
Network Defender Archeology

An NSM Case Study in Lateral Movement with DCOM

2

Current: Principal Security Engineer at
Gigamon Applied Threat Research (ATR)

Former:

• Computer Science, USAF Academy c/o ‘10

• Cyber Counter-Intelligence, USAF

• Red Team Lead – Veris Group ATD

• ICEBRG

Justin Warner

@sixdub

R E S E A R C H P R O T O T Y P E D E T E C T

3

Current: Security Engineer at Gigamon Applied
Threat Research (ATR)

Former:

• ICEBRG intern and Security Engineer

• Informatics @ University of Washington

R E S E A R C H P R O T O T Y P E D E T E C T

Alex Sirr

@DarkAl3x1s

4

Acknowledgements

Things are rarely ever “new” anymore, but rather a continuous expansion of others’

previous works that branches into many directions…

A special thanks to those who inspired, influenced,

or shaped this presentation!

Shout out to Casey Smith, Matt Nelson, Philip Tsukerman, Joe Johnson

55© 2018 Gigamon. All rights reserved.

Let’s Tell a Story

6

1990s

Why Are We Here?

Modern Day
https://enigma0x3.net/2017/01/05/lateral-movement-using-the-mmc20-application-com-object/

https://www.cybereason.com/blog/dcom-lateral-movement-techniques

https://bohops.com/2018/04/28/abusing-

dcom-for-yet-another-lateral-movement-

technique/

https://attack.mitre.org/wiki/Technique/T1175

https://www.fireeye.com/blog/threat-research/2018/03/iranian-threat-group-updates-

ttps-in-spear-phishing-campaign.html

https://codewhitesec.blogspot.com/2018/07/lethalhta.html

7

DCOM Lateral Movement

8

Problem Here

9

Simple fact: DCOM is abused by adversaries yet NSM techniques for

DCOM are rarely discussed.

We must rise to the occasion to:

• Understand the “normal” behaviors of DCOM

• Recognize malicious indications of DCOM abuse

• Adapt our tools to empower us to detect DCOM abuse

Let’s deep dive into DCOM and look at NSM techniques.

Real Talk

1010© 2018 Gigamon. All rights reserved.

Let’s Dive In

11

Where Did We Learn This?

A sample of some of the books out there on DCOM. We used 1 or 2 of these.

The books we read are older than Alex…

12

Component Object Model (COM)

COM is a language independent model that allows applications to expose objects with

functionality

Components are compiled code that provide
functionality to the system

Class IDs (CLSID) are used on system to uniquely
identify a component

Components are typically registered on a system,
sometimes automatically

Components implement one or more interfaces

C
O

M
 O

ve
rv

ie
w

13

COM Interfaces

Components implement interfaces for
interoperability

• Interfaces define and expose common functionality

• All objects implement the IUnknown interface

• The IDispatch interface handles “automation”

• The ISystemActivator interfaces handle instantiation
(direct or through IClassFactory)

Object

Interface C

Interface B

Interface A

IUnknown Interface

14

Distributed COM (DCOM)

COM objects are exposed/callable over a network in a distributed manner, hence Distributed

COM (DCOM)

Uses DCERPC as a transport mechanism

Client/server model

Uses request / response structures to communicate

Code is executed on the server and output is returned
to client

D
C

O
M

 O
ve

rv
ie

w

15

DCOM Primer

https://msdn.microsoft.com/en-us/library/cc226811.aspx

DCOM Requests DCOM Response

• DCERPC “Bind” is used to attach to a specific COM interface using the Interface ID (IID) and

“Alter_Context” can be used to move between bound interfaces.

• After binding, messages will be passed using specific structures:

1616© 2018 Gigamon. All rights reserved.

Adversarial COM/DCOM &
Lateral Movement

17

Adversary Techniques Using COM

Numerous benefits of abusing COM functionality:

• Legacy technique that is not well documented or understood

• Can be used for multiple stages in attack lifecycle

• Host / network indicators vary. Visibility often insufficient.

GO WATCH THIS TALK! Casey and Matt document it all.

https://www.slideshare.net/enigma0x3/windows-operating-system-archaeology

Code Execution Lateral Movement Persistence

• COM Scriptlets

• WSH Injection

(pubprn.vbs)

• AMSI Bypass

• Many common

objects allow for

execution

• COM Hijacking

• Malicious Office Add-

ins

Attack Lifecycle Highlights

18

All of These

19

Finding Object - DEMO

20

Fun Technique #1 – MMC2.0 Application

21

Fun Technique #2 — Excel XLL Registration

https://gist.github.com/ryhanson/227229866af52e2d963cf941af135a52

https://gist.github.com/ryhanson/227229866af52e2d963cf941af135a52

2222© 2018 Gigamon. All rights reserved.

Behavior Analysis

23

Finding Abuse Objects

Which objects of are particular interest:

• Objects that have functionality to load or execute code

• Objects with no explicit “Launch Permission”

• Objects that implement IDispatch

Methods of exploring COM classes:

• Registry (HKEY Classes Root)

• OleView .NET

• Stumbling around system directories

DCOM objects available on a system can be enumerated via Win32_DCOMApplication WMI

Class!

24

DCOM Behavior Overview

C
L
IE

N
T

S
E

R
V

E
R

Activation Object is instantiated on

remote host

Optional “Type” Operations

Execution

Function information is

resolved

Selected function is

executed

25

Breakdown Part 1 – Activation of MMC20.Application Using PowerShell

The activation phase was the first observed interactions on the network.

C
L
IE

N
T

S
E

R
V

E
R

IOXID Operations

Authentication / Authorization

ISystemActivator::RemoteGetClassObject

IRemUnknown2::RemQueryInterface

IClassFactory Operations

26

Breakdown Part 2 - RemoteGetClassObject

RemoteGetClassObject Request

• Data Offset 0x01EA = CLSID

• = |1a 79 b2 49 ae b1 90 4c 9b 8e e8 60 ba 07 f8 89 10|

• = {49b2791a-b1ae-4c90-9b8e-e860ba07f88910}

https://msdn.microsoft.com/en-us/library/aa814545(v=vs.85).aspx

27

Breakdown Part 2 – ITypeInfo Operations

ITypeInfo - Interface that provides function and type information to the user. It is part of COM

“automation”. Automatically provided through IDispatch.

Function Name Purpose

GetFuncDesc Function Resolution

GetNames Property / Function
name resolution

GetDocumentation Help Documentation
retrieval C

o
m

m
o
n

 I
T
yp

e
In

fo
O

p
s

28

29

Breakdown Part 2 – ITypeInfo Operations

ITypeInfo:GetFuncDesc (5)

ResponseRequest

MEMBERIDFunction Index / Ordinal
FUNDESC

https://msdn.microsoft.com/en-us/library/cc237750.aspx

30

Breakdown Part 2 – ITypeInfo Operations

ITypeInfo:GetNames (7)

ResponseRequest

https://msdn.microsoft.com/en-us/library/cc237753.aspx

MEMBERIDcMaxNames

pcNames

rgBstrNames

31

Breakdown Part 2 – ITypeInfo Operations

ITypeInfo:GetDocumentation (12)

https://msdn.microsoft.com/en-us/library/cc237749.aspx

ResponseRequest

RefPtrFlags = 0x0000000f = HelpFileArg | DocStringArg

Help Docs

Output

32

Breakdown Part 3 - Execution

IDispatch:Invoke (6)

Request

pvarResult - Null

pDispParamsdispIdMember pExecInfo – S_OK

33

Defining Loose & Strict Criteria

Strict Criteria

Components of a particular attack chain that are
required to be present for the chain to exist.

Loose Criteria

Components of a particular attack chain that will
commonly be present in the attack chain.
Generally, at least one of these will be present.
Also includes attacker behavior choices.

Exclusion Criteria

Values or components that appear to be part of an
attack chain but are benign in nature and should
be excluded from detection logic (aided by large
data corpus).

Strict Criteria 1 Strict Criteria 2AND

Loose

Criteria 1
Loose

Criteria 2

Loose

Criteria 3OR OR

Exclusion

Criteria 1

Exclusion

Criteria 2
Exclusion

Criteria 3

NOT

34

Criteria Analysis

Strict

• Activation with relevant GUID /
CLSID

• Some method of initiating
execution

Loose

• The RPC object used to execute
code can vary (CLSID)

• There might be ITypeInfo
operations if the COM object is
explored

• There might be an
IDispatch::Invoke with the Dispatch
ID / MEMBERID of relevant
function

• The object instantiation can vary
between
IClassFactor::CreateInstance or
ISystemActivator::RemoteGetClass
Object

Exclusions

• Systems that normally utilize
DCOM for operations. This
might be common in certain
development environments or
on line-of-business
applications.

3535© 2018 Gigamon. All rights reserved.

Network Detection & Analysis

36

Detection Spectrum

Atomic Indicators
Simple Behavioral

Indicators
Complex Behavioral

Indicators

Fidelity LowHigh

Fragility RobustWeak

*Specificity could vary within each indicator type

37

Detection Coverage

Detection 1

Detection 3

Detection 4

Detection 2

ADVERSARY TECHNIQUE

There are many variations of

techniques that result in

different detectable artifacts.

Our goal is to optimal

coverage over the technique

space.

Variation #1

Variation #2

Variation #3

Variation #4

Variation #5

False Positives

False Negative

38

NSM Collection Techniques

• Inspects traffic, looks for rule matches, generates alert

• Only identifies “known bad”

• Lacks context but useful and easy step #1

Rule Based IDS

• Inspects traffic, extracts event metadata, logs events

• Limited by protocol parsers and fields available

• Enables time-series traffic analysis and detection

Metadata Extraction

• Can be very tough to scale

• Can be very tough to use. Often paired with tool to “index” metadata

• Complete forensic data available (sort-of)

Full Content and PCAP

39

IDS Signature – Identifying DCOM Objects

alert tcp any any -> any 135 (msg:"Lateral Movement: MMC DCOM Object Created with

RemoteGetClassObject"; flow:to_server, established; content:"|03|"; offset:22;

depth:1; content:"MEOW"; offset:68; depth:4; content:"|1a 79 b2 49 ae b1 90 4c 9b

8e e8 60 ba 07 f8 89|”; offset:436; depth: 16; classtype: misc-attack; sid:

XXXXXX; rev: XXXXXX;)

Let's look at the content blocks (red):

• content:"|03|" – Looking for DCERPC Opnum 3

• content:"MEOW" – Looking for characteristic MEOW signature present in these
packets

• content:"|1a 79 b2 49 ae b1 90 4c 9b 8e e8 60 ba 07 f8 89|” – Looking for the
GUID of the particular class I am interested in (MMC20.Application)

40

Metadata Extraction

Zeek – Open source network IDS that focuses on

protocol parsing and extraction of relevant info

• BinPAC — High level language for protocol

parsers.

• Events — Reduces traffic into “high level events”.

Generated by parsers. Passes variables defined in

BinPAC to event handlers.

• Scripts — Execute and handle event handlers to

consume parser events.

https://www.bro.org/sphinx/intro/index.html

41

Metadata Extraction — Troubleshooting

Current weaknesses in Zeek’s DCERPC parser?

• DCERPC metadata doesn’t identify object being called

• The parser will mislabel PDUs that come after an alter_context

https://github.com/bro/bro/blob/master/src/analyzer/protocol/dce-rpc/dce_rpc-protocol.pac https://github.com/bro/bro/blob/master/scripts/base/protocols/dce-

rpc/main.bro

Operation & Endpoint

only set during BIND

42

Metadata Extraction – Short Term Fix

Modify Zeek to parse CLSIDs during instantiation

Add state tracking on DCE_RPC Requests

Pass full “stub” during dce_rpc_request to the event handler

Create Bro script to handle events during RemoteGetClassObject or

RemoteCreateInstance operations and parse CLSID

*Disclaimer: While I have tested this, it is

a beta POC on top of already beta code.
Undergoing further testing before
submitting to Zeek.

43

Metadata Extraction – Zeek Script Example

*Disclaimer: While I have tested this, it is a beta POC on top of already beta code. Undergoing further

testing before submitting to Zeek.

44

Checking New Telemetry

45

A Bit Better

With these modifications, we have:

• Telemetry with CLSID of object getting mapped

• IDS indication of known suspicious / bad

46

Empowering Detection

Build detections around known bad DCOM objects

Build behavioral indicators of when a DCOM object is instantiated
followed by the IDispatch Invoke

Implement anomaly detection on DCOM to show when objects might
be getting used abnormally or when suspicious objects appear

Model the DCOM ITypeInfo interactions to show “normal”
programmatic use vs interactive human use

D
e

te
c

ti
o

n
 &

 A
n

a
ly

si
s

47

PCAP Analysis

Wireshark – Open source and widely used network protocol

analyzer. Used extensively in forensics and response.

• Dissectors — These iteratively analyze and parse

protocols, usually subsequently handing off to sub-

dissectors.

• Plugins — External components that extend the

functionality of Wireshark through various methods, to

include protocol dissection. Written in Lua.

https://www.wireshark.org/docs/wsdg_html_chunked/ChDissectAdd.html

PCAP

Dissectors

Plugins

48

PCAP Analysis — What Is This In Wireshark?

Wireshark mostly handles the classic DCOM operations

• We realized that ITypeInfo interface was not implemented

• Several other endpoints / operations lacked dissection

49

We built upon existing Wireshark capabilities

• Added references to our dissector in packet-dcom.c

• Built out packet-dcom-typeinfo.c

• Added to packet-dcom-sysact.c

Tips for protocol RE and contributions:

• Leverage existing dissectors and plugins for understanding

• Use official documentation on the protocols (RFCs, MSDN, etc)

• Utilize multiple variations of attack (multiple PCAPs)

• Identify high confidence “markers” and fill in around

• No guarantee other people did it right

• For DCOM: https://wiki.wireshark.org/Pidl

PCAP Analysis — Contributing To Wireshark

https://wiki.wireshark.org/Pidl

50

We built upon existing Wireshark capabilities

• Added references to our dissector in packet-dcom.c

• Built out packet-dcom-typeinfo.c

• Added to packet-dcom-sysact.c

Tips for protocol RE and contributions:

• Leverage existing dissectors and plugins for understanding

• Use official documentation on the protocols (RFCs, MSDN, etc)

• Utilize multiple variations of attack (multiple PCAPs)

• Identify high confidence “markers” and fill in around

• No guarantee other people did it right

• For DCOM: https://wiki.wireshark.org/Pidl

PCAP Analysis — Contributing To Wireshark

https://wiki.wireshark.org/Pidl

5151© 2018 Gigamon. All rights reserved.

Endpoint Detection Tease

52

Multiple Strategies Needed

The best solution is one that incorporates resilient telemetry of multiple forms to

strengthen confidence on a detection!

What if they specifically attempted to evade on the network?

• Multiple BINDs or alter_context calls to confuse context

• PKT_PRIVACY

https://msdn.microsoft.com/en-us/library/windows/desktop/ms678509(v=vs.85).aspx

Don’t forget… PKT_PRIVACY could be an indicator on its own!

53

Some Things To Explore

• DCOM processes spawn underneath the DCOMLaunch service (svchost.exe –k
DcomLaunch)

• Many objects don’t expose a “quit” or “exit” method leaving lagging processes.
They make good indicators.

• Office applications started via COM have the “-Embedding” or “/automation”
options

5454© 2018 Gigamon. All rights reserved.

Wrapping Up

55

This process is repeatable for DCOM lateral movement techniques as they come out:

• Emulate the technique and collect telemetry

• Identify the activation and execution components on network and host

• Conduct analysis on the components to extract artifacts and behaviors

• Leverage identified artifacts or behaviors to build detection criteria

• Use criteria to build a detection across systems

Non-DCOM Specific Takeaways:

• Detecting threats is our mission — but often the knowledge and capabilities required to do so is

lacking

• Using a structured process to mock up threat behavior, study the behavior, evaluate indicators,

and author detections helps identify gaps

• Sometimes we must increase visibility and fill these gaps

Wrapping Up

56

Questions?

