
The	Mummy	2018	- Microsoft	Summons	Back	
Ugly	Attacks	From	The	Past

Who	am	I	

• Ran	Menscher
– Israel

• Independent	Software	Researcher
– Reverse	Engineering

• OS	internals,	Embedded,	Applications…

• Past:	VP	Research,	XM	Cyber

– Vulnerabilities
• Yes	J

I’m	going	to	tell	you	about

• An	unusual	bug	in	Windows	IP	stack

• Fragmentation	and	IP	ID	randomization
– Overview,	past	attacks
– The	bug	(CVE-2018-8493)
– Exploitation

• Other	cool	consequences

Fragmentation	and	Reassembly

Undeniably	Cursed

Undeniably	Cursed

Undeniably	Cursed
• Reassembly	sensitive	 to	resource	exhaustion	/	other	DoS

Undeniably	Cursed
• Reassembly	sensitive	 to	resource	exhaustion	/	other	DoSMore	

fragments	
coming	up You’re	

kidding…

Undeniably	Cursed
• Reassembly	sensitive	 to	resource	exhaustion	/	other	DoS
• Lots	of	attack	surface	to	evade	IDS

Undeniably	cursed
• Reassembly	sensitive	 to	resource	exhaustion	/	other	DoS
• Lots	of	attack	surface	to	evade	IDS

(source:	online	presentation	by	Tobias	Renwick)

Undeniably	Cursed
• Reassembly	sensitive	 to	resource	exhaustion	/	other	DoS
• Lots	of	attack	surface	to	evade	IDS
• Most	Implementations:	IP	IDs	as	Global	Counter

Curse	of	Global	Counter
• DeNATing
• Idle	Scanning

Curse	of	Global	Counter
• DeNATing
• Idle	Scanning
• Blind	packet	injection	(Zalewski 03)

Curse	of	Global	Counter
• DeNATing
• Idle	Scanning
• Blind	packet	injection	(Zalewski 03)

Valid DST Port

Curse	of	Global	Counter
• DeNATing
• Idle	Scanning
• Blind	packet	injection	(Zalewski 03)
• Traffic	interception by	NAT/Tunnel	(Gilad,	Herzberg	11)

Curse	of	Global	Counter
• DeNATing
• Idle	Scanning
• Blind	packet	injection	(Zalewski 03)
• Traffic	interception by	NAT/Tunnel	(Gilad,	Herzberg	11)

“Fragmentation	 Considered	 Vulnerable”,	 Gilad,	 Herzberg	2011

So	the	vendors	were	quick	to	seal	the	curse

So	the	vendors	were	quick	to	seal	the	curse
• Global	Counter	in	Windows	until	2012	(per	interface)
• windows	8	
• Different	IP	ID	per	IP	path
• And	they	were	safe	and	happy

For	8.1,	a	“major”	refactor	
had	taken	place	for	IP	IDs:
Most	prominent	changes:
• A	function	isn’t	inline’d anymore
– (but	 that	could	be	the	compiler)

• An	array	was	changed	to	a	
pointer

• Why	did	they	change	it?

IP	ID	GENERATION

• Is	about	IP PATH

• Is	about	IP PATH

identification = base + increment

• Is	about	IP PATH

identification = base + increment

Random	4	bytes	(init @boot)
⨁

hash(key,	IP	PATH)

• Is	about	IP PATH

identification = base + increment

Random	4	bytes	(init @boot)
⨁

hash(key,	IP	PATH)
increments[hash(key,	IP	PATH)]	

Oops

• Allocate	0x8000
• Initialize	8	… bytes
• Sizeof(int *)
• Mostly	zeros

Oops

• Allocate	0x8000
• Initialize	8	… bytes
• Sizeof(int *)
• Mostly	zeros

Oops

• 5

• Is	about	IP PATH

identification = base + increment

Random	4	bytes (init @boot)
⨁

hash(key,	IP	PATH)
increments[hash(key,	IP	PATH)]	

• key is	40	random	bytes
• hash is	a	Toeplitz hash	(RSS)
• Toeplitz matrices

Key

00000 45678 67456 78674
20384 09234 93759 12987
47823 28002 23532 75930
66783 48759 28465 93732

00000 55080 90366 98295
88998 33569 56486 17166
89406 29886 53232 44678
87289 20230 91489 43798, …

• key is	40	random	bytes
• hash is	a	Toeplitz hash	
• Toeplitz matrices

INPUT2 F 3

00000 45678 67456 78674
20384 09234 93759 12987
47823 28002 23532 75930
66783 48759 28465 93732

00000 55080 90366 98295
88998 33569 56486 17166
89406 29886 53232 44678
87289 20230 91489 43798,

…

Hash	=	tbl1[0x2]			 	⨁ tbl2[0xF]			⨁ …

00000 45678 67456 78674
20384 09234 93759 12987
47823 28002 23532 75930
66783 48759 28465 93732,

• key is	40	random	bytes
• hash is	a	Toeplitz hash	
• Toeplitz matrices

INPUT2 F 3

00000 45678 67456 78674
20384 09234 93759 12987
47823 28002 23532 75930
66783 48759 28465 93732

00000 55080 90366 98295
88998 33569 56486 17166
89406 29886 53232 44678
87289 20230 91489 43798,

…

Hash	=	tbl1[0x2]			 	⨁ tbl2[0xF]			⨁ …

00000 45678 67456 78674
20384 09234 93759 12987
47823 28002 23532 75930
66783 48759 28465 93732,

• key is	40	random	bytes
• hash is	a	Toeplitz hash	
• Toeplitz matrices

INPUT2 F 3

00000 45678 67456 78674
20384 09234 93759 12987
47823 28002 23532 75930
66783 48759 28465 93732

00000 55080 90366 98295
88998 33569 56486 17166
89406 29886 53232 44678
87289 20230 91489 43798,

…

Hash	=	tbl1[0x2]			 	⨁ tbl2[0xF]			⨁ …

00000 45678 67456 78674
20384 09234 93759 12987
47823 28002 23532 75930
66783 48759 28465 93732,

• Nibbles	of	input,	that	are	XOR	8	of	each	other	–
Their	hashes	are	XOR key[i]	of	each	other!

Hash	=	tbl1[0x2]			 	⨁ tbl2[0xF]			⨁ …

• Nibbles	of	input,	that	are	XOR	8	of	each	other	–
Their	hashes	are	XOR	key[i]	of	each	other!

Hash	=	tbl1[0x2]			 	⨁ tbl2[0xF]			⨁ …

Inputs	that	differ	only	by	a	nibble	will	output	a	cell’s	content!

• Nibbles	of	input,	that	are	XOR	8	of	each	other	–
Their	hashes	are	XOR	key[i]	of	each	other!

• Hash(10.0.0.1,10.0.0.2)	 =	1234	⨁ 5453	⨁ … ⨁ 0
• Hash(0x80|10.0.0.1,10.0.0.2)		=	1234	⨁ 5453	⨁ …⨁ key[i]

Hash	=	tbl1[0x2]			 	⨁ tbl2[0xF]			⨁ …

Inputs	that	differ	only	by	a	nibble	will	output	a	cell’s	content!

• Nibbles	of	input,	that	are	XOR	8	of	each	other	–
Their	hashes	are	XOR	key[i]	of	each	other!

• id(10.0.0.1,10.0.0.2)	 =	1234	⨁ 5453	⨁ … ⨁ 0	 ⨁ secret
• id(0x80|10.0.0.1,10.0.0.2)		=	1234	⨁ 5453	⨁ … ⨁ key[i] ⨁ secret

Hash	=	tbl1[0x2]			 	⨁ tbl2[0xF]			⨁ …

Inputs	that	differ	only	by	a	nibble	will	output	a	cell’s	content!

• Nibbles	of	input,	that	are	XOR	8	of	each	other	–
Their	hashes	are	XOR	key[i]	of	each	other!

• id(10.0.0.1,10.0.0.2)	 =	1234	⨁ 5453	⨁ … ⨁ 0	 ⨁ secret
• id(0x80|10.0.0.1,10.0.0.2)		=	1234	⨁ 5453	⨁ … ⨁ key[i] ⨁ secret

Hash	=	tbl1[0x2]			 	⨁ tbl2[0xF]			⨁ …

Inputs	that	differ	only	by	a	nibble	will	output	a	cell’s	content!

• Nibbles	of	input,	that	are	XOR	8	of	each	other	–
Their	hashes	are	XOR	key[i]	of	each	other!

• id(10.0.0.1,10.0.0.2)	 =	1234	⨁ 5453	⨁ … ⨁ 0	 ⨁ secret
• id(0x80|10.0.0.1,10.0.0.2)		=	1234	⨁ 5453	⨁ … ⨁ key[i] ⨁ secret

ID1	⨁ ID2	=	key[i]

ATTACK	(key	recovery):
• Get	two	samples	of	IP	IDs
• For	IP	PATHs	 that	differ	by	a	nibble.	XOR	8	of	each	other.
• Key[0]	=	ID1 ^	ID2 (if	we	hit	increment=0)
• Repeat	until	confident	of	key[0]
• Repeat	for	other	key	parts

identification1 = key[i]⨁ identification2

identification1 = key[i]⨁ identification2

• But	if	increment≠0	
• We	can	deduce	content	from	the	table	(=uninitialized	mem)

If	increment1 ==0 If	increment2 ==0

ATTACK	(reading	kernel	mem)
• Choose	IP	ID	for	IP	PATHs	known	to	have	increment=0
• Use	recovered	key	to	initialize	Toeplitz matrix	values
• Get	IP	IDs	for	IP	PATHs	differing	by	a	nibble	from	chosen	IP	PATH
• Calculate	expected	IP	IDs	according	to	matrix
• Sample – Expected =	Table	content	=	uninitialized	mem

DEMO

Predicting	IP	IDs
• When	increment=0,	prediction	is	practical
• Works	similarly	to	the	memory	read
• Problem	reduced	to	assessing	#	of	packets	sent

Take	Aways

• DontFragment (DF)	is	not	just	an	IP	flag.	it’s	good	advice.

• Yes,	Coders	who	refactor	working	code	are	grave	robbers.

• If	you	mix	performance	and	security,	a	simple	bug	will	bring	you	down.

Questions?

Ran	Menscher
ran@menschers.com
Twitter:	@menscherr

