
Dissecting QNX
Jos Wetzels1,2,3, Ali Abbasi3,4

1Midnight Blue
2Eindhoven University of Technology (TU/e)
3University of Twente (UT)
4Ruhr-University Bochum (RUB)

T his work concerns a dissection of QNX: a pro-
prietary, real-time operating system aimed
at the embedded market. QNX is used in

many sensitive and critical devices in different in-
dustry verticals and while some prior security re-
search has discussed QNX, mainly as a byproduct
of BlackBerry mobile research, there is no prior
work on QNX exploit mitigations and secure ran-
dom number generators. In this work, carried out
as part of the master’s thesis of the first author, we
present the first reverse-engineering and analysis
of the exploit mitigations, secure random number
generators and memory management internals of
QNX versions up to and including QNX 6.6 and the
brand new 64-bit QNX 7.0 released in March 2017.
We uncover a variety of design issues and vulnera-
bilities which have significant implications for the
exploitability of memory corruption vulnerabilities
on QNX as well as the strength of its cryptographic
ecosystem.

1 Introduction

QNX [17] is a proprietary, closed-source, Unix-like
real-time operating system with POSIX support aimed
primarily at the embedded market. Initially released
in 1982 for the Intel 8088 and later acquired by
BlackBerry, it forms the basis of BlackBerry OS,
BlackBerry Tablet OS and BlackBerry 10 used in
mobile devices as well as forming the basis of Cisco’s
IOS-XR used in carrier-grade routers such as the
CRS, the 12000 and the ASR9000 series. QNX also
dominates the automotive market [61] (particularly
telematics, infotainment and navigation systems) and
is found in millions of cars from Audi, Toyota, BMW,
Porsche, Honda and Ford to Jaguar and Lincoln. In

addition, it is deployed in highly sensitive embedded
systems such as industrial automation PLCs, medical
devices, building management systems, railway
safety equipment, Unmanned Aerial Vehicles (UAVs),
anti-tank weapons guidance systems, the Harris
Falcon III military radios, Caterpillar mining control
systems, General Electric turbine control systems and
Westinghouse and AECL nuclear powerplants.

The interest of high-profile actors in QNX-based
systems is evidenced by a series of documents from
the United States Central Intelligence Agency (CIA)
obtained and released by WikiLeaks under the name
’Vault 7’. These documents show an interest on part
of the CIA’s Embedded Development Branch (EDB) of
the Engineering Development Group (EDG) (which
develops and tests exploits and malware used in covert
operations) in targeting QNX [65].

In this work, we focus primarily on QNX’s ’binary
security’ ie. its hardening against memory corruption
exploitation, as well as the quality of its secure random
number generators.
More precisely, this work makes the following novel
contributions:

• It presents the first reverse-engineering of the
proprietary, closed-source QNX OS to document
the internals of its memory manager, exploit
mitigations (eg. NXmemory, ASLR, stack canaries,
RELRO) and secure random number generators
(both the kernel PRNG and /dev/random),
covering all QNX versions as of writing (ie. ≤ 6.6
and the newly released QNX 7.0).

• It presents the first analysis of the exploit

Dissecting QNX

mitigations and secure RNGs on QNX ≤ 6.6 and
7.0 and uncovers a variety of design issues and
vulnerabilities which have significant implications
for the exploitability of memory corruption
vulnerabilities on QNX as well as the strength of
its cryptographic ecosystem.

• As a result of this work, we disclosed the un-
covered issues to the vendor and cooperated in
drafting patches to help protect system end-users.

Given that there is, as discussed in Section 2.1,
no prior work on QNX’s mitigations, secure ran-
dom number generators or memory management
internals, we consider this work a significant con-
tribution to the state of the art in understanding
QNX security as well as QNX OS internals more broadly.

In Section 2 we present an brief overview of QNX’s
OS architecture, its security architecture and its mem-
ory management internals. We discuss the result of our
reverse-engineering and analysis of the exploit mitiga-
tions of QNX versions up to and including 6.6 in Section
3 and those of QNX version 7.0 in Section 4. In Section
5 we present the results of our reverse-engineering and
analysis of the secure random number generators of
QNX versions ≤ 6.6 and 7.0. Finally, in Section 6 we
present our concluding remarks.

2 QNX Overview

2.1 Security History

Most of the relatively scarce public research available
on QNX security has been the byproduct of research
into BlackBerry’s QNX-based mobile operating systems
such as Tablet OS, BlackBerry OS and BlackBerry
10 [3, 13–15, 66] most of which has not focussed on
QNX itself. Recent work by Plaskett et al. [1, 42] has
focussed onQNX itself, particularly security of the Inter-
Process Communication (IPC), message passing and
Persistent Publish Subscribe (PPS) interfaces as well
as kernel security through system call fuzzing. When
it comes to specific vulnerabilities the work done by
Julio Cesar Fort [27] and Tim Brown [19] stands out in
particular and the MITRE CVE database [25] reports,
as of writing, 34 vulnerabilities most of which are setuid
logic bugs or memory corruption vulnerabilities.

2.2 OS Architecture

QNX supports a wide range of CPU architectures
and features a pre-emptible microkernel architec-
ture with multi-core support ensuring virtually any
component (even core OS components and drivers)
can fail without bringing down the kernel. QNX
itself has a small footprint but support is available

for hundreds of POSIX utilities, common networking
technologies (IPv4/IPv6, IPSec, FTP, HTTP, SSH,
etc.) and dynamic libraries. As opposed to the
monolithic kernel architecture of most general-purpose
OSes, QNX features a microkernel which provides
minimal services (eg. system call and interrupt
handling, task scheduling, IPC message-passing, etc.)
to the rest of the operating system which runs as
a team of cooperating processes as illustrated in
Figure 1. As a result, only the microkernel resides
in kernelspace with the rest of the operating system
and other typical kernel-level functionality (drivers,
protocol stacks, etc.) residing in userspace next to
regular user applications albeit separated by privilege
boundaries. In QNX the microkernel is combined with
the process manager in a single executable module
called procnto. QNX libc converts POSIX function
calls into message handling functions which pass
messages through the microkernel to the relevant pro-
cess. As of writing, the latest QNX release is version 7.0.

QN X N eutrino
M icrokernel

Process
M anager

Software Bus

PS File
M anager HFS File

M anager

UDF File
M anager

N FS File
M anager Flash File

M anager

GU I
M anager

Application

Character
M anager M queue

M anager
CIFS File
M anager

N etwork
M anager

Application

Figure 1: QNX Microkernel Architecture [60]

Most elements of the QNX system architecture (such
as the messaging layer, process & resource manage-
ment, filesystem and networking functionality, etc.)
are well described in prior work [42] and since this
work focuses on memory corruption we will only dis-
cuss QNX memory management and the security ar-
chitecture in ’broad strokes’.

2.3 Security Architecture

As a Unix-like operating system QNX inherits a large
part of the Unix security model, primarily in the
form of user groups and associated permission-based
access controls. QNX is certified to Common Criteria
ISO/IEC 15408 Evaluation Assurance Level (EAL) 4+.
The certification report [21] indicates that the Target
of Evaluation (TOE) boundary encompasses only the
procnto system process (ie. the microkernel and
process manager) and libc.

QNX features a strong separation between kernel-
and userspace running everything except for the
microkernel and process manager in kernelspace
by assigning it to the procnto process which runs
as root with PID 1. Other OS components run as

Page 2 of 22

Dissecting QNX

their own root processes in userspace next to non-OS
processes. Separation between OS processes and
non-OS processes comes down to a combination
of enforcement of user permissions and additional
sandboxing capabilities [54]. If a non-OS process
is run as root, the only way to wall it off from the
wider OS is by restricting its capabilities. On the other
hand, capabilities can be assigned on a granular level
allowing or disallowing access to system actions and
resources meaning for many processes there is no need
to run as root to perform their functionality. Security
separation between userspace and kernelspace is
also mediated in this fashion which does mean,
however, that there is no ’absolute isolation’ of the
microkernel and a root user without significant
capability restrictions (as is the default for most OS
processes) can easily pivot into the microkernel by
means of common kernel calls, access to sensitive
devices (eg. /dev/mem) or installation of Interrupt
Service Routines (ISRs).

As such one should not confuse the safety guarantee
that the crashing of one component does not lead to
a crash of the entire system with a security guarantee
that the compromise of one component could not lead
to the compromise of the entire system. If no explicit
capability restrictions are put in place by system inte-
grators, nothing prevents a compromise of a process
with the right privileges or capabilities from leading to
arbitrary kernelspace code execution.

2.4 Memory Management

QNX offers a full-protection memory model placing
each process within its own private virtual memory by
utilizing the MMU as shown in Figure 2. On QNX every
process is created with at least one main thread (with
its own, OS-supplied stack) and any subsequently
created thread can either be given a customly allocated
stack by the program or a (default) system-allocated
stack for that thread. QNX’s virtual memory provides
permission capabilities and the memory manager
ensures inter-process memory access is mediated
by privilege as well as capability checks [54]. QNX
handles typical memory objects such as stacks, the
heap, object memory (eg. video card memory mapped
into userspace), shared libraries, etc. and has support
for shared- and typed memory [57, 59]. The relevant
memory manager internals are described in detail in
Section 3.2.

For QNX versions up to and including 7.0, we illus-
trate QNX user- and kernel-space address boundaries,
derived from reverse-engineering, in Tables 1 and 2.
On QNX systems where ASLR is not enabled, libc
is loaded by default at the addresses illustrated in
Table 3. For QNX versions up to and including 6.6
on x86, the default user- and kernel-space layouts
when ASLR is disabled are illustrated in Figures 3 and 4

User Process 1 User Process 2 User Process 3 System Process

procnto

0 3.5G 0 3.5G 0 3.5G 4G3.5G

Figure 2: QNX Private Virtual Memory [53]

Architecture Start End
Userspace
x86 0x00000000 0xBFFFFFFF

AArch32 0x00000000 0x7FFFFFFF

MIPS 0x00000000 0x7FFFFFFF

PPC 0x40000000 0xFFFB0000

SuperH 0x00000000 0x7BFF0000

Kernelspace
x86 0xC0000000 0xFFFFFFFF

AArch32 0x80000000 0xFFFFFFFF

MIPS 0x80000000 0xFFFFFFFF

PPC 0x00000000 0x3FFFFFFF

SuperH 0x80000000 0xCFFFFFFF

Table 1: QNX ≤ 6.6 Address Boundaries

Architecture Start End
Userspace
x86 0x00000000 0xBFFFFFFF

x86-64 0x00000000 0x0000007FFFFFFFFF

AArch32 0x00000000 0x7FFFFFFF

AArch64 0x00000000 0x0000007FFFFFFFFF

Kernelspace
x86 0xC0000000 0xFFFFFFFF

x86-64 0x0000008000000000 0xFFFFFFFFFFFFFFFF

AArch32 0x80000000 0xFFFFFFFF

AArch64 0x0000008000000000 0xFFFFFFFFFFFFFFFF

Table 2: QNX 7.0 Address Boundaries

Architecture Libc Addr.
QNX ≤ 6.6
x86 0xB0300000

AArch32 0x01000000

MIPS 0x70300000

PPC 0xFE300000

SuperH 0x70300000

QNX 7.0
x86 0xB0300000

x86-64 0x0000000100000000

AArch32 0x01000000

AArch64 0x0000000100000000

Table 3: QNX Default Libc Load Addresses

Page 3 of 22

Dissecting QNX

heap

shared objects

shared libraries

.bss
.data
.text

program image

thread stack 1

thread stack n

system

0xBFFFFFFF

0xB0300000

0x40100000

0x08048000

0x00000000

(...)

(...)

(...)

(...)

(...)

(...)

Figure 3: QNX ≤ 6.6 Userspace Memory Layout (x86)

message pass
temp. map

0xFFFFFFFF

0xD0000000

0xC0000000

(...)

temp. map to
zero L2

pagetables

normal kernel
mapping

first 256M of
phys. mem

normal kernel
mapping OR
4m pagetable

for kernel code
& data

Startup
allocations

syspage, GDT,
FPU stub, etc.

L1 pagetable
map to self

0xD0400000

0xE0000000

0xF0000000

0xFEC00000

0xFF400000

0xFFC00000

Figure 4: QNX ≤ 6.6 Kernelspace Memory Layout (x86)

3 QNX ≤ 6.6 Exploit Mitigations

In this section we will present the results of our
reverse-engineering and subsequent analysis of
QNX’s exploit mitigations and secure random number

generator as they are implemented in QNX versions up
to and including 6.6. QNX supports a variety of exploit
mitigations as outlined in Table 4 and the compiler-
and linker parts of these mitigations rely on the fact
that the QNX Compile Command (QCC) uses GCC as its
back-end [16]. On the operating system side of things,
however, the mitigation implementations are heavily
customized as we will see in this section.

We can also see from Table 4 that while basic mitiga-
tions (ESP, ASLR, SSP, RELRO) are supported, this is
not the case for more modern ones (eg. CFI, Kernel
Data & Code Isolation, etc.) which are becoming
the norm in general purpose operating systems such as
Windows or Linux. While some of these mitigations
(eg. CFI, CPI, Vtable Protection) are mostly imple-
mented in the compiler and several libraries, it is cur-
rently not clear to what degree they are (in)compatible
with QNX’s design.

Mitigation Support Since Default
ESP X 6.3.2 ×
ASLR X 6.5 ×
SSP X 6.5 ×1

RELRO X 6.5 ×1

NULL-deref Protection × n/a n/a
Vtable Protection × n/a n/a
CFI × n/a n/a
CPI × n/a n/a
Kernel Data Isolation2 × n/a n/a
Kernel Code Isolation3 × n/a n/a

Table 4: QNX ≤ 6.6 Exploit Mitigation Overview
1 Default QNX Momentics IDE Settings, 2 eg. UDEREF / SMAP

/ PAN, 3 eg. KERNEXEC / SMEP / PXN

We disclosed all discovered issues to the vendor and
as a result fixes and improvements based on our sug-
gestions were included in QNX 7.0 as documented in
Section ??.

3.1 Executable Space Protection

Executable Space Protection (ESP), also referred
to as Data Execution Prevention (DEP), NXmemory
or WˆX memory, is a mitigation that seeks to prevent
attackers from executing arbitrary injected payloads
through a Harvard-style code and data memory
separation on Von Neumann processors by rendering
data memory non-executable and ensuring code
memory is non-writable. ESP can be implemented by
either relying on hardware support (eg. the x86 NX
bit or ARM XN bit) or by means of software emulation.
QNX has support for hardware-facilitated ESP among
most of the architectures which support it since version
6.3.2 as shown in Table 5.

Insecure ESP Default Policy (CVE-2017-XXXX):
While QNX supports ESP for several architectures, its

Page 4 of 22

Dissecting QNX

Architecture Support
x86 X(requires PAE on IA-32e)
ARM X
MIPS ×
PPC 400 X
PPC 600 X
PPC 900 X

Table 5: QNX ≤ 6.6 Hardware ESP Support

implementation is dangerously weakened due to inse-
cure default settings. As a result, the stack (but not the
heap) is always executable regardless of the presence
of hardware ESP support. As the documentation [55]
states, the QNX microkernel, and process manager exe-
cutable (procnto) has a memory management startup
option relating to stack executability (available as of
QNX 6.4.0 or later):

• -mx: (Default) Enable the PROT_EXEC flag for
system-allocated threads (the default). This
option allows gcc to generate code on the stack -
which it does when taking the address of a nested
function (a GCC extension).

• -m˜x: Turn off PROT_EXEC for system-allocated
stacks, which increases security but disallows tak-
ing the address of nested functions. You can
still do this on a case-by-case basis by doing an
mprotect() call that turns on PROT_EXEC for the
required stacks.

Since the first option is the default, any QNX system
which starts procnto without explicit -m˜x settings
will have an executable stack, regardless of hardware
ESP support or individual binary GNU_STACK [35] set-
tings. The rationale behind this decision seems to have
been a desire for backwards compatibility with binaries
which require executable stacks which has caused sim-
ilar issues on Linux in the past [33]. This backwards
compatibility is enforced on a system-wide (rather than
on an opt-out, per-binary basis) as confirmed by the
fact that the QNX program loader does not parse the
GNU_STACK header of binaries. The problem with the
QNX approach here is that this setting is applied on a
system-wide basis and has an insecure default, putting
the secure configuration burden on system integrators.

3.2 Address Space Layout Randomiza-
tion

When developing exploits, attackers rely on knowledge
of the target application’s memory map for directing
write and read operations as well as crafting code-reuse
payloads. Address Space Layout Randomization
(ASLR) [31] is a technique which seeks to break
this assumption by ensuring memory layout secrecy
via randomization of addresses belonging to various

memory objects (eg. code, stack, heap, etc.) and
rendering them hard to guess.

QNX has ASLR support since version 6.5 (not
supported for QNX Neutrino RTOS Safe Kernel 1.0)
but it’s disabled by default. QNX ASLR can be enabled
on a system-wide basis by starting the procnto
microkernel with the -mr option [55] and disabled
with the -m∼r option. A QNX child process normally
inherits its parent’s ASLR setting but as of QNX 6.6
ASLR can also be enabled or disabled on a per-process
basis by using the on utility [51] (with the -ae and -ad
options respectively). Alternatively, one can use the
SPAWN_ASLR_INVERT or POSIX_SPAWN_ASLR_INVERT

flags with the spawn and posix_spawn process
spawning calls. To determine whether or not a process
is using ASLR, one can use the DCMD_PROC_INFO [49]
command with the devctl [50] device control call
and test for the _NTO_PF_ASLR bit in the flags member
of the procfs_info structure.

As shown in Table 6, QNX ASLR randomizes the base
addresses of userspace and kernelspace stack, heap
and mmap’ed addresses as well as those of userspace
shared objects (eg. loaded libraries) and the executable
image (if the binary is compiled with PIE [16]). It does
not, however, have so-called KASLR support in order
to randomize the kernel image base address. The QNX
Momentics Tool Suite development environment (as
of version 5.0.1, SDP 6.6) does not have PIE enabled
by default and indeed after an evaluation with a
customized version of the checksec [34] utility we
found that none of the system binaries (eg. those in
/bin, /boot, /sbin directories) are PIE binaries in a
default installation.

Memory Object Randomized
Userspace
Stack X
Heap X
Executable Image X
Shared Objects X
mmap X
Kernelspace
Stack X
Heap X
Kernel Image ×
mmap X

Table 6: QNX≤ 6.6 ASLR Memory Object Randomization Sup-
port

We reverse-engineered QNX’s ASLR implementation
(as illustrated in Figure 5) and found that it is
ultimately implemented in two function residing in
the microkernel: stack_randomize and map_find_va

(called as part of mmap calls). QNX uses the Executable
and Linking Format (ELF) binary format and pro-

Page 5 of 22

Dissecting QNX

cesses are loaded from a filesystem using the exec*,
posix_spawn or spawn calls which invoke the program
loader implemented in the microkernel. If the ELF
binary in question is compiled with PIE-support, the
program loader will randomize the program image
base address as part of an mmap call. When a loaded
program was linked against a shared object, or a
shared object is requested for loading dynamically,
the runtime linker (contained in libc) will load it
into memory using a series of mmap calls. A stack is
allocated automatically for the main thread (which
involves an allocation of stack space using mmap)
and has its base address (further) randomized by a
call to stack_randomize. Whenever a new thread
is spawned, a dedicated stack is either allocated
(and managed) by the program itself or (by default)
allocated and managed by the system in a similar
fashion. Userspace and kernelspace heap memory
allocation, done using functions such as malloc,
realloc and free, ultimately relies on mmap as well.
In kernelspace, a dedicated stack is allocated for each
processor using a call to _scalloc and thus relies on
mmap. As such, all ASLR randomization can be reduced
to analysis of stack_randomize and map_find_va:

Userspace ASLR

Kernelspace
ASLR

main stack

thread stack(s)

program image
base

shared object
image base

heap

kernel stack(s)kernel heap

loader_load

thread_specret

ThreadTLS

_heap_alloc

dlopen

load_object

init_objects

stack_randomize

memmgr.mmap

vmm_map

map_find_va

loader_load

elf_load

ClockCycles

Figure 5: QNX ≤ 6.6 ASLR Memory Object Graph

map_find_va: As shown in Listings 1, 2 and
3, the QNX memory manager’s vmm_mmap handler
function invokes map_create and passes a dedicated
mapping flag (identified only as MAP_SPARE1 in older
QNX documentation) if the ASLR process flag is
set. map_create then invokes map_find_va with
these same flags, which randomizes the found virtual
address with a randomization value obtained from the
lower 32 bits of the result of the ClockCycles [46]
kernel call. This 32-bit randomization value is then
bitwise left-shifted by 12 bits and bitwise and-masked
with 24 bits resulting in a value with a mask form of
0x00FFF000, ie. a randomization value with at most
12 bits of entropy.

Listing 1: QNX 6.6 vmm_mmap Routine

in t vmm_mmap(PROCESS *prp , u i n t p t r _ t
vaddr_requested , s i z e _ t s i ze_reques ted ,

in t prot , in t f l ag s , OBJECT *obp ,
u in t64_t bof f , unsigned
a l i gnva l ,

unsigned preload , in t fd , void **
vaddrp , s i z e _ t * s izep ,
pa r t _ i d _ t mpart_id)

{
. . .

c r e a t e _ f l a g s = f l a g s ;

. . .

i f (prp−>f l a g s & _NTO_PF_ASLR)
c r e a t e _ f l a g s |= MAP_SPARE1;

r = map_create (. . . , c r e a t e _ f l a g s) ;
}

Listing 2: QNX 6.6 map_create Routine

in t map_create (s t ruc t map_set *ms , s t ruc t
map_set * repl , s t ruc t mm_map_head *mh,

u i n t p t r _ t va , u i n t p t r _ t s i ze ,
u i n t p t r _ t mask , unsigned f l a g s)

{
. . .

i f (f l a g s & (MAP_FIXED|IMAP_GLOBAL)) {
. . .

} else {
repl−>f i r s t = NULL;

va = map_find_va (mh, va , s i ze ,
mask , f l a g s) ;

i f (va == VA_INVALID) {
r = ENOMEM;
goto f a i l 1 ;

}
}

. . .
}

Listing 3: QNX 6.6 map_find_va Routine

u i n t p t r _ t map_find_va (s t ruc t mm_map_head *
mh, u i n t p t r _ t va , u i n t p t r _ t s i ze ,

u i n t p t r _ t mask , unsigned f l a g s)
{

s z_va l = s i z e − 1;

. . .

i f (f l a g s & MAP_SPARE1)
{

u int64_t c l k _ va l = ClockCyc les () ;

Page 6 of 22

Dissecting QNX

unsigned in t rnd_val = ((_DWORD)
c l k _ va l << 12) & 0xFFFFFF ;

i f (f l a g s & MAP_BELOW)
{

s t a r t _ d i s t a n c e = s t a r t −
b e s t _ s t a r t ;

i f (s t a r t != b e s t _ s t a r t)
{

i f (rnd_val >
s t a r t _ d i s t a n c e)
rnd_val %=

s t a r t _ d i s t a n c e ;
s t a r t −= rnd_val ;

}
}
else
{

end_dis tance = best_end −
s z_va l − s t a r t ;

i f (best_end − s z_va l !=
s t a r t)

{
i f (rnd_val >

end_dis tance)
rnd_val %=

end_dis tance ;
s t a r t += rnd_val ;

}
}

}

stack_randomize: Userspace processes have a main
stack and a dedicated stack for each subsequently
spawned thread. The main stack is allocated by the
program loader using an mmap call and subsequently
has its start address randomized by stack_randomize
called as part of a ThreadTLS call. Dedicated thread
stacks are spawned by the thread_specret routine
which allocates them with an mmap call (invoked as part
of a call to procmgr_stack_alloc) and subsequently
randomizes their start address with stack_randomize.
This function, as shown in reverse-engineered form
in Listing 4, checks whether a process has the ASLR
flag set and if so it generates a sizemask (between
0x000 and 0x7FF). A randomization value is drawn
from the lower 32 bits of the result of a ClockCycles
kernel call which are then bitwise left-shifted by 4
bits and have the sizemask applied to them. The
resulting value is subtracted from the original stack
pointer value and bitwise and-masked with 28 bits.
This results of a randomization value with a mask
form of 0x000007F0, ie. an upper limit of 7 bits of
entropy for the maximum value of size_mask = 0x7FF.

Listing 4: QNX 6.6 stack_randomize Routine

u i n t p t r _ t stack_randomize (const THREAD *
const thp , u i n t p t r _ t new_sp)

{
u i n t p t r _ t rnd_sp ;
s i z e _ t s t a c k _ s i z e ;

unsigned in t size_mask ;

rnd_sp = new_sp ;

i f (thp−>process−>f l a g s &
_NTO_PF_ASLR)

{
s t a c k _ s i z e = thp−>un . l c l . s t a c k s i z e

>> 4;
i f (s t a c k _ s i z e)
{

size_mask = 0x7FF ;
i f (s t a c k _ s i z e <= 0x7FE)

do { size_mask >>= 1; }
while (size_mask >
s t a c k _ s i z e) ;

rnd_sp = (new_sp − ((
ClockCyc les () << 4) &
size_mask)) & 0xFFFFFFF0 ;

}
}
return rnd_sp ;

}

Weak ASLR Randomization (CVE-2017-3892):
As observed above, the randomization underlying
mmap has a theoretical upper limit of 12 bits of
entropy and the additional randomization applied to
userspace stacks introduces at most 7 bits of entropy,
combining into at most 19 bits of entropy with a
mask of form 0x00FFF7F0. Addresses with such
low amounts of entropy can be easily bruteforced
(especially locally) and while ASLR on 32-bit systems
is generally considered inherently limited [7] one
should remember that these are upper bounds, ie. they
express the maximum possible introduced entropy.
Given that these upper bounds already compare
rather unfavorably against the measurements of
actual ASLR entropy in eg. Linux 4.5.0, PaX 3.14.21
and ASLR-NG 4.5.0 as per [7], this does not bode well.

All QNX ASLR randomization draws upon Clock-
Cycles as the sole source of entropy. The QNX
ClockCycles [46] kernel call returns the current
value of a free-running 64-bit cycle counter using a
different implementation per architecture as outlined
in Table 7. Even though QNX’s usage of ClockCycles
seems to provide 32 bits of ’randomness’, it is an
ill-advised source of entropy due to its inherent
regularity, non-secrecy, and predictability.

Architecture Implementation
x86 RDTSC
ARM Emulation
MIPS Count Register
PPC Time Base Facility
SuperH Timer Unit (TMU)

Table 7: QNX ClockCycles Implementations

Page 7 of 22

Dissecting QNX

In order to demonstrate this, we evaluated the
entropic quality of QNX ASLR randomized addresses
of several userspace memory objects. We did this with
a script starting 3000 ASLR-enabled PIE processes per
boot session and running 10 boot sessions, collecting
30000 samples per memory object in total. We used
the NIST SP800-90B [41] Entropy Source Testing (EST)
tool [38] in order to evaluate the entropic quality
of the address samples by means of a min entropy
estimate, illustrated in Table 8. Min entropy is a
conservative way of measuring the (un)predictability
of a random variable X and expresses the number of
(nearly) uniform bits contained in X , with 256 bits of
uniformly random data corresponding to 256 bits of
min entropy.

Memory Object Min Entropy (8 bits per symbol)
Stack 1.59986
Heap 1.00914
Executable Image 0.956793
Shared Objects 0.905646

Table 8: QNX 6.6 ASLR Userspace Memory Object Min Entropy

From Table 8 we can see that, on average, a QNX
randomized userspace memory object has a min
entropy of 1.11785975. This means that it has a little
more than 1 bit of min entropy per 8 bits of data. If we
extrapolate this to the full 32 bits of a given address
this means that the stack, heap, executable image
and shared object base addresses have min entropy
values of 6.39944, 4.03656, 3.827172 and 3.622584
respectively, with an average of 4.471439 bits of min
entropy. This compares very unfavorably with the
entropy measurements for various Linux-oriented
ASLR mechanisms in [7].

On QNX, as is the case with many operating systems,
child processes inherit the memory layout of parent
processes. As a result when attacking forked or
pre-forked applications an attacker can guess an ASLR
address, after which the target child crashes and is
restarted with an identical memory layout allowing
the attacker to make another guess and so on. This
facilitates both brute-force attacks and malicious child
processes attacking siblings in Android Zygote-style
models [23]. Given this memory layout inheritance,
the fact that QNX ASLR provides only limited entropy
and has no active relocation (ie. memory object
locations are never re-randomized), QNX ASLR is
highly susceptible to brute-force attacks.

Finally it should be noted that ClockCycles is not
a secure random number generator and by drawing di-
rectly from its output the clock cycle counter value acts
analogous to a random number generator’s internal
state. Contrary to a secure random number genera-
tor’s internal state, however, the clock cycle counter

value is not considered secret and in fact it leaks ev-
erywhere (both to local users as well as via network
services). As a result, an attacker in posession of the
current clock cycle counter value could reconstruct the
clock cycle counter value (in a fashion analogous to the
work in [36]) at the time of memory object random-
ization. Given the current clock cycle counter value
and an estimate on memory object initialization times,
an attacker can deduce the clock cycle counter value
at randomization time for a given memory object and
reconstruct it as:

clockt = clockc − ((timec − timet) ∗ cycless)

where clockt, clockc, timet and timec are the target
and current clock cycle counter and timestamp values
and cycless is the number of cycle increments per
second.

procfs Infoleak (CVE-2017-3892): The proc
filesystem (procfs) is a pseudo-filesystem on Unix-
like operating systems that contains information
about running processes and other system aspects
via a hierarchical file-like structure. This exposure
of process information often includes ASLR-sensitive
information (eg. memory layout maps, individual
pointers, etc.) and as such has a history as a source for
local ASLR infoleaks [12, 44, 62] with both GrSecurity
and mainline Linux [26, 64] seeking to address
procfs as an infoleak source. On QNX procfs [48]
is implemented by the process manager component
of procnto and provides the following elements for
each running process:

• cmdline: Process command-line arguments.
• exefile: Executable path.
• as: The virtual address space of the target process

mapped as a pseudo-file.

These procfs entries can be interacted with like files
and subsequently manipulated using the devctl [50]
API to operate on a file-descriptor resulting from
opening a procfs PID entry. Since process entries
in QNX’s procfs are world-readable by default, this
means a wide range of devctl-based information
retrieval about any process is available to users
regardless of privilege boundaries. For example, the
QNX pidin [52] utility, which makes use of procfs
to provide a wide range of process inspection and
debugging options, easily allows any user to obtain
stackframe backtraces, full memory mappings and
program states for any process. This effectively
constitutes a system-wide local information leak
allowing attackers to circumvent ASLR. It should be
noted this issue is not due to the availability of any
particular utility (such as pidin) but rather results
from a fundamental lack of privilege enforcement on

Page 8 of 22

Dissecting QNX

procfs.

LD_DEBUG Infoleak (CVE-2017-9369): The
LD_DEBUG [37] environment variable is used on some
Unix-like systems to instruct the dynamic linker to
output debug information during execution. On
QNX there are no cross-privilege restrictions on this
environment variable, leading to a (local) information
leak that can be used to circumvent ASLR. Since there
are no privilege checks (akin to the ’secure-execution
mode’ [63] offered by some Linux distributions) on
this environment variable, a local attacker can execute
setuid binaries with higher privileges using dynamic
linker debugging settings (eg. LD_DEBUG=all) in
order to output sensitive information (eg. memory
layout, pointers, etc.). This issue is similar to CVE-
2004-1453 [22] affecting certain versions of GNU glibc.

ASLR Correlation Attack (CVE-2017-3892):
ASLR randomization of memory object base addresses
can prove to be insufficient if different memory objects
are correlated. In such a case an attacker in the
posession of one address can determine the location
of others by means of applying a static (or minimally
varying) offset, rendering even the most limited
information leaks very powerful.

During our evaluation we found a partial correla-
tion attack on QNX’s ASLR implementation, affecting
both PIE and non-PIE binaries. The offset from the pro-
gram image base to the base address of the first loaded
shared library (libc) is of the mask form 0x00FFF000
with at most 12 bits being randomized. We evaluated
the entropic quality of this offset value in order to deter-
mine the feasibility of correlation attacks by collecting
300 offset samples per boot session and running 10
boot sessions, making for 3000 samples total. Using
the NIST Entropy Source Testing (EST) tool [38] we
determined the min entropy of these offset values to
be 0.918311, making for less than 1 bit of min entropy
per 8 bits of data, which corresponds to 1.3774665
bits of min entropy for the 12 affected variable bits
in the offset. Given that this is well below an exhaus-
tive search, this makes a variation of the offset2lib [6]
attack feasible.

3.3 Stack Smashing Protector

Stack Smashing Protector (SSP) [43] is a so-called
stack canary scheme which seeks to prevent the
exploitation of stack buffer overflows by inserting
a secret and unpredictably random canary value in
between the local stack variables and the stackframe
metadata (eg. saved return address, saved frame
pointer). Any attempt at stack smashing which seeks
to overwrite such metadata also ends up corrupting
the canary value which is, upon function return,
compared against the original master value so that
when a mismatch is detected the SSP will invoke a

failure handler.

QNX’s QCC implements the GCC SSP scheme [43]
and supports all the usual SSP flags (strong, all, etc.).
Since the compiler-side of the QNX SSP implementa-
tion is identical to the regular GCC implementation,
the master canary is stored accordingly and canary
violation invokes the __stack_chk_fail handler.

Insecure User Canary Generation (CVE-2017-
XXXX): For userspace applications, this handler is
implemented in QNX’s libc. On the OS-side, reverse-
engineering of libc shows us that violation handler
(shown in cleaned-up form in Listing 5) is a wrapper
for a custom function called _ssp_fail which writes
an alert message to the /dev/tty device and raises
a SIGABRT signal. QNX generates its master canary
value once upon program startup (during loading of
libc) and it is not renewed at any time. Instead of the
regular libssp function __guard_setup, QNX uses a
custom function called __init_cookies (shown in
Listing 6) invoked by the _init_libc routine in order
to (among other things) generate the master canary
value.

Listing 5: QNX 6.6 Stack Canary Failure Handler (Userspace)

void __ s t a c k_ chk_ f a i l (void)
{

i f ((fd = open(" /dev/ t t y " , 1)) != −1)
wr i te (fd , " *** s tack smashing

detec ted *** ") ;
r a i s e (SIGABRT) ;

}

Listing 6: QNX 6.6 Userspace Canary Generation

void _ i n i t _ c ook i e s (void)
{

void* s t a c kva l ;

t s0 = (ClockCyc les () & 0 x f f f f f f f f) ;
can0 = (t s0 ^ (((& s t a c kva l) ^ (

_ i n i t _ c ook i e s)) >> 8)) ;
_stack_chk_guard = can0 ;

t s1 = (ClockCyc les () & 0 x f f f f f f f f) ;
can1 = (((& s t a c kva l) ^ can0) >> 8) ;
_ a t e x i t _ l i s t _ c o o k i e = (can1 ^ ts1) ;

t s2 = (ClockCyc les () & 0 x f f f f f f f f) ;
_ a t q e x i t _ l i s t _ c o o k i e = (can1 ^ ts2) ;

_stack_chk_guard &= 0 x f f 0 0 f f f f ;
}

As shown in Listing 6, QNX canaries have a
terminator-style NULL-byte in the middle and are
generated using a custom randomization routine
(slightly resembling the "poor man’s randomization
patch" included in some Linux distributions for

Page 9 of 22

Dissecting QNX

performance purposes [28, 29]) rather than drawing it
from a secure random number generator. The custom
randomization routine draws upon three sources:

• _init_cookies: This is the function’s own address
and as such, the only randomization it introduces
is derived from ASLR’s effect on shared library
base addresses which means that if ASLR is
disabled (or circumvented) this is a static value.

• stackval: This is an offset to the current stack
pointer and as such, the only randomization it
introduces is derived from ASLR’s effect on the
stack base which means that if ASLR is disabled
(or circumvented) this is simply a static value.

• ClockCycles: The lower 32 bits of the result of
a ClockCycles() call are used to construct the
master canary value.

Since it includes a terminator-style NULL-byte, the
QNX master canary value has a theoretical upper limit
of 24 bits of entropy. However, all entropy in QNX
stack canaries is ultimately based on invocations of
the ClockCycles kernel call. If ASLR is enabled,
the stackval address gets randomized when the
main thread is spawned during program startup and
the _init_cookies address gets randomized when
libc gets loaded by the runtime linker. The ts0
value is generated when _init_cookies is called by
_init_libc which is invoked upon application startup
(but after libc is loaded).

The first problem with using ClockCycles as a
source of randomness is the limited entropy provided
and thus the degree to which the canary is unpre-
dictable and the size of the search space. In order
to evaluate the entropic quality of QNX’s canary
generation mechanism, we collected canary values
for three different process configurations: No ASLR,
ASLR but no PIE and ASLR with PIE. We used a
script starting 785 instances of each configuration per
boot session and repeated this for 10 boot sessions,
collecting 7850 samples per configuration in total.
We then used the NIST Entropy Source Testing (EST)
tool [38] in order to obtain min entropy estimates
for the sample sets as illustrated in Table 9. Based
on these observations we can conclude that a) QNX
canary entropy is far less than the hypothetical upper
bound of 24 bits, being on average 7.78981332 bits for
a 32-bit canary value and b) ASLR plays no significant
contributing role to the overall QNX canary entropy.

Due to the absence of any canary renewal func-
tionality [5], regular as well as byte-for-byte [67]
brute-force attacks are feasible against QNX, especially
considering the low entropic quality of the canaries.

Settings Min Entropy (8 bits per symbol)
No ASLR 1.94739
ASLR, no PIE 1.94756
ASLR + PIE 1.94741

Table 9: QNX 6.6 Stack Canary Min Entropy

On top of entropy issues, ClockCycles is not a
secure random number generator, as we discussed
before with ASLR, and as such similar reconstruction
attacks could be mounted against QNX canaries.

Absent Kernel Canary Generation (CVE-2017-
XXXX): When it comes to kernelspace stack canary
protection, the QNX microkernel (in the form of the
procnto process) also features an SSP implemen-
tation covering a subset of its functions. Since the
kernel neither loads nor is linked against libc (and
canary violations need to be handled differently), SSP
functionality is implemented in a custom fashion here.
Reverse-engineering of the microkernel showed that it
has a custom __stack_chk_fail handler (illustrated
in Listing 7) but no master canary initialization routine.
As a result, QNX never actually initializes the kernel
master canary value and hence its value is completely
static and known to the attacker (0x00000000),
rendering QNX kernel stack canary protection trivial
to bypass.

Listing 7: QNX 6.6 Stack Canary Failure Handler (Ker-
nelspace)

void __ s t a c k_ chk_ f a i l (void)
{

k p r i n t f (" *** s tack smashing detec ted
in procnto *** ") ;

__asm{ in t 0x22 } ;
}

3.4 Relocation Read-Only

QNX supports Relocation Read-Only (RELRO), a
mitigation that allows for marking relocation sections
as read-only after they have been resolved in order to
prevent attackers from using memory corruption flaws
to modify relocation-related information (such as Pro-
cedure Linkage Table (PLT) related Global Offset
Table (GOT) entries using GOT-overwriting [20]).
RELRO comes in two variants: partial and full, with
the former protecting non-PLT entries and the latter
protecting the entire GOT. RELRO is implemented
partially in the toolchain and partially in the operating
system.

In most RELRO implementations, the compiler first
stores constants requiring dynamic relocation in a
dedicated section (typically named .data.rel.ro)
before the linker creates a PT_GNU_RELRO program

Page 10 of 22

Dissecting QNX

segment (itself enclosed in a PT_LOAD segment) to
cover the sections in question. For full RELRO the
linker also emits the BIND_NOW flag. On the operating
system side of the implementation the dynamic linker
will, upon encountering a PT_GNU_RELRO segment,
mark the relevant pages as read-only after dynamic
relocation. If the BIND_NOW flag is specified all
relocations are applied immediately upon program
startup. A proper RELRO implementation requires at
least the following:

• A linker which reorders relocation sections so
that they are grouped together, properly aligned
for memory permission marking and precede the
program data sections.

• A linker which emits a GNU_RELRO segment
covering all relocation sections as well as (for full
RELRO) a BIND_NOW flag.

• A dynamic linker which parses a binary for the
GNU_RELRO segment and upon encountering it
properly marks contained sections as read-only
after applying relocations as well as immediately
applying all relocations upon encountering a
BIND_NOW flag.

• Any disabling of RELRO functionality should be
mediated by privilege checks.

We uncovered the following issues violating the
above:

Broken RELRO (CVE-2017-3893): The
GNU_RELRO segment emitted by QNX’s QCC
linker only covers relocation up until the .data section
but mistakenly the section order is not properly
adjusted so that internal data sections (eg. .got)
precede program data sections (eg. .data). As a
result, the most security-critical relocation section (the
PLT-related elements of the GOT) are not included
in the GNU_RELRO segment and are thus not made
read-only after relocation.

For example, on Debian Linux a full RELRO binary
will look as pictured in figure 6. There we can see
the GNU_RELRO segment covers the area from
0x08049ed8 to 0x0804a000 which includes .got.
On QNX, however, the same full RELRO binary
looks as pictured in figure 7. There we can see
the GNU_RELRO segment covers the area from
0x08049f2c to 0x804a000 which does not include
.got and thus allows us to violate RELRO with eg. a
GOT-overwriting attack.

Local RELRO Bypass (CVE-2017-3893): On Unix-
like systems the LD_DEBUG environment variable
is used to pass debugging settings to the dynamic

Figure 6: Debian Linux RELRO Example

Figure 7: QNX 6.6 RELRO Example

linker. QNX has a custom debugging option dubbed ’im-
poster’ which, among other things, disables RELRO.
Since there are no privilege checks on this debug set-
ting, a low-privileged user could leverage it to target
setuid binaries belonging to higher-privileged users in
order to bypass any RELRO protections and thus ease
exploitation.

4 QNX 7.0 Exploit Mitigations

QNX 7, released in January 2017, is the successor to
QNX 6.6 and comes with support for 64-bit architec-
tures such as ARM v8 or Intel x86-64. It comes with
a host of new security features such as secure boot,
integrity measurement, mandatory access control,
host-based anomaly detection, granular sandboxing
and secure software updates.

In this section we will document the results of our
reverse-engineering and analysis of QNX 7.0’s exploit
mitigations and secure random number generators and
the degree to which they differ from and improve upon
their predecessors in QNX 6.6 and earlier. Table 10
provides an overview of QNX 7.0’s exploit mitigations
and their default settings.

4.1 Executable Space Protection

Despite our disclosure of the insecure default settings,
it turns out they have not been fixed in QNX 7 and
as such, the stack (but not the heap) is executable
by default. In order to enable non-executable stacks
system integrators have to start procnto with the
-m˜x flag. Unfortunately there is no way to guarantee
per-binary backwards compatibility in this case as the

Page 11 of 22

Dissecting QNX

Mitigation Support Default
ESP X ×
ASLR X ×
SSP X X1

RELRO X X1

NULL-deref Protection × n/a
Vtable Protection × n/a
CFI × n/a
CPI × n/a
Kernel Data Isolation2 × n/a
Kernel Code Isolation3 × n/a

Table 10: QNX 7 Exploit Mitigation Overview
1 Default QNX Momentics IDE Settings, 2 eg. UDEREF / SMAP

/ PAN, 3 eg. KERNEXEC / SMEP / PXN

GNU_STACK ELF header is not parsed.

4.2 Address Space Layout Randomiza-
tion

QNX 7 ASLR remains disabled by default and does
not provide KASLR support for kernel image base
randomization.

ASLR Randomization: As shown in Listing 8, QNX
7’s stack_randomize routine remains identical to
that of QNX 6.6 save for replacing ClockCycles as
the entropy source with random_value. However, the
issue of the entropy being theoretically limited to an
upper bound of 7 bits as a result of the application of
the bitmasking remains.

Listing 8: QNX 7 stack_randomize Routine

u i n t p t r _ t stack_randomize (const THREAD *
const thp , u i n t p t r _ t new_sp)

{
u i n t p t r _ t rnd_sp ;
s i z e _ t s t a c k _ s i z e ;
unsigned in t size_mask ;

rnd_sp = new_sp ;
s t a c k _ s i z e = thp−>un . l c l . s t a c k s i z e >> 4;
i f (s t a c k _ s i z e)
{

size_mask = 0x7FF ;
i f (s t a c k _ s i z e <= 0x7FE)
{

do
size_mask >>= 1;

while (s t a c k _ s i z e < size_mask) ;
}

rnd_sp = (new_sp − ((random_value () <<
4 & size_mask)) & 0

xFFFFFFFFFFFFFFF0 ;
}
return rnd_sp ;

}

The ASLR randomization underlying calls to mmap

is now being handled by the kerext_valloc and
vm_region_create functions as part of a rewritten
memory manager. As shown in Listings 9 and 10 in
both cases all entropy is drawn from random_value.
In the former case the full 32 bits of entropy could be
absorbed on a 64-bit system while in the latter case
the bitmasking imposes a theoretical upper limit of 12
bits.

Listing 9: QNX 7 kerext_valloc Snippet

void ke r e x t _ va l l o c (void *data)
{

. . .

i f (s i z e _ v a l != obj−>s i z e)
{

randomized_addr = (obj−>addr + (
random_value () << 12) % (obj−>
s i z e − s i z e _ v a l)) & 0
xFFFFFFFFFFFFF000 ;

}

. . .
}

Listing 10: QNX 7 vm_region_create Snippet

signed _ _ f a s t c a l l vm_region_create (
vm_aspace_t *as , vm_mmap_attr_t * a t t r)

{
. . .

rnd_val = (random_value () << 12) & 0
xFFF000 ;

s t a r t _ d i s t a n c e = s t a r t − b e s t _ s t a r t ;
i f (s t a r t != b e s t _ s t a r t)
{

i f (s t a r t _ d i s t a n c e < rnd_val)
rnd_val %= s t a r t _ d i s t a n c e ;

s t a r t −= rnd_val ;
}

. . .
}

Curiously, however, QNX 7’s memory manager
restricts initial randomized mapping of userspace
stack, heap and executable image objects to the lower
32 bits of the address space while restricting shared
libraries to the lower 36 bits.

Information Leaks: While the LD_DEBUG Infoleak
(CVE-2017-9369) has been fixed in QNX 7, the
procfs Infoleak (CVE-2017-3892) is still very much
present with only some restrictions imposed on
it. In QNX 7 procfs has been slightly modified so
that interaction with processes now goes through
the /proc/*/ctl pseudo-file. While the /proc/*

directories have stronger permission settings and the
pidin tool no longer allows for direct disclosure of

Page 12 of 22

Dissecting QNX

sensitive address information from higher-privileged
processes, /proc/*/ctl remains world-readable for
all process entries and accessible to the devctl API. As
such, a local attacker is still able to disclose sensitive
address information across privilege boundaries.
While capability-based sandboxing might limit the
exposure of certain processes this is not configured to
be the case by default.

We have left correlation attack evaluation for QNX 7
to future work.

4.3 Stack Smashing Protector

SSP is enabled by default in QNX Momentics 7.0.0 and
generates 64-bit canaries on 64-bit systems.

Userspace Canary Generation: The new
_init_cookies routine in QNX 7 is shown in
Listing 11 where we can see that _stack_chk_guard
is formed by the XOR sum of rdtsc, the code address
of _init_cookies, the stack address of stackval

and the value stored in auxil_val. This approach is
similar to the one in QNX 6.6 save for the introduction
of auxil_val which is a 64-bit value drawn from
the AT_RANDOM ELF auxiliary vector entry. ELF
auxiliary vectors [30] are a mechanism to transfer OS
information to user processes via the program loader.
This approach was integrated into QNX 7.0 based on
our suggestions to the vendor.

Listing 11: QNX 7 Userspace Canary Generation

void _ i n i t _ c ook i e s ()
{

auxv_t * aux i l ;
in t aux i l _ t ype ;
__ int64 aux i l _ v a l ;
unsigned __int64 c0 ;
unsigned __int64 c1 ;
char s t a c kva l ;

aux i l = auxv ;
aux i l _ t ype = aux i l−>a_type ;
i f (aux i l _ t ype)
{

while (aux i l _ t ype != AT_RANDOM)
{
++aux i l ;
aux i l _ t ype = aux i l−>a_type ;
i f (! aux i l−>a_type)

goto END_AUXV;
}
aux i l _ v a l = aux i l−>a_un . a_va l ;

}
else
{

END_AUXV:
aux i l _ v a l = 0LL ;

}

c0 = __rd t s c () ^ (((unsigned __int64)
_ i n i t _ c ook i e s ^ (unsigned __int64)&
s t a c kva l) >> 8) ^ aux i l _ v a l ;

_stack_chk_guard = (void *) c0 ;
c1 = ((unsigned __int64)&s t a c kva l ^ c0)

>> 8;
_ a t e x i t _ l i s t _ c o o k i e = (void *) (c1 ^

__rd t s c ()) ;
BYTE_OFFSET_6(_stack_chk_guard) = 0;
_ a t q e x i t _ l i s t _ c o o k i e = (void *) (c1 ^

__rd t s c ()) ;
}

Upon reverse-engineering the loader_load routine
in the QNX microkernel as shown in Listing 12 we can
see AT_RANDOM is filled with a concatenation of two
32-bit values drawn from the random_value kernel
PRNG (discussed below in Section 5.2).

Listing 12: QNX 7 AT_RANDOM Generation

aux i l _po in te r−>a_type = AT_RANDOM;
aux i l _po in te r−>a_un . a_va l = (unsigned

in t) random_value () ;
i f (interp_name [7] & 8)
{

aux i l _po in te r−>a_un . a_va l |=
random_value () << 32;

. . .
}

Kernelspace Canary Generation: The absent ker-
nelspace canary generation vulnerability affecting QNX
6.6 and prior has been fixed in QNX 7. During early
boot in kernel_main, prior to kernel kickoff, the ker-
nelspace master canary is drawn from a concatena-
tion of two 32-bit random values drawn from the
random_value kernel PRNG as shown in Listing 13.

Listing 13: QNX 7 Kernelspace Canary Generation

c a l l i n _ i n i t () ;
mdriver_check () ;
*(_DWORD *)&inke rne l = 0xD00 ;
c0 = random_value () ;
c1 = random_value () ;
_stack_chk_guard = (void *) ((c1 << 32)

| c0) ;
k e r _ e x i t _ k i c k o f f (percpu_ptr−>data .

ke r_ s tack) ;

4.4 Relocation Read-Only

The RELRO vulnerability we reported has been fixed in
QNX 7 with QCC observing proper ELF section order-
ing and full RELRO being enabled by default in QNX
Momentics 7.0.0.

Page 13 of 22

Dissecting QNX

5 QNX Secure Random Number
Generators

5.1 /dev/random in QNX ≤ 6.6

Many mitigations require a source of secure random-
ness and ideally this is provided by the operating
system itself. As such, the security of the OS random
number generator is of crucial importance to the
security of exploit mitigations as well as the overall
cryptographic ecosystem. As prior work has shown [2,
4, 9, 10], embedded random number generation
suffers from a variety of issues with far-reaching
consequences and as such we reverse-engineered and
analyzed the QNX OS random number generator.

QNX provides an Operating System Cryptographically
Secure Random Number Generator (OS CSPRNG)
exposed through the Unix-style /dev/random and
/dev/urandom interfaces, both of which are non-
blocking in practice. The OS CSPRNG is implemented
as the random service [56] which runs as a userspace
process started by the /etc/rc.d/startup.sh script.
On QNX versions up to and including 6.6 the CSPRNG
underlying the random service is based on the
Yarrow CSPRNG [8] (which is also used by iOS, Mac
OS X, AIX and some BSD descendants) rather than its
recommended successor Fortuna [11].

Runtime Entropy
Collection

Entropy Pool

Boottime Entropy
Collection

PRN G Stateyarrow_output

Random Bits

yarrow_make_new_state

yarrow_create

yarrow_input yarrow_do_sha1

Figure 8: Simplified QNX 6.6 Yarrow Design

The QNX Yarrow implementation (as illustrated
in Figure 8), however, is not based on the refer-
ence Yarrow-160 [8] design but instead on an older
Yarrow 0.8.71 implementation by Counterpane [24]
which has not undergone the security scrutiny Yarrow
has seen over the years and differs in the following key
aspects:

• Single Entropy Pool: While Yarrow-160 has
separate fast and slow entropy pools, Yarrow
0.8.71 only has a single entropy pool. The two
pools were introduced so that the fast pool could
provide frequent reseeds of the Yarrow key to
limit the impact of state compromises while the
slow pool provides rare, but very conservative,
reseeds of the key to limit the impact of entropy
estimates which are too optimistic. Yarrow
0.8.71’s single pool does not allow for such

security mechanisms.

• No Blockcipher Applied To Output: As opposed
to Yarrow-160, Yarrow 0.8.71 does not apply a
block cipher (eg. in CTR mode) to the Yarrow
internal state before producing PRNG output and
instead simply outputs the internal state directly
which results in a significantly weaker design than
that of Yarrow-160.

In addition, the QNX Yarrow implementation di-
verges from Yarrow 0.8.71 as well in the following
aspects:

• Mixes PRNG Output Into Entropy Pool: As part
of its various entropy collection routines, QNX
Yarrowmixes PRNG output back into the entropy
pool. For example in the high performance
counter entropy collection routine (as per the
snippet in Listing 14) we can see PRNG output is
drawn from QNX Yarrow, used as part of a delay
routine and subsequently mixed (via a xor opera-
tion with the result of a ClockCycles call) back
into the entropy pool. This construction deviates
from all Yarrow designs and is ill-advised in the
absence of further security analysis or justification.

Listing 14: QNX Yarrow HPC Entropy Collection Snippet

i f (Yarrow)
{

yarrow_output (Yarrow , (u in t8_ t *)&
rdata , s izeof (rdata)) ;

t imeout = (rdata & 0x3FF) + 10;
}

delay (t imeout) ;
c l k = ClockCyc les () ;
c l k = c lk ^ rdata ;

i f (Yarrow)
yarrow_input (Yarrow , (u in t8_ t *)&

clk , s izeof (c l k) , pool_id , 8
) ;

• Absent Reseed Control (QNX < 6.6): In all QNX
versions prior to 6.6 reseed control is completely
absent. While the required functionality was
implemented, the responsible functions are never
actually invoked, which means that while entropy
is being accumulated during runtime it is never
actually used to reseed the state and thus only
boottime entropy is actually ever used to seed the
QNX Yarrow state in versions prior to 6.6.

• Custom Reseed Control (QNX 6.6): In QNX
6.6 there is a custom reseeding mechanism
integrated into the yarrow_do_sha1 and
yarrow_make_new_state functions (as illus-
trated in Listings 15 and 16) which are called
upon PRNG initialization and whenever output

Page 14 of 22

Dissecting QNX

is drawn from the PRNG (which means it is also
constantly called during entropy accumulation
due to the above mentioned output mixing
mechanism). In both cases, a permutation named
IncGaloisCounter5X32 is applied to the entropy
pool before the pool contents are mixed into
a SHA1 state which eventually becomes the
Yarrow internal state. Contrary to Yarrow design
specifications, no entropy quality estimation is
done before reseeding.

Listing 15: QNX 6.6 yarrow_do_sha1 function

void yarrow_do_sha1 (yarrow_t *p ,
yarrow_gen_ctx_t * c tx)

{
SHA1Init(&sha) ;

IncGaloisCounter5X32 (p−>pool . s t a t e)
;

sha . s t a t e [0] =̂ p−>pool . s t a t e [4] ;
sha . s t a t e [1] =̂ p−>pool . s t a t e [3] ;
sha . s t a t e [2] =̂ p−>pool . s t a t e [2] ;
sha . s t a t e [3] =̂ p−>pool . s t a t e [1] ;
sha . s t a t e [4] =̂ p−>pool . s t a t e [0] ;

SHA1Update(&sha , ctx−>iv , 20) ;
SHA1Update(&sha , ctx−>out , 20) ;
SHA1Final (ctx−>out , &sha) ;

}

Listing 16: QNX 6.6 yarrow_make_new_state function

void yarrow_make_new_state (yarrow_t *
p , yarrow_gen_ctx_t * ctx , u in t8_ t
* s t a t e)

{
for (i = 0; i < 20; i++)

ctx−>iv [i] =̂ s t a t e

SHA1Init(&sha) ;

IncGaloisCounter5X32 (p−>pool . s t a t e)
;

sha . s t a t e [0] =̂ p−>pool . s t a t e [4] ;
sha . s t a t e [1] =̂ p−>pool . s t a t e [3] ;
sha . s t a t e [2] =̂ p−>pool . s t a t e [2] ;
sha . s t a t e [3] =̂ p−>pool . s t a t e [1] ;
sha . s t a t e [4] =̂ p−>pool . s t a t e [0] ;

SHA1Update(&sha , ctx−>iv , 20) ;
SHA1Final (ctx−>out , &sha) ;

}

While all the above discussed divergences are
at the very least ill-advised, the reseeding control
issues constitute a clear security issue. In the case
of absent reseeding control, it eliminates Yarrow’s
intended defense against state compromise as well as
greatly increasing system susceptibility to the so-called
"boottime entropy hole" [10] that affects embedded
systems. In the case of the QNX Yarrow 6.6 custom
reseeding control no entropy quality estimation is

done before reseeding the state from the entropy pool
thus potentially allowing for low-quality entropy to
determine the entire state.

In order to evaluate the QNX Yarrow PRNG output
quality we used two test suites: DieHarder [18]
and the NIST SP800-22 [40] Statistical Test
Suite (STS) [39]. DieHarder is a random number
generator testing suite, composed of a series of
statistical tests, "designed to permit one to push a weak
generator to unambiguous failure" [18]. The NIST
Statistical Test Suite (STS) consists of 15 tests
developed to evaluate the ’randomness’ of binary
sequences produced by hardware- or software-based
cryptographic (pseudo-) random number generators
by assessing the presence or absence of a particular
statistical pattern. The goal is to "minimize the
probability of accepting a sequence being produced by
a generator as good when the generator was actually
bad" [40]. While there are an infinite number of
possible statistical tests and as such no specific test
suite can be deemed truly complete, they can help
uncover particularly weak random number generators.

QNX Yarrow passed both the DieHarder and
NIST STS tests but this only tells us something about
the quality of PRNG output, leaving the possibility
open that raw noise / source entropy is (heavily)
biased which can result in predictable PRNG outputs
as well as attackers being able to replicate PRNG
internal states after a reasonable number of guesses.
As such we reverse-engineered and evaluated the QNX
random service’s boot- and runtime entropy sources.

Boottime Entropy Analysis: When random is ini-
tialized it gathers initial boottime entropy from the
following sources (as illustrated in Figure 9) which are
fed to the SHA1 hash function to produce a digest used
to initialize the PRNG initial state:

• ClockTime [47]: The current system clock time.

• ClockCycles [46]: The current value of a free-
running 64-bit clock cycle counter.

• PIDs: The currently active process IDs by walking
the /proc directory.

• Device Names: The currently available device
names by walking the /dev directory.

In order to evaluate random’s boottime entropy
quality we used the NIST SP800-90B [41] Entropy
Source Testing (EST) tool [38] to evaluate
boottime entropy by means of a min entropy estimate.
We collected random’s boottime entropy from 50
different reboot sessions on the same device (by
instrumenting yarrow_init_poll and logging the
collected raw noise) and using NIST EST determined

Page 15 of 22

Dissecting QNX

that the average min-entropy was 0.02765687, which
is far less than 1 bit of min-entropy per 8 bits of
raw noise. In addition to the boottime entropy of
individual boot sessions being of low quality, the
static or minimally variable nature of many of the
boottime noise sources (identical processes and
devices available upon reboot, real-time nature of
QNX limiting jitter between kernel calls thus reducing
ClockCycles entropy, etc.) results in predictable and
consistent patterns across reboots.

SHA1

/dev N ames/proc PIDsClockTime ClockCycles

QN X Yarrow
Initial State

Figure 9: QNX Yarrow Boottime Entropy Collection

Another boottime entropy issue with QNX’s random
service is the fact that the service is started as a process
by startup.sh. As a result, the CSPRNG is only avail-
able quite late in the boot process and many services
which need it (eg. sshd) start almost immediately after.
Since random only offers non-blocking interfaces, this
means that one can draw as much output from the
CSPRNG as one wants immediately upon availability
of the device interface. Hence, many applications
which start at boot and require secure random data
have their ’randomness’ determined almost completely
by the (very low quality) boottime raw noise since
there is little time for the QNX random service to
gather runtime entropy before being queried thus am-
plifying the impact of the "boot-time entropy hole" [10].

Runtime Entropy Analysis: The QNX random ser-
vice leaves the choice and combination of runtime en-
tropy sources (as illustrated in Figure 10) up to the
person configuring the system with the following op-
tions:

• Interrupt Request Timing: Up to 32 different
interrupt numbers may be specified to be used as
an entropy source. The entropy here is derived
from interval timing measurements (measured by
the ClockTime kernel call) between requests to a
specific interrupt.

• System Information Polling: This source col-
lects entropy from system information via the
procfs [48] virtual filesystem in /proc. This
information is composed of process and thread
information (process and thread IDs, stack and

program image base addresses, register values,
flag values, task priority, etc.) for every currently
active process.

• High-Performance Clock Timing: This source
draws entropy from the PRNG (using the
yarrow_output function), initiates a delay (in
milliseconds) based on the PRNG output, invokes
ClockCycles and xors the result against the
earlier obtained PRNG output and feeds this into
the entropy pool.

• Library Hardware Entropy Source (Un-
documented): This undocumented entropy
source (invoked using command-line param-
eter -l) allows a user to specify a dynamic
library to supply entropy collection callback
functions named entropy_source_init and
entropy_source_start. In order to be used the
library has to export a symbol named cookie with
the NULL-terminated value RNG (0x524E4700).
Based on debugging information it seems this is
to allow for drawing from a hardware random
number generator as an entropy source.

• User-Supplied Input (Undocumented): In QNX
6.6 the random service has a write-handler made
available to users via the kernel resource manager
(in the form of handling write operations to the
/dev/(u)random interfaces) which takes arbitrary
user inputs of up to 1024 bytes per write opera-
tion and feeds it directly into the entropy pool by
passing it to the yarrow_input operation. Write
operations of this kind are restricted to the root
user only.

After initialization, random starts a thread for each
entroy source which will gather entropy and store it
in the entropy pool. Contrary to our analysis of QNX
random’s boottime entropy, we did not perform a run-
time entropy quality evaluation because during our
contact with the vendor they had already indicated
the current design would be overhauled in upcoming
patches and future releases as a result of our findings.
In addition, in all QNX versions except for 6.6 runtime
entropy is accumulated but not used due to the pre-
viously mentioned absent reseeding control. We did
have the following observations however:

• Entropy Source Configuration: Configuring
runtime entropy sources is entirely left to system
integrators. Since the entropic quality of certain
sources (eg. interrupt request timings or system
information polling) varies depending on the
particular system, it is non-trivial to pick suitable
sources.

• System Information Entropy Source: System
information polling gathers raw noise from

Page 16 of 22

Dissecting QNX

currently running processes (in the form of
process and thread debug info). A significant
number of the fields in the process and thread
debug info structures, however, are largely static
values (eg. uid, flags, priority, stack and program
base in the absence of ASLR, etc.) with most
randomness derived from time-based fields
(starttime, runtime) or program state (ip, sp).

• Interrupt Request Timing Entropy Source: In-
terrupt request timing gathers raw noise from in-
terrupt invocation timings. As such this means
that if integrators choose to specify interrupts that
are rarely or never invoked, barely any runtime
entropy is gathered using this source. Interrupt in-
vocation frequency can be very system specific and
picking the right interrupts is not trivial. The QNX
documentation explicitly recommends to "mini-
mize the impact of [interrupt request timing over-
head] by specifying only one or two interrupts from
low interrupt rate devices such as disk drivers and
input/serial devices" [56], an advice which would
result in less entropy being accumulated from this
source. Furthermore, it seems that if for whatever
reasons the random service cannot attach to an
interrupt, the interrupt entropy gathering thread
fails silently and no entropy is gathered for that
interrupt at all.

yarrow_output

delay ClockCycles

yarrow_output

interrupt invoked
>= N times? ClockTime

H igh Performance
Clock Source

yarrow_input

Interrupt Request
Timing Source

/proc info

SHA1

ClockTime

delay

yarrow_output

System Information
Polling Source

dev_random_writeentropy_source_start Undocumented
Sources

Figure 10: QNX Yarrow Runtime Entropy Collection

5.2 QNX 7.0 Kernel PRNG

QNX 7 has a new kernel PRNG for generation of secure
random numbers implemented in the microkernel’s
random_value function. As shown in Listing 17 and
illustrated in Figure 11, the kernel PRNG consists of a
256-bit seed block fed through SHA256 to produce a
digest from which 32-bit random numbers are drawn
iteratively before reseeding after exhausting the entire
digest.

Listing 17: QNX 7 Kernel PRNG

unsigned in t random_value ()
{

unsigned in t new_dig_idx ;
unsigned in t r e s u l t ;
u in t32_t keypad [8] ;
sha256_t shout ;

i f (d ig_ idx > 7)
{

keypad [0] = s a l t ^ ClockCyc les () ;
keypad [1] = a c t i v e s [get_cpunum ()] ;
keypad [2] = s a l t ^ qtimeptr−>nsec ;
keypad [3] = pid_unique ^ s a l t ;
keypad [4] = wakeup_timer ;
keypad [5] = kerne l _ex i t _ coun t ;
keypad [6] =̂ random_seed ;
sha256_ in i t (&shout) ;
sha256_add(&shout , keypad , 0x20u) ;
sha256_done(&shout , d i g e s t) ;
r e s u l t = d ige s t [0] ;
i f (! s a l t)

s a l t = d i ge s t [0] ;
new_dig_idx = 1;

}
else
{

new_dig_idx = dig_ idx + 1;
r e s u l t = d ige s t [d ig_ idx] ;

}
d ig_ idx = new_dig_idx ;
return r e s u l t ;

}

PRN G State

ClockCycles()

PRN G Input Block

actives[get_cpunum()]

qtimeptr->nsec

pid_unique

wakeup_timer

kernel_exit_count

random_seed

Output:
Random Value

(32-bit)

Block #0

If dig_idx > 7

Salt

if salt = 0 Block #dig_idx

If dig_idx <= 7

Initial Value: 0

SysSrandom()

Figure 11: QNX Kernel PRNG

Kernel PRNG entropy is drawn from a combination
of the following values:

• salt: A salt value which starts out as 0 and then
gets filled with the first non-zero 32 bits of every
newly generated digest.

• ClockCycles: The current clock cycle counter
value.

Page 17 of 22

Dissecting QNX

• actives[get_cpunum()]: The currently active
thread on this CPU.

• qtimeptr->nsec: The current time in nanosec-
onds.

• pid_unique: The currently active PID.

• wakeup_timer: The timer wakeup value [45].

• kernel_exit_count: Counter keeping track of
the number of kernel exit operations.

• random_seed: Random seed user-supplied via
SysSrandom [58] kernel calls. This kernel
call can only be made by processes with the
PROCMGR_AID_SRANDOM ability.

Of these sources, pid_unique and
actives[get_cpunum()] have a limited range
of possible values and none of the sources ex-
cept for wakeup_timer, kernel_exit_count and
random_seed can be considered secret. Some sources
(eg. ClockCycles, kernel_exit_count) are also
likely to have greatly reduced ranges during boot-time.

Finally, note that all sources are truncated to
32-bit values when stored in the seed block, that
random_seed is only initialized when system integra-
tors utilize it and that the final block (keypad[7]) is
never initialized. As such, in many cases the theoretical
maximum of the entropy contained within the seed
block would be reduced to 192 bits. A full evaluation
of the entropic quality of the QNX 7 kernel PRNG is
left to future work.

5.3 /dev/random in QNX 7.0

Following our advisory on the QNX Yarrow PRNG,
the QNX 7 random service was redesigned to use
Fortuna instead. While the design and interface of
the random service remains mostly the same, QNX
7 uses a customized version of the Heimdal [32]
Fortuna implementation as illustrated in Figure 12.

The QNX 7 Fortuna implementation no longer
has dedicated boot- and runtime entropy collection
routines and draws upon the following entropy sources:

• Interrupt Request Timing: This source is
identical to the one in the QNX 6.6 random
implementation.

• System Information Polling: This source is
identical to the one in the QNX 6.6 random
implementation.

fortuna_pseudorand

delay ClockCycles

fortuna_pseudorand

interrupt invoked
>= N times? ClockTime

H igh Performance
Clock Source

fortuna_add

Interrupt Request
Timing Source

/proc info

SHA256

ClockTime

delay

fortuna_pseudorand

System Information
Polling Source

Library Source User-Supplied
Source

seedfile

fortuna_load_state

fortuna_save_state

entropy_source_start dev_random_write

fortuna_pseudorandSeedfile Source

arc4random()

getpid()

getuid()

gettimeofday()

add_entropy PRN G state

Reseed Source

Figure 12: QNX 7 Fortuna Entropy Collection

• High-Performance Clock Timing: This source
is identical to the one in the QNX 6.6 random
implementation.

• Library Hardware Entropy Source: This source
is identical to the one in the QNX 6.6 random
implementation.

• User-Supplied Input: Anything written to the
/dev/(u)random device is immediately absorbed
into the PRNG state and, if seedfile state persis-
tence is enabled, the state is saved as well. It
is possible to shield this functionality with the
-m mode option specifying permissions but by
default the interface is world-writable which
could possibly present an avenue for reseeding
attacks.

• Seedfile Source: If specified, QNX 7 Fortuna
can load and save entropy from and to a 128-byte
seedfile (done after writing to /dev/(u)random

or automatically after 8192 reseedings). This file
is owned by root with user read/write permissions
only.

• Reseed Source: Reseed control is integrated into
the fortuna_bytes and fortuna_init routines
and thus checked periodically. It is implemented
as shown in Listing 18. This routine is not likely
to provide high quality reseed entropy consid-
ering that pid and uid do not change for the
random service and that arc4random reads from
/dev/random (creating a circular reseed loop) and
uses the broken RC4 cipher.

Listing 18: QNX 7 fortuna_reseed

#define INIT_BYTES 128

in t fo r tuna_reseed ()
{

Page 18 of 22

Dissecting QNX

uint32_t buf [INIT_BYTES / s izeof (
u in t32_t)] ;

in t i ;
in t entropy_p = 0;

i f (! in i t _done)
abort () ;

for (i = 0; i < s izeof (buf) / s izeof (buf
[0]) ; i++)
buf [i] = arc4random () ;

add_entropy(&main_state , (void *) buf ,
s izeof (buf)) ;

entropy_p = 1;

p id_ t pid = getp id () ;
add_entropy(&main_state , (void *)&pid ,

s izeof (pid)) ;

s t ruc t t imeva l tv ;
get t imeofday (&tv , NULL) ;
add_entropy(&main_state , (void *)&tv ,

s izeof (tv)) ;

u id_ t u = getu id () ;
add_entropy(&main_state , (void *)&u ,

s izeof (u)) ;

return entropy_p ;
}

Due to the elimination of dedicated boottime en-
tropy harvesting and its rapid startup time, QNX 7
Fortuna is likely to suffer from the "boottime entropy
hole" (unless system integrators explicitly enable seed-
files / state persistence) but we leave a full analysis of
entropic quality to future work.

6 Conclusion

We reverse-engineered and analyze the exploit
mitigations and secure random number generators
of QNX ≤ 6.6 and 7.0 and found and reported a
myriad of issues of varying degrees of severity. Table
11 presents an overview of the analyzed mitigations
and RNGs, their issues and what versions are affected
by them. Note that we have left proper RNG entropy
quality and ASLR correlation attack evaluation of QNX
7’s to future work and as such we can neither confirm
nor rule out issues in this regard.

We can see that despite our disclosure of the issues
affecting QNX 6.6 and subsequent fixes being drafted
for the bulk of them, some of them remained in QNX
7.0. Regardless, General Availability (GA) patches
are available for all issues affecting QNX ≤ 6.6 in
Table 11 (naturally excluding those affecting QNX 7.0).

One striking observation is that while QNX clearly
attempts to keep up with at least basic exploit miti-

Component Issues Affected
ESP Disabled by default ≤ 7.0
ASLR Disabled by default1 ≤ 7.0
ASLR No KASLR1 ≤ 7.0
ASLR Weak Randomization1 ≤ 6.6
ASLR No Re-Randomization1 ≤ 7.0
ASLR procfs Infoleak1 ≤ 7.0
ASLR LD_DEBUG Infoleak3 ≤ 6.6
ASLR Correlation Attack1 ≤ 6.6
SSP Disabled by default ≤ 6.6
SSP Weak Randomization ≤ 6.6
SSP No Re-Randomization ≤ 7.0
SSP No Kernel Canaries ≤ 6.6
RELRO Disabled by default2 ≤ 6.6
RELRO Broken RELRO2 ≤ 6.6
RELRO LD_DEBUG Bypass2 ≤ 6.6
OS CSPRNG Ill-Advised Design ≤ 6.6
OS CSPRNG Absent Reseed Control < 6.6
OS CSPRNG Low Boottime Entropy ≤ 6.6

Table 11: QNX Mitigation & RNG Issues Overview
1 CVE-2017-3892, 2 CVE-2017-3893, 3 CVE-2017-9369

gations as they have evolved in the general purpose
world, the fact that it is a proprietary OS outside
of the Linux, Windows and BSD lineages means
that they cannot trivially port mitigations, patches
and improvements from these operating systems.
In addition, the relative lack of attention to QNX
by outside security researchers is evident from the
degree to which certain vulnerabilities and issues
(such as the local information leaks or the "poor man’s
randomization patch" design for ASLR/SSP) resemble
older vulnerabilities on other Unix-like systems.
Finally, our findings re-confirm the notion that secure
random number generation and especially integrating
suitable entropy sources is an issue that continues to
plague the embedded world. The impact of this goes
beyond affecting the quality of exploit mitigations and
has consequences for the wider security ecosystem as
a whole.

It is our hope that this work inspires other security
researchers to further investigate the security and OS
internals of QNX and other closed-source embedded
operating systems.

Bibliography

[1] Alex Plaskett et al. QNX: 99 Problems but a Mi-
crokernel ain’t one! 2016.

[2] Daniel J. Bernstein et al. “Factoring RSA keys
from certified smart cards: Coppersmith in the
wild”. In: ASIACRYPT (2013).

[3] Daniel Martin Gomez et al. BlackBerry PlayBook
Security: Part one. 2011.

Page 19 of 22

Dissecting QNX

[4] David Kaplan et al. “Attacking the Linux PRNG
on Android & Embedded Devices”. In: Black Hat
Europe (2014). url: https://www.blackhat.
com/docs/eu-14/materials/eu-14-Kedmi-

Attacking- The- Linux- PRNG- On- Android-

Weaknesses - In - Seeding - Of - Entropic -

Pools-And-Low-Boot-Time-Entropy.pdf.

[5] Hector Marco-Gisbert et al. “Preventing brute
force attacks against stack canary protection
on networking servers”. In: 12th IEEE Interna-
tional Symposium on Network Computing and
Applications (NCA) (2013).

[6] Hector Marco-Gisbert et al. “On the Effective-
ness of Full-ASLR on 64-bit Linux”. In: DeepSec
(2014).

[7] Hector Marco-Gisbert et al. “Exploiting Linux
and PaX ASLR’s weaknesses on 32- and 64-bit
systems”. In: BlackHat Asia (2016).

[8] John Kelsey et al. “Yarrow-160: Notes on the De-
sign and Analysis of the Yarrow Cryptographic
Pseudorandom Number Generator”. In: Sixth
Annual Workshop on Selected Areas in Cryptog-
raphy (1999).

[9] Keaton Mowery et al. “Welcome to the Entropics:
Boot-Time Entropy in Embedded Devices”. In:
IEEE Security and Privacy (2013).

[10] Nadia Heninger et al. “Mining Your Ps and
Qs: Detection of Widespread Weak Keys in Net-
work Devices”. In: USENIX Security Symposium
(2012).

[11] Niels Ferguson et al. Practical Cryptography. Wi-
ley, 2003.

[12] Tavis Ormandy et al. Linux ASLR Curiosities.
2009. url: https://www.cr0.org/paper/to-
jt-linux-alsr-leak.pdf.

[13] Zach Lanier et al. Voight-Kampff’ing The Black-
Berry PlayBook. 2012.

[14] Zach Lanier et al. No Apology Required: Decon-
structing BB10. 2014.

[15] Alexander Antukh. Dissecting Blackberry 10 –
An initial analysis. 2013.

[16] BlackBerry. Using compiler and linker defenses
(BlackBerry Native SDK for PlayBook OS). url:
http : / / developer . blackberry . com /

playbook / native / reference / com . qnx .

doc.native_sdk.security/topic/using_

compiler_linker_defenses.html.

[17] BlackBerry. QNX. 2017. url: http://www.qnx.
com/content/qnx/en.html.

[18] Robert G. Brown. Dieharder: A Random Number
Test Suite. url: https://www.phy.duke.edu/
\~rgb/General/dieharder.php.

[19] Tim Brown. QNX Advisories. url: https : / /
packetstormsecurity.com/files/author/

4309/.

[20] c0ntex. How to hijack the Global Offset Table
with pointers for root shells. url: http://www.
infosecwriters.com/text_resources/pdf/

GOT_Hijack.pdf.

[21] Communications Security Establishment
Canada. EAL 4+ Evaluation of QNX Neutrino®
Secure Kernel v6.4.0. 2009. url: https :

//www.commoncriteriaportal.org/files/

epfiles/neutrino-v640-cert-eng.pdf.

[22] Silvio Cesare. CVE-2004-1453. 2004. url: http:
//www.cve.mitre.org/cgi- bin/cvename.

cgi?name=CVE-2004-1453.

[23] Colt. Android OS - Processes and the Zygote! url:
http://coltf.blogspot.nl/p/android-os-

processes-and-zygote.html.

[24] Counterpane. Yarrow 0.8.71. url: https://
www.schneier.com/code/Yarrow0.8.71.zip.

[25] CVE Details. QNX CVEs. url: https://www.
cvedetails . com / vulnerability - list /

vendor_id-436/QNX.html.

[26] Jake Edge. proc: avoid information leaks to
non-privileged processes. 2009. url: https://
patchwork.kernel.org/patch/21766/.

[27] Julio Cesar Fort. QNX Advisories. url: https://
packetstormsecurity.com/files/author/

3551/.

[28] Hagen Fritsch. Buffer overflows on linux-x86-64.
2009.

[29] Hagen Fritsch. Stack Smashing as of Today.
2009.

[30] Manu Garg. About ELF Auxiliary Vectors. url:
http : / / articles . manugarg . com /

aboutelfauxiliaryvectors.

[31] Hector Marco Gisbert. “Cyber-security protec-
tion techniques to mitigate memory errors
exploitation”. In: (2015). url: https : / /

riunet . upv . es / bitstream / handle /

10251 / 57806 / Marco % 20 - %20Cyber -

security % 20protection % 20techniques %

20to % 20mitigate % 20memory % 20errors %

20exploitation . pdf ? sequence = 1 &

isAllowed=y.

[32] Heimdal. The Heimdal Kerberos 5, PKIX, CMS,
GSS-API, SPNEGO, NTLM, Digest-MD5 and, SASL
implementation. url: http://www.h5l.org/.

[33] Alejandro Hernandez. A Short Tale About exe-
cutable_stack in elf_read_implies_exec() in the
Linux Kernel. url: http://blog.ioactive.
com / 2013 / 11 / a - short - tale - about -

executablestack-in.html.

[34] Tobias Klein. checksec. url: http : / / www .

trapkit.de/tools/checksec.html.

[35] Gentoo Linux. Hardened/GNU stack quickstart.
url: https : / / wiki . gentoo . org / wiki /

Hardened/GNU_stack_quickstart.

Page 20 of 22

Dissecting QNX

[36] Matt Miller. “Reducing the Effective Entropy of
GS Cookies”. In: Uninformed Vol. 7 (2007).

[37] Bojan Nikolic. The LD_DEBUG environment vari-
able. url: http : / / www . bnikolic . co . uk /
blog/linux-ld-debug.html.

[38] NIST. NIST Entropy Source Testing (EST) tool.
url: https : / / github . com / usnistgov /

SP800-90B_EntropyAssessment.

[39] NIST. NIST Statistical Test Suite (STS). url:
http : / / csrc . nist . gov / groups / ST /

toolkit / rng / documentation \ _software .

html.

[40] NIST. “NIST SP800-22: A Statistical Test Suite
for Random and Pseudorandom Number Gener-
ators for Cryptographic Applications”. In: NIST
(2010).

[41] NIST. “NIST SP800-90B: Recommendation for
the Entropy Sources Used for Random Bit Gen-
eration”. In: NIST (2016).

[42] Alex Plaskett. QNX Security Architecture. 2016.

[43] Paul Rascagneres. Stack Smashing Protector.
2010.

[44] Fermin J. Serna. “The info leak era on software
exploitation”. In: Black Hat US (2012).

[45] QNX Software Systems. Clock and timer services.
url: http : / / www . qnx . com / developers /
docs / 7 . 0 . 0 / index . html # com . qnx .

doc . neutrino . sys _ arch / topic / kernel _

CLOCKANDTIMER.html.

[46] QNX Software Systems. ClockCycles(). url:
http://www.qnx.com/developers/docs/

660 / index . jsp ? topic = %2Fcom . qnx .

doc . neutrino . lib _ ref % 2Ftopic % 2Fc %

2Fclockcycles.html.

[47] QNX Software Systems. ClockTime(), Clock-
Time_r(). url: http : / / www . qnx . com /

developers/docs/660/topic/com.qnx.doc.

neutrino . lib _ ref / topic / c / clocktime .

html.

[48] QNX Software Systems. Controlling processes via
the /proc filesystem. url: http://www.qnx.
com / developers / docs / 660 / index . jsp ?

topic = %2Fcom . qnx . doc . neutrino . prog %

2Ftopic%2Fprocess_proc_filesystem.html.

[49] QNX Software Systems. DCMD_PROC_INFO.
url: http : / / www . qnx . com / developers /
docs/660/index.jsp?topic=%2Fcom.qnx.

doc . neutrino . cookbook % 2Ftopic % 2Fs3 _

procfs_DCMD_PROC_INFO.html.

[50] QNX Software Systems. devctl. url: http://
www.qnx.com/developers/docs/660/index.

jsp?topic=%2Fcom.qnx.doc.neutrino.lib_

ref%2Ftopic%2Fd%2Fdevctl.html.

[51] QNX Software Systems. On. url: http : / /

www.qnx.com/developers/docs/660/index.

jsp ? topic = %2Fcom . qnx . doc . neutrino .

utilities%2Ftopic%2Fo%2Fon.html.

[52] QNX Software Systems. pidin. url: http://
www . qnx . com / developers / docs / 660 /

index.jsp?topic=/com.qnx.doc.neutrino.

utilities/topic/p/pidin.html.

[53] QNX Software Systems. Private virtual memory.
url: http : / / www . qnx . com / developers /
docs/660/index.jsp?topic=%2Fcom.qnx.

doc.neutrino.sys_arch%2Ftopic%2Fproc_

Private_virtual_memory.html.

[54] QNX Software Systems. Procmgr abilities. url:
http://www.qnx.com/developers/docs/6.

6.0.update/#com.qnx.doc.neutrino.prog/

topic/process_Procmgr_abilities.html.

[55] QNX Software Systems. Procnto. url: http://
www.qnx.com/developers/docs/660/index.

jsp ? topic = %2Fcom . qnx . doc . neutrino .

utilities/topic/p/procnto.html.

[56] QNX Software Systems. Random. url: http://
www.qnx.com/developers/docs/660/index.

jsp ? topic = %2Fcom . qnx . doc . neutrino .

utilities/topic/r/random.html.

[57] QNX Software Systems. Shared memory. url:
http://www.qnx.com/developers/docs/7.0.

0/index.html#com.qnx.doc.neutrino.sys_

arch/topic/ipc_Shared_memory.html.

[58] QNX Software Systems. SysSrandom(), SysSran-
dom_r(). url: http : / / www . qnx . com /

developers / docs / 7 . 0 . 0 / index . html #

com.qnx.doc.neutrino.lib_ref/topic/

s/syssrandom.html.

[59] QNX Software Systems. Typed memory. url:
http://www.qnx.com/developers/docs/

7.0.0/index.html#com.qnx.doc.neutrino.

sys_arch/topic/ipc_Typed_memory.html.

[60] QNX Software Systems. QNX Neutrino RTOS:
System Architecture. 2014. url: http : / /

support7 . qnx . com / download / download /

26183 / QNX _ Neutrino _ RTOS _ System _

Architecture.pdf.

[61] QNX Software Systems. 50 Million Vehicles and
Counting: QNX Achieves New Milestone in Auto-
motive Market. 2015. url: http://www.qnx.
com/news/pr_6118_3.html.

[62] Julien Tinnes. Local bypass of Linux ASLR
through /proc information leaks. 2009. url:
http : / / blog . cr0 . org / 2009 / 04 / local -

bypass - of - linux - aslr - through - proc .

html.

[63] Ubuntu. ld.so, ld-linux.so - dynamic linker/loader.
2017. url: http://manpages.ubuntu.com/
manpages/xenial/man8/ld.so.8.html.

Page 21 of 22

Dissecting QNX

[64] Ubuntu. /proc/pid/maps protection. 2017. url:
https : / / wiki . ubuntu . com / Security /

Features#proc-maps.

[65] Gerrit De Vynck. CIA Listed BlackBerry’s Car Soft-
ware as Possible Target. 2017. url: https://
www.bloomberg.com/news/articles/2017-

03 - 08 / cia - listed - blackberry - s - car -

software-as-possible-target-in-leak.

[66] Ralf-Philipp Weinmann. BlackberryOS 10 From
a Security Perspective. 2013.

[67] Adam ’pi3’Zabrocki. “Scraps of notes on remote
stack overflow exploitation”. In: Phrack (2010).

Page 22 of 22

