
Perfectly Deniable Steganographic Disk Encryption

Dominic Schaub, Ph.D.1

1Discrete Integration, Canada

Black Hat Europe 2018

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Outline

1 Overview
• Steganography’s history and modern-day importance
• Critical appraisal of True/VeraCrypt hidden-volume/OS feature

2 Deniability Requirements
• Essential characteristics of steganographic disk encryption
• Technical requirements resulting from implementation

3 System Design I
• Countering randomization & overwrites: error correction & caching
• Concrete implementation of error correction and caching

4 System Design II
• Overcoming steganography’s catch 22: a cascading bootstrap system
• Concrete Implementation

5 Forensic Considerations
• Multi-snapshot imaging & FTL analysis

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Steganography Overview

• Steganography or steg (literally "covered writing")
dates back to antiquity. It boils down to hiding a
message in an innocuous cover; it’s a form of covert
communication

• Cover can be a microdot (resembling a period), a JPEG
image of kittens, or even human hair...

• Histories (440 BC) recounts how Histiaeus had a
servant’s head shaved and scalp tattooed; he was
sent off to deliver the secret message once his
hair had regrown

• We don’t do this anymore...I think?

• Nowadays steganography is usually digital...it’s faster
than waiting for hair to regrow!

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Framework for Analyzing Cryptographic Systems

Alice Bob

Eve

ciphertext

decrypt?

• Goals
• Alice & Bob: Communicate through unbreakable ciphertext
• Eve: Break Alice and Bob’s encryption

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Framework for Analyzing Steganographic Systems

Alice BobWarden

hidden message under
innocent exchange

detect?

011
001

Unfortunately, Alice and
Bob relied on 3DES and
landed in jail...

• New Goals
• Alice & Bob: Exchange secret messages that cannot be detected
• Warden: Detect the presence of secret messages in cover

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Topical Applications of Steganography

• Protection of journalists and their sources
• Some countries have real protections for the press; most don’t

• Protection of human rights observers and NGO staff
• Exfiltrating evidence of human rights abuses is risky; little chance violators

observe search/seizure/self-incrimination norms
• Protection against industrial espionage at border crossings

• Business travel often involves visits to countries that steal IP and
monitor/control networks (e.g. ban VPN connections)

• Deep uncover work
• Agents working undercover can infiltrate/exfiltrate/conceal information, even

if they may be forced to surrender a password

Encryption is adequate when there’s no risk of forced password disclosure.
For everything else, use steganography!

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Common Digital Steganography Variants

• Image/Video/Audio Steg (e.g. OpenStego, OpenPuff)
• Hides information within e.g. lowest significant bit of pixels/samples

• 802.11 Wireless Steg (experimental)
• Conceals data in OFDM symbols; as per 802.11 standard, some frames

contain "random" data
• Disk Encryption/Filesystem Steg (e.g. StegFS, VeraCrypt)

• Allows information to be secreted in unused disk space
• Radio-frequency Steg (e.g. spread spectrum)

• Transmit a signal beneath the background ‘noise floor’

Note for later: these all require special software (or hardware)

...possibly a problem?

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Forensic Analysis Techniques

1 Comparison of suspected file against known original
• Using a cover file from Google images is asking for trouble...

2 Direct forensic analysis of (potential) cover media
• Embedding hidden information into e.g. a JPEG image often disturbs the

medium’s statistical characteristics
• Cat and mouse game between steganographic and steganalytic software’s

statistical models (more sophisticated is better)
3 Forensic analysis of a computer system suspected of being used for

steganographic activities
• Searches for indirect evidence of steganography use
• Might involve examination of temporary files, log files, swap space, etc.

The first two are classified as steganalysis

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Two Magical Ingredients

• Effective
steganography
depends on
combining two
magical ingredients

• Alone, neither
forensic resistance
nor plausible
deniability offer
effective protection

+++++¡ ! " £ $ % ^ & * () - +

¡ ! " £ $ % ^ & * () - +

ctrl Q

ctrl

W E R T Y U I O P { }

A S D F G H J K L : @ ~

| Z X C V B N M < > ? ^

fnctrl

end

pgdn

pgup

home

O X Y G E N

+++++¡ ! " £ $ % ^ & * () - +

¡ ! " £ $ % ^ & * () - +

ctrl Q

ctrl

W E R T Y U I O P { }

A S D F G H J K L : @ ~

| Z X C V B N M < > ? ^

fnctrl

end

pgdn

pgup

home

O X Y G E N

+++++¡ ! " £ $ % ^ & * () - +

¡ ! " £ $ % ^ & * () - +

ctrl Q

ctrl

W E R T Y U I O P { }

A S D F G H J K L : @ ~

| Z X C V B N M < > ? ^

fnctrl

end

pgdn

pgup

home

O X Y G E N

+++++¡ ! " £ $ % ^ & * () - +

¡ ! " £ $ % ^ & * () - +

ctrl Q

ctrl

W E R T Y U I O P { }

A S D F G H J K L : @ ~

| Z X C V B N M < > ? ^

fnctrl

end

pgdn

pgup

home

O X Y G E N

+Pity

"Enjoy
 your
 stay"

•No plausible explanation
for cover medium AND
•Poor implementation =
easily detected with
forensics

•Plausible explanation for
cover medium BUT
•Poor implementation =
easily detected with
forensics

•No plausible explanation
for cover medium DESPITE
•Good, undetectable
implementation

•Plausible explanation for
cover medium AND
•Good, undetectable
implementation

Plausible Deniability

F
o
re

n
s
ic

 R
e
s
is

ta
n

c
e

 Poor Good

 G
o
o
d

Po

o
r

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Some Colorful History...

c. 1997 2004 2013

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Block-Level Encryption Overview (VeraCrypt and LUKS/dm-crypt)

MBR/GUID

EFI

Encrypted
Data

Encryption
Header

used blocks correspond

OS /
Filesystem

Encryption/
Decryption

e.g.
/dev
/mapper
/encrypted

e.g. /dev/sda

AES

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

VeraCrypt’s Hidden Volume Feature

Head

OS / FS ENC/
DEC

/dev
/mapper
/encrypted

AES

Encr
DataENC/

DEC

AES
cover

/dev/sda1

/dev/sda2

Hidden
OS / FS

/dev
/mapper
/super_secret

AES
hidden

?

Cover Mode Hidden Mode

2nd FS

ENC/
DEC

Encr
Data

/dev
/mapper
/encrypted2

Head

• Forensic security is high...but
• Is it plausible to have a second frozen partition...with TRIM disabled... on top of

using VeraCrypt? Is " ? " random init data or something else?

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Conclusion: It’s Missing a Magical Ingredient

Possible Explanations for Existence of
Two VeraCrypt Partitions on Single Drive
An adversary might ask why you created two VeraCrypt-encrypted
partitions on a single drive...you can provide, for example, one of the
following explanations:

[A number of canned explanations that are not very convincing]

from www.veracrypt.fr/en/VeraCrypt Hidden Operating
System.html ' '
' '

 So, let me get this
straight... you're quoting a
website on data hiding to
 tell me you're not hiding
 anything?!

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Magical Ingredients with Steganographic Disk Encryption?

1 Forensics: Encrypted hidden
data should masquerade as
legitimate random data; hidden
system should never touch
cover system (e.g. swap)

2 Deniability: Cover system
(e.g. Ubuntu) should appear
completely normal. There
should be NO incriminating
software visible. The cover
system should appear,
bit-for-bit, as if it were installed
with default settings*

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Basic Idea: Conceal Data in Slack Space

S
e
ct

o
rs

 (
5

1
2

 o
r

4
0

9
6

 b
y
te

s)
In use by OS

Free ("slack")

e.g./dev/sda{ In use by OS

Free ("slack")
repurposed to
store hidden
data

e.g./dev/sda

• In a system with FDE, slack space has been initialized with random data
• This random data can actually be the ciphertext of hidden data
• Similar to VC hidden partition, but no restrictions on cover system

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Consequence 1: Concealed Data is Damaged

In use by OS

Free ("slack")
repurposed to
store hidden
data

e.g./dev/sda

• Ongoing overwrites continually damage the underlying hidden data
• But for large hard drives, most slack space may never be overwritten!
• As the cover system (a default installation of Linux) acts completely normally,

there is nothing suspicious about this picture

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Consequence 1.1: Concealed Data is Stored Diffused/Redundantly

e.g./dev/sda

diffuse
"redundify"

secret.doc secret.doc

• To protect "secret.doc", add redundancy and diffuse across slack space
• To recover "secret.doc", collect intact sectors and extract original file

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Consequence 2: Cover System Overwrites are Sacrosanct

In use by OS

Free ("slack")
repurposed to
store hidden
data

e.g./dev/sda

NEVER!

• Sectors in current or previous use by the cover system must never be
overwritten—This would corrupt cover OS and/or suggest that something fishy is
going on

• Hidden system must reliably detect sectors used by cover OS

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Consequence 3: Kernel Module is Incriminating

Problem: Cover system
overwrites hidden data
Solution: Error Correction
(EC) & Randomization

Problem: Randomization & EC
kill performance
Solution: Kernel module with
deep cache that mitigates EC
and randomization

Problem: Hidden system must
respect cover-system overwrites
Solution: Sector hash checks by
a kernel module

Problem: Kernel module
is really incriminating!
Solution: Have the
system hide itself!

The problem factors into two relatively independent sub-problems:

1 Develop a kernel module that does error correction, randomization, caching, and
detection of cover system writes

2 Develop a set of tools that hide, extract, and load the kernel module in the most
automated way possible (and without leaving a forensic trace)

• For flexibility, hidden data reads/writes should be to a block device

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Bird’s-eye View of a Running System

/dev/sda
dm-crypt

cover

dm-crypt
hidden

FS (ext4)

StegFS (ext4)Hidden
OS

/dev/mapper/crypt

/dev/mapper/crypt

Cover
OS

{
Reserved sectors
accessible to
userspace utility

Cover System

Hidden System
/dev/steg

Onl
y

on
e

sy
st

em

 r
un

s
at

 a
 g

iv
en

 t
im

e

• Blue boxes = kernel space; ext4 & device names are just examples

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Primer on Information Theory and Communication Channels

H(X) H(Y)

I(Y;X) = H(X) – H (Y|X)

Input Channel Output
(Corrupted)

Noise

• The mutual information, I(Y ;X), is related to the channel capacity
• For example, given a binary alphabet, a transmission might look like:

 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

From General Channels to the Binary Erasure Channel

• Many channel models exists:
• Input/output symbols from discrete or continuous alphabets
• Noise can be many forms (e.g. white Gaussian, bit flips etc.)
• Channel noise may also take the form of erasures

• Designating pe as the probability of
erasure, the Binary Erasure
Channel
can be modeled as =⇒

• X denotes erasure
• Mental note for later: pe is

assumed constant

1 – pe

1 – pe

pe
pe

0

1

0

1

X

in
p
u
t

o
u
tp
u
t

• Transmission through a binary erasure channel might look like:

 0 1 1 0 1 0 1 0 0 1 X 0 1 X 1 0

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Primer on Forward Error Correction

0
1
0
1
1

0
1
0
1
1

1
1
0
0

1
0
0
1
0

X
1
0
0

1
X
0
1
0

Co
de
wo

rd
Co
rru

pte
d

Co
de
wo

rd
Or
igi
na
l

Da
ta

Reconstructed

Data

e
n
c
o
d
e

d
e
c
o
d
echannel

! !

• Basic idea: Add highly interwoven redundancy to correct most errors
• Coding rate = size(data) / size(codeword)
• If the code is properly constructed for the channel, complete error correction

should almost always be possible
• There should not be any more redundancy than is necessary

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Low-Density Parity-Check (LDPC)

• An LDPC code can be described by its Tanner graph:

Check Nodes:

Variable Nodes:

• Nodes belong to an additive group (for GF(2n), "+" is just XOR)
• Regular (Irregular) codes have variable nodes of (non-)fixed degree
• A codeword might look like:

1 0 1 0 0 1 0 0 1 1 0

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Iterative Decoding Example

• Decoding employs extremely
fast Belief Propagation

• Residual errors may be
correctable with Gaussian
elimination (albeit at much
reduced dimensionality)

1

1

2

3

3

4

I.

II.

III.

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Importance of Randomization

• Data is stored on the underlying device in
multiple independent coding blocks that
include redundancy for error correction

• A small number of overwrites might
irrecoverably damage a coding block if its
spatial arrangement is statistically similar to
the overwriting process

• E.g. Coding block 1 is damaged but
recoverable; coding block 2 cannot be
recovered

}
}
}
}

1

2

3

4

}
}
}
}

1

2

3

4

Pristine

Data with FEC checksum

Damaged from
Overwrites

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Importance of Randomization (2)

Original,
Pristine

D
a
ta

 w
it
h
 F

E
C

 c
h

e
c
k
s
u

m

Randomized,
Damaged

}
}
}
}

1

2

3

4

Randomized
Pristine

}
}
}
}

1

2

3

4

Original,
Damaged

randomization derandomization

Damage is
beneath critical
threshold for all
coding blocks.

All data can
now be
recovered
through error
correction!

• Randomization of data is equivalent to randomization of error
• This means the pe (probability of erasure of a given datum) is constant across

all data
• System is now described perfectly as a Binary Erasure Channel!

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Kernel Module Design

/dev/sda
dm-crypt

cover

dm-crypt
hidden

FS (ext4)

StegFS (ext4)Hidden
OS

/dev/mapper/crypt

/dev/mapper/crypt

Cover
OS

{
Reserved sectors
accessible to
userspace utility

Cover System

Hidden System
/dev/steg

Onl
y

on
e

sy
st

em

 r
un

s
at

 a
 g

iv
en

 t
im

e

Subject of
next slide

Cache

Queue of sectors
scheduled for I/O
(dynamically sorted)

Disk I/O
Service

1+ threads

Load/Sync
States, etc.

ErasureState
DataState
RecoveryState
Hash
Data

Sector

Sector Group

Block

FIFO of coding
blocks scheduled
for de/en-coding

LDPC En/De-
Coding
Service

several threadsPeriodic
Sync
Service

1 thread
Coding Blocks

Pending Block

Pending Blocks

BIO Request
Handler

1 thread

OS OS

Request

Request

In-Flight Requests

Block

Coding Blocks are
dynamically sorted
by last access time

Implemented as
FIFO queue

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Randomization Implementation

• Require an injective (1:1) function mapping each sector
pseudorandomly to another
I : {1, . . . ,n} →pseudorand {1, . . . ,n}

• Can’t use a hash since it’s not 1:1
• Can’t use LUT (2 TB drive = 16 GB LUT!)
• Can’t use e.g. AES CTR mode, as block size is

fixed at 128 bits (n = 2128)

• Need a flexible n that is not much bigger than actual
number of sectors of given hardware

• Use a Feistel network!

• Two rounds and a simple hash is fine; "adversary" is
erasure noise, not a cryptanalyst

• However, (balanced) Feistel network is still some power
of 4....if we had 1777 sectors?

HASH

HASH

original
n-bit integer

lower bits upper bits

permutated
n-bit integer

lower bits upper bits

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Randomization Implementation (2)

• E.g. assume we require
{0, . . . ,10} →pseudorand {0, . . . ,10}
(i.e. 11 sectors)

• Next largest balanced Feistel network
will implement
{0, . . . ,15} →pseudorand {0, . . . ,15}
(i.e. 16 instead)

• That’s ok; repeated iterations that
start in {0, . . . ,10} will always
return to {0, . . . ,10}

• Usually this process is very fast;
average computational complexity is
constant

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

Startin
g Value

Firs
t Ite

ration

Second
Third

Fourth

done: 3→
1

done: 6→
2

done: 9→
9

11 11
11 10
11 01
11 00
10 11
10 10
10 01
10 00
01 11
01 10
01 01
01 00
00 11
00 10
00 01
00 00

Upper
Lower

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

LDPC Implementation

32B 480B = 3840b

HASH DATA erasure = [hash(DATA) != HASH]
(boolean)

• Error correction are implemented as concatenation of two regular LDPC codes
with 480-byte integer nodes belonging to GF(23840)

• Codes found via computational search that excised 2-, 4-, and 6- cycles
• Final codes were verified with binary erasure channel simulations and were found

to be reasonably close to capacity achieving
• Codes can easily be modified; concatenation has object-oriented implementation;

a single coding block is ∼ 5 MB

Code Regularity #Check #Variable Deg Check Rate
Outer Regular 5,100 5,100 6 50%
Inner Regular 100 5,000 300 98%
Combined N/A N/A N/A N/A 49%

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Deep Cache Implementation

• Default cache size is 320 coding blocks

• Cache is periodically synced to disk when idle

• Encoding/Decoding done in place by multiple concurrent threads

• Coding blocks have two status variables, load_state and sync_state
that form 19-state space (SCB) and "dirtiness" fcns

• Complete space is S320
CB × SQ, where SQ captures queued req’s

• Very complex supervisory logic optimizes data access patterns and
services requests as quickly as possible while minimizing accesses to
base block device

• Multiple coding blocks can (un)load simultaneously; data reads /writes are
interleaved via downstream elevator scheduler(s)

• Debugging multithreaded kernel-space asynchronous finite-state machine
was a nightmare (what’s the LD50 of caffeine again?)

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Performance & SSD / HDD Variants

• Steg kernel module can be customized with extensive parameters that tune
performance characteristics

• Some parameters, like SECTORS_PER_GROUP have many derivative
parameters

• Makefile allows selection between two predefined parameter sets:
• SSD: Assigns low value to SECTORS_PER_GROUP resulting in greater

randomization of data and improved error correction
• HDD: Assigns a higher value to SECTORS_PER_GROUP resulting in more

"clumpy" data that is less randomized but generates fewer random seeks
• So what does typical performance look like?

Normal 4x PCIE
NVME machine

Steg running
on 4x PCIE
NVME
machine

Normal HDD
machine

Steg running
on HDD
machine

Windows 95
machine
needing a
defrag

> > > >

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Reflexive Bootstrapping?

/dev/sda

dm-crypt
hidden

StegFS (ext4)Hidden
OS

/dev/mapper/cryptHidden System
/dev/steg

steg.ko
insmod steg.ko

• If we had a system that was already running, it would be simple:
1 Retrieve steg.ko (it’s just a file on the hidden system FS)
2 Load steg.ko into kernel with e.g. insmod

• If only things were so simple...(neverminding technicalities with FS)

• How do we get around this catch 22?

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Leaving Aside the Steg LKM and Hidden System for a Moment...

/dev/sda

dm-crypt
hidden

StegFS (ext4)Hidden
OS

/dev/mapper/cryptHidden System
/dev/steg steg.ko

steg.ko

• Could we store steg.ko LKM directly on the mapped crypt device?
• Problem: It will likely be at least partly overwritten, as LKM is ∼MB
• Especially true for big files, as few large contiguous regions will exist

under the cover system, even if its disk use is sparse

• Could we just store the steg.ko kernel multiple times?
• Problem: Probability of a surviving intact copy might still be small
• Problem: Even if one exists, how do we find it? Repeatedly try running

corrupted code in kernel space? (rhetorical question)

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

What we could do instead...(i.e. a recursive bootstrap system)

/dev/sda

dm-crypt
hidden

StegFS (ext4)Hidden
OS

/dev/mapper/cryptHidden System
/dev/steg

2-sector
ELF
(multiple
copies)

• Store multiple copies of a very short executable at regular intervals
• For lightly/moderately used cover, any one copy is likely intact and will

execute perfectly! Execute in userspace (try again if needed)

• What can you do with a 1-kB executable? Lots!!
1 Scan mapped crypt device for other shards of intact information; do

rudimentary error correction to recover original shards
2 Assemble shards into a new (much bigger) ELF and execute
3 Repeat...each time with more sophisticated error correction

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Overview of Hidden System Boot Sequence

ELF
Primary
Bootstrap

ELF
Secondary
Bootstrap

Cover Early
Userspace
$

Cover
Bootloader
e.g. GRUB

Hidden
Early
Userspace

Hidden Final
Target (e.g.
Graphical)

A user hits 'e'
and adds
'break' to
kernel
command line

Using
cryptsetup, a
user copies
over a 2-sector
file to tmpfs
and executes
it

User involvement

With primitive
error correction,
the primary
bootstrap
extracts and
executes a
larger,
secondary
bootstrap

With
sophisticated
error correction,
the secondary
bootstrap
extracts and
loads, via kexec,
a replacement
kernel and
initramfs

The hidden
system's
cryptographic
mapping and
steg kernel
module is loaded
from a custom
hook from within
the hidden
system's early
userspace
environment

Completely
functional
system;
/etc/fstab
has /dev/steg
entry instead of
e.g. /dev/sda1

Just a thought...could this be
automated by rolling some
limited functionality into
cryptsetup?

}

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Stacked Decomposition of Base Block Device Contents

e.g./dev/sda

hiddenhiddenhiddencover

x
x

xx
xxxx
x
xxx

Cover OS

Hidden OSPrimary Bootstrap

Secondary Bootstrap

• Each of a layer’s utilized blocks overwrite those to its right
• Note ascending sophistication of error correction from left to right (none ,

user repetition , automated repetition , LDPC)

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Early Userspace Bootstrap Process: Launching Primary Bootstrap

$cryptsetup open --type=plain --size=2
--skip=10000 --offset=10000 /dev/sda crypt

hidden

dm-crypt
9,999
10,000
10,001
10,002

/dev/sda

/dev
/mapper
/crypt

$cp /dev/mapper/crypt /steg (this is tmpfs!)
$chmod +x /steg
$/steg

1

2

/dev
/mapper
/crypt/primary_bootstrap

ELF...
Primary
Bootstrap

Upon running /steg, the user’s job is done. Note /steg is only 1024 Bytes

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Early Userspace Bootstrap Process: Primary Bootstrap Ops (1)

hidden

dm-crypt
9,999
10,000
10,001
10,002

/dev/sda

/dev
/mapper
/crypt

1

2

ELF...
Primary
Bootstrap

Running

hidden

dm-crypt

/dev/sda
/dev
/mapper
/crypt

1. Take down old, 2-
sector crypto
mapping (no longer
needed)

2. Re-establish crypto
mapping under same
key but for entire
sector range (i.e. no
"size" parameter in
cryptsetup)

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Early Userspace Bootstrap Process: Primary Bootstrap Ops (2)

1

2

ELF...
Primary
Bootstrap

Running

hidden

dm-crypt

/dev/sda/dev
/mapper
/crypt

 A

 A

 A

 A

 B

 B

 B

 B

 C

 C

 C

 C

 D

 D

 D

 D

 A B C D

2. Concatenate good copies of
shards (using the non-header
portion) to generate new ELF,
which is about 350 kB. When
done, transfer control to
new ELF via execve()
system call

1. Extract shards of a new ELF
image. Each shard was stored
multiple times at pseudo-
random locations to allow the
error correction done here.
Compare each shard copy's
header against magic
number: = pass, = fail

ELF...
Secondary
Bootstrap

/secondary_bootstrap (again: tmpfs!)

M
u
lt

ip
le

 C
o
p

ie
s

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Early Userspace Bootstrap Process: Secondary Bootstrap Ops

1

2

Running

hidden

dm-crypt

/dev/sda/dev
/mapper
/crypt

ELF...
Secondary
Bootstrap

/dev
/steg

steg

Userspace emulation
of kernel module 1. Establish userspace

"kernel module"
mapping that exposes
"reserved sectors" to the
secondary bootstrap
program

2. Extract three files
from reserved sectors
and save them to tmpfs

3. Soft boot into hidden
system via kexec_load
system call
parameterized with
three extracted files

steg kernel kernel param steg initramfs

/vmlinuz-linux /cmdline.txt /initramfs-linux.img

reserved
sectors}

(again: tmpfs!) }
contains steg kernel module loaded
during boot of hidden system3 kexec_load()

LVMcryptsetup
steg.ko etc...

Kernel & initramfs are many MB—hence the need for LDPC error correction

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Hidden System Boot: Wrapping Up...

• Hidden system initramfs contains the steganographic kernel module

• Significant waypoints within hidden system early userspace boot:
1 Establish hidden-perspective cryptographic mapping

(e.g. /dev/sda -> /dev/mapper/crypt) with cryptsetup (password can
be stored in hidden system initramfs)

2 Establish steganographic mapping
(e.g. /dev/mapper/crypt -> /dev/steg) by loading steganographic
loadable kernel module

• Typical hidden system /etc/fstab will associate / with /dev/steg.

• Sundry points
• Primary bootstrap (1024 Bytes) contains primitive EC functionality and was

hand coded in assembly with lots of cheats/optimizations

• Secondary bootstrap (∼ 350 kB) contains heavyweight LDPC functionality
and was written in C/C++ with all libraries linked in, symbols stripped out,
and compressed with UPX

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Final Points on Software Development

• Languages used: Assembly, C, C++, Make, KMake

• ∼ 30,000 lines of code spanning main kernel module, userspace utilities (for
installation, diagnostics, etc.), and various components of bootstrap system

• ∼ 180 class definitions

• ∼ 900 functions/methods

• Extensive validation of cover system preservation by hidden system

• Seems to function well; no instability or data corruption observed

• Tested with various combinations of Arch and Ubuntu

• Confirmed that VirtualBox/Windows works very well on hidden system

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Multi-Snapshot Imaging and Countermeasures

• Ongoing use of the hidden system will change
the data in the slack space of the cover system

• Differential analysis of slack space between
temporally separated snapshots may reveal
changes indicative of steganography use

• Countermeasures:
• Cease all hidden system use after first

imaging
• Reinstall entire system if allowed by cover

story
In use by OS

Purportedly
free ("slack")

e.g./dev/sda These
should
not have
changed!

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Flash Translation Layer (FTL) Analysis and Countermeasures

• SSDs maintain ever-changing mappings between
logical/physical sectors—the FTL

• FTL also contains metadata on previous errors, read
and write operations, etc.

• Statistical FTL analysis may uncover historical access
patterns that implicate steganography

• Disabling TRIM is suspicious

• Countermeasures:
• Use magnetic storage (best)
• Put hidden OS in cover swap (default no TRIM)
• Re-flash SSD firmware with special software from

hidden system to cover tracks (expensive)
• SSD firmware is costly and time consuming to

reverse engineer—exploit this!

Misc
Metadata

Logical/Physical
Mapping

FTL

stored in persistent
flash memory

OS

Log

Phy

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Takeaways

1 Steganography software can recursively hide itself
• Need to download/possess incriminating software is obviated
• Forensic risk can be eliminated*

2 Russian doll steganography is made much easier
• Need to use an incriminating 802.11 steg communications tool? Infiltrating

this tool into a hostile location is easy...
3 Open-channel SSDs will enable physics-based steg

• Entire new avenues of steg are on the horizon

• Insight into steganography use may go darker, variously affecting
journalists, NGOs, those tasked with organizational security (e.g. ISOs),
law enforcement, and intelligence.
• Journalists/NGOs may gain better opsec; OTOH, organizations should

consider proactive response and SSD forensics development.

Overview
History

VeraCrypt Appraisal

Deniability
Requirements
Essentials

Technical
Requirements

System
Design I
Randomization/
Overwrites

Concrete
Implementation

System
Design II
Cascading Bootstrap

Concrete
Implementation

Forensic Con-
siderations
Multi-snapshot/FTL

Summary

Contact Us

Please contact us!
• information@discreteintegration.ca

	Overview
	History
	VeraCrypt Appraisal

	Deniability Requirements
	Essentials
	Technical Requirements

	System Design I
	Randomization/ Overwrites
	Concrete Implementation

	System Design II
	Cascading Bootstrap
	Concrete Implementation

	Forensic Considerations
	Multi-snapshot/FTL

	Summary

