>
accenture

New. Applied. Now.

Container Attack Surfa
Beyond Name Space |

Accenture Labs, Security R&D,
Stony Brook University

Azzedine Benameur;
Jay Chen

Lei Ding

Michalis Polychronakis

Introduction

Who are we

* Azzedine Benameur, Jay Chen, Lei Ding:
— Currently: Accenture Cyberlabs leading Attack Surface Reduction research
— Past work: Mobile/Car/Cloud/Binary Security
» Jay Chen:
— Past work: ICS/Network/Blockchain security
 Lei Ding:
— Past work: Document Classification, Machine Learning

* Michalis Polychronakis:

— Currently: Assistant professor in the Computer Science Department at Stony Brook
University working on system security

— Past work: Network/System Security

Copyright © 2018 Accenture All rights reserved.

Introduction
Container 101

CONTAINER

App A App B

Bins/Libs Bins/Libs

Docker

Host OS

Infrastructure

CONTAINERS

Copyright © 2018 Accenture All rights reserved.

App C

Bins/Libs

VM

App A App B

Bins/Libs Bins/Libs

Guest OS Guest OS

Hypervisor

Infrastructure

VIRTUAL MACHINES

App C

Bins/Libs

Guest OS

Introduction

Container 101
VS development workflow for Docker apps

3. 4
1. 2. (Once) Run/Debug .
Code Add Docker Containers / Test
your app support to Compose app your app or
projects E microservices
E My
Containers
http
docker run /
Docker-compose up accesgﬁ
-~ Y
== — e
Base T T1T1 My
Images Images -

Remote Local
Docker Registry Docker
5. (i.e. Docker Hub) Repos

git push Push or

Continue
developing

Copyright © 2018 Accenture All rights reserved.

Introduction
Attack Surface Reduction

DeBloat
Smaller Containers
Containers Fewer Vulnerabilities
Applications Reduced Attack Surface

Copyright © 2018 Accenture All rights reserved.

Attack Surface Reduction
The need

. . [= Layers]
DockerFile Container Image Cmp Image ID Size Command

FROM ubuntu:16 Layer 0 Layer 5 (Image5)

ENV NODE_VER 8.1

Layer 4 (|

. -«

RUN apt-get update Layer 3 (I

RUN atp-get install nodejs.-- "} .. Layer 2 (I

Layer 0: 2eccc496e14843013797dc394723017279c5cececi50ff12eb4ci24d

ADD ./content Nariwww/ -~

\', B LSYG” (I 1 bin boot dev etc home Ilib lib64 media mnt opt proc root run sbin srv usr var

CMD npmstart Layer’ \

' Layer 0 Layer 1: 6714d7d9bdc565a04c89e526{b92b7e26bfa10362208bco08ae5e34c

EEEE

bin etc lib tmp usr var

A container image consists of a stack of multiple layers and each layer contains the delta change from
the previous layer

Copyright © 2018 Accenture All rights reserved. 6

Attack Surface Reduction

The need
rails-4.2.1 1820 imagemagick 142
perl-5.12 1770 binutils 129
i0js-3.0 1708 mariadb 56
rocket.chat-0.30 1433 mysq| 49
elixir-1.2.5 1408 Jasper 48
redmine-3.0.4 1406 openjdk 40
gcc-5.2.0 1361 Libav 39
pypy-2-5.4.1 1202 Ruby 36
r-base 1068 Tomcat 36

Top 10 vulnerable images in Docker Hub Top 10 vulnerable package used
Copyright © 2018 Accenture All rights reserved.

Attack Surface Reduction: The need

Number of vulnerabilities discovered in Docker containers

Solr 99
PostgreSQL 63
ghost 72
drupal
Cassandra
Tomcat
Memcached
Owncloud
logstash
elasticsearch
wordpress
mysql
mogodb
redis
nginx
httpd

Copyright © 2018 Accenture All rights reserved. Evaluated using

https://github.com/coreos/clair/blob/master/Documentation/integrations.md

Attack Surface Reduction

Container Layer

Copyright © 2018 Accenture All rights reserved.

Attack Surface Reduction: Approach

Container Layer

» Containers should be designed for a single purpose/application

» Shipped with many default packages/binaries that are not necessary for the operation of
the aforementioned purpose

» We propose an Advanced Secure Lightweight Container

— Unix Philosophy: Each container is atomic in nature and fulfills only one task: web server, database,
file system etc.

— Two Phase Approach:
 1- Profiling: Monitor and identify the required components during an application’s execution
» 2- Image Generation: Produce a BNB (Bare Minimum Binaries) container image

— The new image will be smaller in size and contains less vulnerabilities

Copyright © 2018 Accenture All rights reserved.

Attack Surface Reduction: Approach

Container Profiler User Space Method #1: Library Interposition

Target executable

libc

Kernel Space

Method #3: of

System Calls

Copyright © 2018 Accenture All rights reserved. 11

Method #2: System call
table hooking

Attack Surface Reduction: Approach

Container Profiler: File System

NAME mark = fanotify_mark(

fan,

FAN_MARK_ADD | FAN_MARK_MOUNT,
FAN_ACCESS | FAN_MODIFY | FAN_CLOSE | FAN_OPEN | FAN_ONDIR | FAN_EVENT_ON_CHILD,
AT_FDCWD,)

fanotify - monitoring filesystem events

DESCRIPTION

The fanotify API provides notification and interception of
filesystem events. Use cases include virus scanning and
hierarchical storage management. Currently, only a limited set of
events is supported. In particular, there is no support for
create, delete, and move events. (See inotify(7) for details of
an API that does notify those events.)

Additional capabilities compared to the inotify(7) API include
the ability to monitor all of the objects in a mounted
filesystem, the ability to make access permission decisions, and
the possibility to read or modify files before access by other
applications.

The following system calls are used with this API:
fanotify init(2), fanotify mark(2), read(2), write(2), and
close(2).

Copyright © 2018 Accenture All rights reserved. 12

Attack Surface Reduction: Approach

Container Profiler: Library Calls wo_sreroan " . .
A list of additional, user-specified, ELF shared objects to be

loaded before all others. The items of the list can be sepa-
rated by spaces or colons, and there is no support for escap-
ing either separator. This can be used to selectively over-
ride functions in other shared objects. The objects are
searched for using the rules given under DESCRIPTION.

User Program User Program
[
Hook
; : Library
Library Function i e
i i
System call System call

Copyright © 2018 Accenture All rights reserved.

Attack Surface Reduction: Approach

Container Profiler: Network

Library interposition: tap

»

into connect(), accept() in
glibc

>

eth0: 172.17.0.2

eth0: 10.0.0.2

eth0: 10.0.0.254

Tap into the bridge
between the container

and host network
namespaces

docker0

my_bridge

Copyright © 2018 Accenture All rights reserved.

eth0: 192.168.1.2

Ref: Docker Success Center

Tap into the interface in
the container network
namespace

14

http://success.docker.com/article/networking

Attack Surface Reduction: Approach

Container Profiler
» User space approach:

— Using library interposition
— Leveraging Linux provided API for filesystem event notification/interception

* Phase 1:
— One time container profiling at pre-production deployment
— Profile built using a "normal” workload

* Phase 2:
— Continuous container profiling after production deployment
— Enabling continuous refinement and updates

* Limitations:
— As good as the profiling

Copyright © 2018 Accenture All rights reserved.

Attack Surface Reduction: Demo

DEMO[GODS

PLEAS

MO\
=YY

Copyright © 2018 Accenture All rights reserved.

Preliminary Results

Container Attack Surface Reduction

743

» Original Size (MB) ® Reduced Size(MB) Original Vulnerabilities * Reduced Vulnerabilities

Evaluated using

Copyright © 2018 Accenture All rights reserved.

https://github.com/coreos/clair/blob/master/Documentation/integrations.md

Container Vulnerability Scanning

Vulnerability scanning is a standard feature in most container service
providers, but the majority of them perform only “shallow scan” at the

package or image level.

" check_existence="at_least_one_exists" comment="squid is earlier than 2.5.7-1" id="oval:org.debian.oval:tst:3" version="1"

xmlns="http://ov
o

* How the scanner works:
—_ CVE database describes the xmlng:"http://g; e
vulnerable packages in a specific e N————
— Scanner gathers a list of installed
packages from the package [

manager (dpkg, rpm, pacman, ...)

— Scanner cross check the package
list with the vulnerability database

CVE-2017-16832

CVE-2017-16912

Copyright © 2018 Accenture All rights reserved.

Attack Surface Reduction

Issues

Through out our research, we were continuously being surprised how unreliable the existing
container testing tools are. The bottom line is, you can'’t trust what the vulnerability scanners tell you.

Huge reliance on the package managers :

Most scanners fail to identify known vulnerabilities in files such as python, javascript , php, or
shared objects.

Most scanners fail to function properly when the package manager is removed.
Most scanners fail to scan images with Fedora or OpenSUSE base OS.
Most scanners fail to identify known malwares in the images.

None of scanners can identify known vulnerable files when the file names are changed.

Copyright © 2018 Accenture All rights reserved.

19

Attack Surface Reduction

Automated Container Policy Generation

Security Policy

Copyright © 2018 Accenture All rights reserved.

20

Mandatory Access Control (MAC) policy enforcement

Enforce MAC policies at Linux kernel to restrict file access, capabilities,

and network access of a container.

* Pros:
— Integrity of container images is preserved
— Granular and stricter file access control
— Can also restrict system calls and network activities
— Easier to update and maintain (dynamic update)

 Cons:

— Profiler needs to collect granular information.(e.g., read, write,
execute, move, attribute change ...)

— Difficult to create whitelist policies special file systems (e.g,
/proc, /dev, /sys)
— Runtime overhead

Copyright © 2018 Accenture All rights reserved.

&

docker

L
= @D

| —

netlink neffilter
ke namespace

|

Hardware (Intel, AMD)

21

Mandatory Access Control (MAC) policy enforcement

journal/WiredTigerLog
urnal/WiredTigerTmp

Jdata/

fdata/ rer.wt mwrk,
fdata/ mdb_cata wt mwrk,
fdatasdb/storage.bson. tmp mwrk ,

Copyright © 2018 Accenture All rights reserved.

/bins
fusr/bin/mongod 1x,
Jdata/db/journals*/ 1ix,

capability

ability

capabilit

pability

das eRrldes
tuid,

net_bind

22

Attack Surface Reduction: Demo

DEMO[GODS

PLEAS

MO\
=YY

Copyright © 2018 Accenture All rights reserved.

23

Attack Surface Reduction

Application Layer

Copyright © 2018 Accenture All rights reserved.

24

Attack Surface Reduction
Application Layer

 Binaries are fat. Many unused functions make the attack surface larger

» Exploitable bugs in popular software still exist
— Among the leading causes of system compromise

» Finding and fixing software vulnerabilities is not enough
— Attackers may find them first

« Exploit mitigation technologies aim to make vulnerability exploitation harder
— Not always the case: under certain conditions bypasses are possible

— Still, the combined effect of multiple and diverse mitigation technologies makes
exploitation harder

Copyright © 2018 Accenture All rights reserved.

25

Attack Surface Reduction
Application Layer

» Reuse existing code to perform unintended actions
— Initial instantiation: return-to-libc

» Return Oriented Programming (ROP):
— Chain gadgets together to achieve arbitrary code execution

« Main mitigation techniques:
— Make it harder for attackers to locate the code of interest
» Software diversification (e.g., ASLR, code randomization)
— Prevent control flow redirection to arbitrary locations
» Control flow integrity (e.g., shadow stacks, Windows CFG)

Copyright © 2018 Accenture All rights reserved.

26

Attack Surface Reduction
Application Layer

» Code Debloating: remove unused parts of code

» Exploits:
— Use code/functionality not used by application
— Use code/functionality used by application

— Granularity of Debloating:

* Function level = Code Stripping [Mulliner '15]
* APl level = This work

Copyright © 2018 Accenture All rights reserved.

=» Attack Breaks!
=» Attack Succeeds!

27

Attack Surface Reduction
API Specialization

» Assumption: attacker has hijacked control flow
— Non-randomized gadgets, JIT-ROP, full-function reuse, etc.

» Goal: break the exploit code by restricting its interaction with the OS
— Restrict what/how system APls are invoked

» Key insight: not all available API functions are used by most apps
— From the functions used, only partial functionality is really needed

Copyright © 2018 Accenture All rights reserved.

28

Attack Surface Reduction
API Specialization

kernel32.dll

AcquireSRWLockExclusive,

AcquireStateLock, ActivateActCtx, AddAtomaA,
CreateMutexA, DiscardVirtualMemory,
FreeVirtualBuffer, GlobalMemoryStatus, GlobalLock,
GetProcAddress, HealWalk, HeapUsage, OpenThread,
ReadProcessMemory...

kernel32.dll

Import Table
_ LoadLibrary kernel32.dll
GetProcAddress kernel32.dll
_’ OpenThread kernel32.dll
SearchPathA kernel32.dll

Attackers have access to A/l available functions, although applications use only few of them.
Copyright © 2018 Accenture All rights reserved. 29

Attack Surface Reduction

API Specialization

DLL kernel32
of funcs 1941
Adobe 203
Reader

Notepad++ 139

VLC 38
Google 191

Chrome

advapi
902

77

13
2
19

33

shiwapi
931

20

13

user32

1152

145

168

1

84

25

ole32

163

33

11

Copyright © 2018 Accenture All rights reserved.

30

Attack Surface Reduction
API Specialization

» Create specialized versions of critical API functions for individual applications
— Critical == 52 security-critical API functions
— E.g., VirtualProtect(), VirtualAlloc(), connect()

» Goal: Neutralize dangerous argument values or combinations
— E.g., changing memory permissions, connecting to servers

* Main intuition:

App’s usage of * Exploit code’s usage of
critical API functions critical API functions

Copyright © 2018 Accenture All rights reserved.

31

Attack Surface Reduction
API Specialization

 Protects transparently application binaries
— Does not require source code

» Best-effort approach!
— It may not always break exploits

— It may be easy to bypass

» Can be deployed along with other exploit mitigations

Copyright © 2018 Accenture All rights reserved.

32

Attack Surface Reduction
API Specialization: Approach

* Phase 1: Offline pre-processing
— Disassemble binary
— Extract CFG
— Identify critical function call sites
— Extract argument values and patterns (backwards data-flow analysis)
— Generate process-wide per-function policies

* Phase 2: Runtime enforcement
— Use library interposition to enforce extracted policies at runtime

Copyright © 2018 Accenture All rights reserved.

33

Attack Surface Reduction
API Specialization: Approach

Critical
Functions

(1) Identify all imported critical functions

Copyright © 2018 Accenture All rights reserved.

VirtualProtect()
CreateFile()
connect()

Imported | |
Functions

v

call ds:VirtualProtect

/__‘/

.text:1C call d.s.:.VirtualProtect
.text:45 call ds:VirtualProtect
.text:7C call ds:VirtualProtect

.text:A3 call d.s.:.Virtua.lProtect

push eax ; [pflOldProtect
push 0x20 ; fINewProtect
push 0x1000 ; dwsSize
push esi ; [pAddress

(2) Pinpoint all callsites

(3) Analyze arguments and patterns of each invocation

Attack Surface Reduction

API Specialization: Implementation

» Current prototype supports Win10 64-bit and Win7 32-bit
» Uses IDAPython scripting in IDA Pro 6.8 to perform inter-procedural backward-slicing

» Runtime enforcement is performed using the Microsoft Detours framework for library
interposition

Copyright © 2018 Accenture All rights reserved.

35

Attack Surface Reduction

API Specialization: Evaluation

« 251 Shellcode and 30 ROP Payloads samples
— Collected from Metasploit, ExploitDB, and real-world/PoC exploits

* Applications: 10 popular end-user programs
— Web browsers, media players, text editors, etc.

* Main Result (compared to Code Stripping)
— Breaks 18.3% more shellcodes
— Breaks 298% more ROP payloads

* Negligible runtime overhead

Copyright © 2018 Accenture All rights reserved.

36

Attack Surface Reduction

API SpeC|aI|zat|on

25

20

10

ROP payloads broken
15

5

I

Firefox iTunes

7Zip

Chrome

Copyright © 2018 Accenture All rights reserved.

Edge

Photoviewer Notepad++

Powershell

B Code Stripping

B Shredder

WinRar

37

Attack Surface Reduction
API Specialization

« Shredder is a best effort attack surface reduction tool
— Move beyond code debloating, to functionality debloating

» Relies on static analysis over application binaries to create policies which are enforced at
runtime

* Policies restrict the application’s usage of critical API functions
» Experimental evaluation across 10 popular user-apps

» Main Result (compared to Code Stripping)
— Breaks 298% more ROP Payloads

Copyright © 2018 Accenture All rights reserved. 38

Conclusion

» Defense in depth !

* Your Attack surface is too big, reduce it!

* Containers are still cool...ish

Copyright © 2018 Accenture All rights reserved.

Physical Node

Application

Library/

39

Questions

azzedine.benameur@accenture.com

jay.chen@accenture.com

Copyright © 2018 Accenture All rights reserved.

lei.a.ding@accenture.com

mikepo@cs.stonybrook.edu

40

