active monitoring*
How?	 Examine local admins and their logon patterns Remove redundant members 	 Network logon Logon to vulnerable machine using a less privileged account Remote Cred-Guard Log off 	 Disconnect inactive sessions of high privileged accounts
When?	 Machines with many high privileged sessions Inactive local admins 	• Ideally: always 😳	 A security solution with admin privileges on the machine

We can significantly reduce the attack surface. However, we cannot remove it entirely.

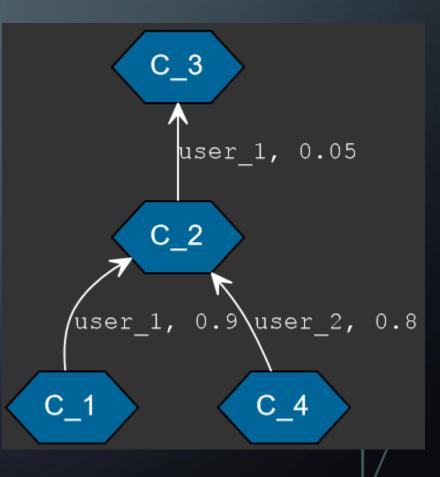

PREVENTIO PETECTION °, INVESTIGATION

DETECTION: LOGON GRAPH

• Logon Graph G = (V, E):

• $V = \{v_1, v_2, \dots, v_n\}$: Domain computers • $E = \{e_1, e_2, \dots, e_m\}$: Sessions

Each edge has a label
l(e_i = (v_k, v_l)) = u_j | u_j is the domain user which connected from v_k to v_l



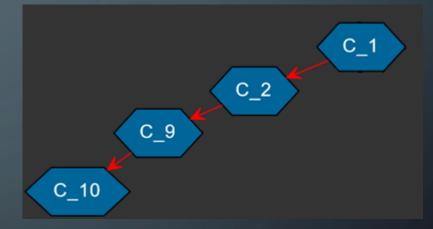
DETECTION: WEIGHTED LOGON GRAPH

• Weighted Logon Graph G = (V, E, w):

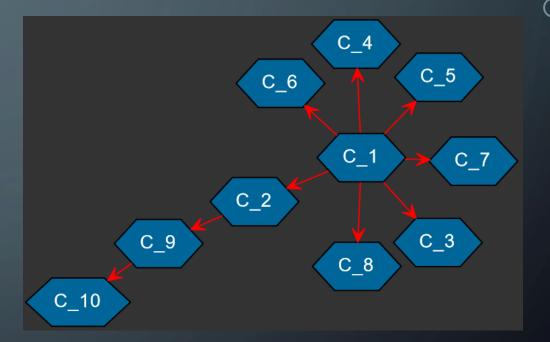
• $V = \{v_1, v_2, \dots, v_n\}$: Domain computers • $E = \{e_1, e_2, \dots, e_m\}$: Sessions


Each edge has a label & a weight
l(e_i = (v_k, v_l)) = u_j | u_j is the domain user which connected from v_k to v_l
w(e_i = (v_k, v_l)) = P(user u_j connecting from v_k to v_l)

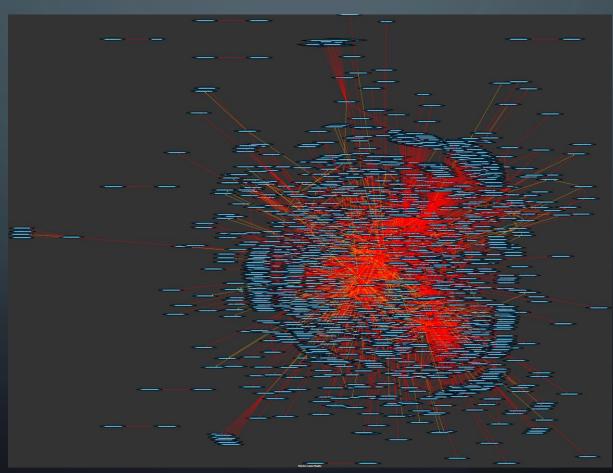
- Weighted Logon Graph: constructed based on logon activities during a learning period
 - An edge $e = (v_k, v_l)$ is assigned a weight based on the logon activities of the corresponding user on v_k, v_l
- 2. Daily Logon Graph: constructed based on logon activities during the day and the Weighted Logon Graph
 - Construct a logon graph based on the daily logon activities
 - Delete edges which are assigned a high weight in the Weighted Graph
- 3. Detect anomalies on the Daily Logon Graph


Detecting anomalies:

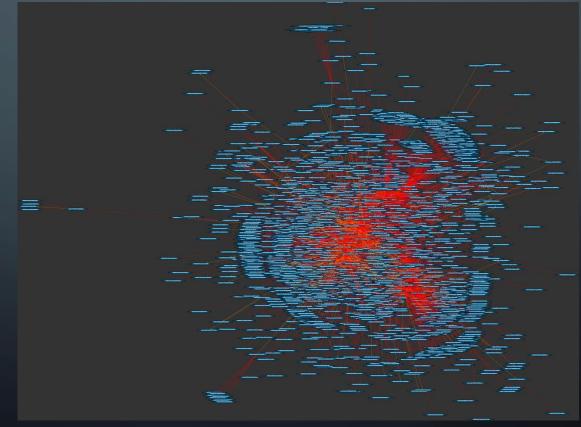
- Star structures
 - Reconnaissance activities
 - Main attack machine
- Chains
 - Lateral movement
- Combination

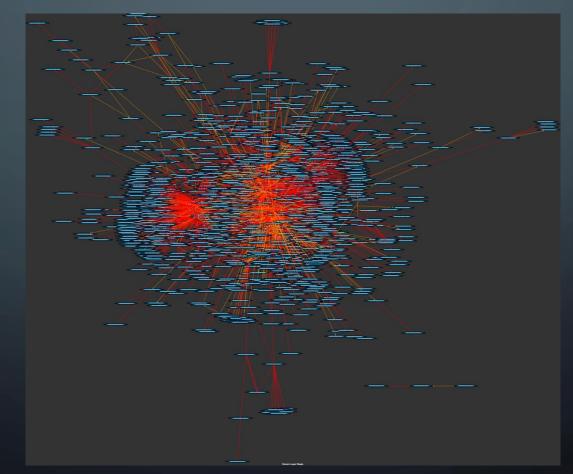

Detecting anomalies:

- Star structures
 - Reconnaissance activities
 - Main attack machine
- Chains
 - Lateral movement
- Combination

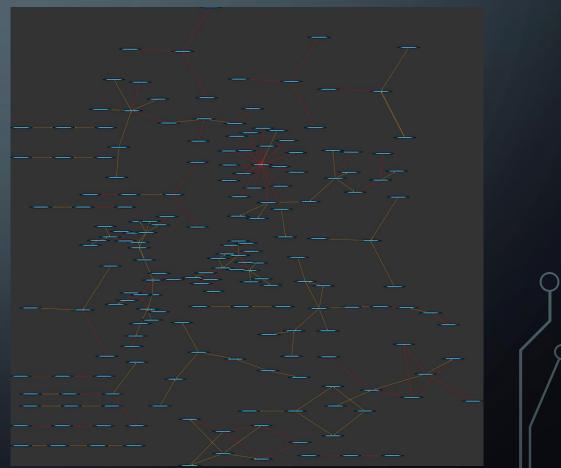


Detecting anomalies:

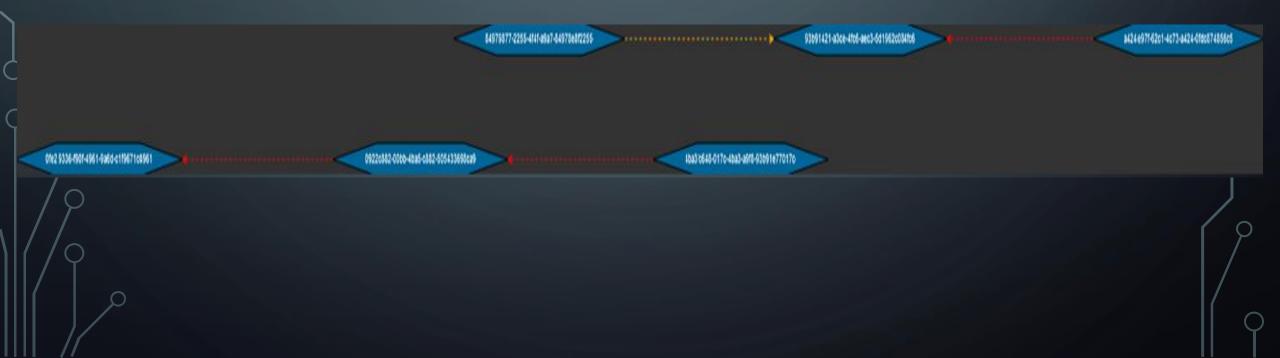

- Star structures
 Reconnaissance activities
 - Main attack machine
- Chains
 - Lateral movement
- Combination


• **Try 1:** Consider all suspicious edges

 Try 2: Remove connected components consisting of 2 nodes (2 nodes connected by an edge without additional connections)



• **Try 3:** Separate "stars" structures from "chains"



• <u>Try 4:</u> Add some more interesting features...

- New users & machines
- Computer & resource popularity
- Peers behavior

Try 5: Consider connections where the user is a local admin on the target machine
Result: Not too bad ^(C)

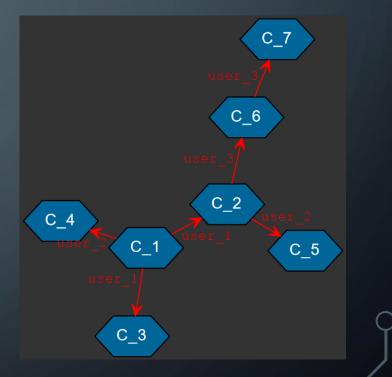
DETECTION: PROS & CONS

PROS	CONS
In order to fully avoid detection, attackers need to be aware of the entities' behavior	If the attack corresponds to an entity's usual behavior, it would be harder to detect
Detect paths involving multiple users	Weight threshold: Too high: False Positives Too low: might miss real attacks
Detect outsider & insider threats	Hard to detect "scattered attacks"
Can be incorporated with endpoint data to strengthen certainty & eliminate FPs	

PREVENTION PETECTION o Anvestigation

INVESTIGATION

1. Input:


- Known compromised machines
- Known compromised users

2. Analysis:

 Construct connection graphs for known compromised entities

3. Output:

- Information about the attack path
- Additional accounts which may have been compromised

CONCLUSIONS

- Attackers have access to limited data sources
- However, are still able to leverage graphs to gain insights into the environment & compromise high privileged accounts
- Defenders have access to unlimited data sources
- This data can be used to create very informative graphs to aid in:
 - Prevention
 - Detection
 - Investigation

• Graphs are awesome

THANK YOU 🙄

O