
Container Attack Surface Reduction
Beyond Name Space Isolation
Accenture Labs, Security R&D
Stony Brook University

Azzedine Benameur
Jay Chen
Lei Ding
Michalis Polychronakis

Copyright © 2018 Accenture All rights reserved. 2

Introduction
Who are we

• Azzedine Benameur, Jay Chen, Lei Ding:
– Currently: Accenture Cyberlabs leading Attack Surface Reduction research
– Past work: Mobile/Car/Cloud/Binary Security

• Jay Chen:
– Past work: ICS/Network/Blockchain security

• Lei Ding:
– Past work: Document Classification, Machine Learning

• Michalis Polychronakis:
– Currently: Assistant professor in the Computer Science Department at Stony Brook

University working on system security
– Past work: Network/System Security

Copyright © 2018 Accenture All rights reserved. 3

Introduction
Container 101

Copyright © 2018 Accenture All rights reserved. 4

Introduction
Container 101

Copyright © 2018 Accenture All rights reserved. 5

Introduction

DeBloat

Containers
Applications

Smaller Containers
Fewer Vulnerabilities

Reduced Attack Surface

Attack Surface Reduction

Copyright © 2018 Accenture All rights reserved. 6

Attack Surface Reduction
The need

A container image consists of a stack of multiple layers and each layer contains the delta change from
the previous layer

Copyright © 2018 Accenture All rights reserved. 7

Attack Surface Reduction
The need
Image Name # of vulnerabilities

rails-4.2.1 1820

perl-5.12 1770

iojs-3.0 1708

rocket.chat-0.30 1433

elixir-1.2.5 1408

redmine-3.0.4 1406

gcc-5.2.0 1361

pypy-2-5.4.1 1202

r-base 1068

Top 10 vulnerable images in Docker Hub

Package Name # of vulnerabilities

imagemagick 142

binutils 129

mariadb 56

mysql 49

Jasper 48

openjdk 40

Libav 39

Ruby 36

Tomcat 36

Top 10 vulnerable package used

Copyright © 2018 Accenture All rights reserved. 8

Attack Surface Reduction: The need

128
53

58
60
61

282
106
106

285
32

99
103

273
72

63
99

0 50 100 150 200 250 300

httpd
nginx
redis

mogodb
mysql

wordpress
elasticsearch

logstash
Owncloud

Memcached
Tomcat

Cassandra
drupal
ghost

PostgreSQL
Solr

Number of vulnerabilities discovered in Docker containers

Evaluated using CoreOS/Clair, 2018

https://github.com/coreos/clair/blob/master/Documentation/integrations.md

Copyright © 2018 Accenture All rights reserved. 9

Attack Surface Reduction
Container Layer

Copyright © 2018 Accenture All rights reserved. 10

Attack Surface Reduction: Approach
Container Layer

• Containers should be designed for a single purpose/application

• Shipped with many default packages/binaries that are not necessary for the operation of
the aforementioned purpose

• We propose an Advanced Secure Lightweight Container
– Unix Philosophy: Each container is atomic in nature and fulfills only one task: web server, database,

file system etc.
– Two Phase Approach:

• 1- Profiling: Monitor and identify the required components during an application’s execution
• 2- Image Generation: Produce a BNB (Bare Minimum Binaries) container image

– The new image will be smaller in size and contains less vulnerabilities

Copyright © 2018 Accenture All rights reserved. 11

Attack Surface Reduction: Approach

User Space

Target executable

libc

Kernel Space

Modules

System Calls

Method #1: Library Interposition

Method #2: System call
table hooking

Method #3: of
Syscall wrapper

Container Profiler

Copyright © 2018 Accenture All rights reserved. 12

Attack Surface Reduction: Approach
Container Profiler: File System

Copyright © 2018 Accenture All rights reserved. 13

Attack Surface Reduction: Approach
Container Profiler: Library Calls

Copyright © 2018 Accenture All rights reserved. 14

Attack Surface Reduction: Approach
Container Profiler: Network

Ref: Docker Success Center

Library interposition: tap
into connect(), accept() in
glibc

Tap into the interface in
the container network
namespace

Tap into the bridge
between the container
and host network
namespaces

http://success.docker.com/article/networking

Copyright © 2018 Accenture All rights reserved. 15

Attack Surface Reduction: Approach
Container Profiler
• User space approach:

– Using library interposition
– Leveraging Linux provided API for filesystem event notification/interception

• Phase 1:
– One time container profiling at pre-production deployment
– Profile built using a ”normal” workload

• Phase 2:
– Continuous container profiling after production deployment
– Enabling continuous refinement and updates

• Limitations:
– As good as the profiling

Copyright © 2018 Accenture All rights reserved. 16

Attack Surface Reduction: Demo

Copyright © 2018 Accenture All rights reserved. 17

Preliminary Results

177
108 107

361
408 408

584

743

597

58.6

558

385
454

590

287

718

0

100

200

300

400

500

600

700

800

htt
pd

ng
inx red

is

mogo
db

mys
ql

word
pre

ss

ela
sti

cs
ea

rch

log
sta

sh

Ownc
lou

d

Memca
ch

ed

Tom
ca

t

Cas
sa

nd
ra

dru
pa

l
gh

os
t

Pos
tgr

eS
QL

Solr

Container Attack Surface Reduction

Original Size (MB) Reduced Size(MB) Original Vulnerabilities Reduced Vulnerabilities

Evaluated using CoreOS/Clair, 2018

https://github.com/coreos/clair/blob/master/Documentation/integrations.md

Copyright © 2018 Accenture All rights reserved. 18

Container Vulnerability Scanning
Vulnerability scanning is a standard feature in most container service
providers, but the majority of them perform only “shallow scan” at the
package or image level.

• How the scanner works:
– CVE database describes the

vulnerable packages in a specific
OS.

– Scanner gathers a list of installed
packages from the package
manager (dpkg, rpm, pacman, …)

– Scanner cross check the package
list with the vulnerability database

Debian OVAL Definition

Ubuntu CVE Tracker

Copyright © 2018 Accenture All rights reserved. 19

Attack Surface Reduction
Issues
Through out our research, we were continuously being surprised how unreliable the existing
container testing tools are. The bottom line is, you can’t trust what the vulnerability scanners tell you.

Huge reliance on the package managers :

Most scanners fail to identify known vulnerabilities in files such as python, javascript , php, or
shared objects.

Most scanners fail to function properly when the package manager is removed.

Most scanners fail to scan images with Fedora or OpenSUSE base OS.

Most scanners fail to identify known malwares in the images.

None of scanners can identify known vulnerable files when the file names are changed.

Copyright © 2018 Accenture All rights reserved. 20

Attack Surface Reduction
Automated Container Policy Generation

Copyright © 2018 Accenture All rights reserved. 21

Mandatory Access Control (MAC) policy enforcement

Enforce MAC policies at Linux kernel to restrict file access, capabilities,

and network access of a container.

• Pros:
– Integrity of container images is preserved

– Granular and stricter file access control

– Can also restrict system calls and network activities

– Easier to update and maintain (dynamic update)

• Cons:
– Profiler needs to collect granular information.(e.g., read, write,

execute, move, attribute change ...)

– Difficult to create whitelist policies special file systems (e.g,

/proc, /dev, /sys)

– Runtime overhead

Copyright © 2018 Accenture All rights reserved. 22

Mandatory Access Control (MAC) policy enforcement

Read permission Execute permission

Write permission

Granted capabilities

Copyright © 2018 Accenture All rights reserved. 23

Attack Surface Reduction: Demo

Copyright © 2018 Accenture All rights reserved. 24

Attack Surface Reduction
Application Layer

Copyright © 2018 Accenture All rights reserved. 25

Attack Surface Reduction

Application Layer
• Binaries are fat. Many unused functions make the attack surface larger

• Exploitable bugs in popular software still exist

– Among the leading causes of system compromise

• Finding and fixing software vulnerabilities is not enough

– Attackers may find them first

• Exploit mitigation technologies aim to make vulnerability exploitation harder

– Not always the case: under certain conditions bypasses are possible

– Still, the combined effect of multiple and diverse mitigation technologies makes

exploitation harder

Copyright © 2018 Accenture All rights reserved. 26

Attack Surface Reduction

Application Layer
• Reuse existing code to perform unintended actions

– Initial instantiation: return-to-libc

• Return Oriented Programming (ROP):

– Chain gadgets together to achieve arbitrary code execution

• Main mitigation techniques:

– Make it harder for attackers to locate the code of interest

• Software diversification (e.g., ASLR, code randomization)

– Prevent control flow redirection to arbitrary locations

• Control flow integrity (e.g., shadow stacks, Windows CFG)

Copyright © 2018 Accenture All rights reserved. 27

Attack Surface Reduction
Application Layer
• Code Debloating: remove unused parts of code

• Exploits:
– Use code/functionality not used by application
– Use code/functionality used by application

– Granularity of Debloating:
• Function level è Code Stripping [Mulliner ’15]
• API level è This work

è Attack Breaks!
è Attack Succeeds!

Copyright © 2018 Accenture All rights reserved. 28

Attack Surface Reduction

API Specialization
• Assumption: attacker has hijacked control flow

– Non-randomized gadgets, JIT-ROP, full-function reuse, etc.

• Goal: break the exploit code by restricting its interaction with the OS

– Restrict what/how system APIs are invoked

• Key insight: not all available API functions are used by most apps

– From the functions used, only partial functionality is really needed

Copyright © 2018 Accenture All rights reserved. 29

Attack Surface Reduction
API Specialization

Attackers have access to All available functions, although applications use only few of them.

Copyright © 2018 Accenture All rights reserved. 30

Attack Surface Reduction
API Specialization

DLL kernel32 advapi shlwapi user32 ole32

of funcs 1941 902 931 1152 163

Adobe
Reader

203 77 20 145 33

Notepad++ 139 13 13 168 2

VLC 38 2 - 1 -

7Zip 93 19 - 84 11

Google
Chrome

191 33 - 25 3

Copyright © 2018 Accenture All rights reserved. 31

Attack Surface Reduction
API Specialization
• Create specialized versions of critical API functions for individual applications

– Critical == 52 security-critical API functions
– E.g., VirtualProtect(), VirtualAlloc(), connect()

• Goal: Neutralize dangerous argument values or combinations
– E.g., changing memory permissions, connecting to servers

• Main intuition:
. App’s usage of

critical API functions
Exploit code’s usage of
critical API functions

Copyright © 2018 Accenture All rights reserved. 32

Attack Surface Reduction
API Specialization
• Protects transparently application binaries

– Does not require source code

• Best-effort approach!
– It may not always break exploits
– It may be easy to bypass

• Can be deployed along with other exploit mitigations

Copyright © 2018 Accenture All rights reserved. 33

Attack Surface Reduction
API Specialization: Approach
• Phase 1: Offline pre-processing

– Disassemble binary

– Extract CFG
– Identify critical function call sites

– Extract argument values and patterns (backwards data-flow analysis)
– Generate process-wide per-function policies

• Phase 2: Runtime enforcement
– Use library interposition to enforce extracted policies at runtime

Copyright © 2018 Accenture All rights reserved. 34

Attack Surface Reduction
API Specialization: Approach

Copyright © 2018 Accenture All rights reserved. 35

Attack Surface Reduction
API Specialization: Implementation

• Current prototype supports Win10 64-bit and Win7 32-bit

• Uses IDAPython scripting in IDA Pro 6.8 to perform inter-procedural backward-slicing

• Runtime enforcement is performed using the Microsoft Detours framework for library
interposition

Copyright © 2018 Accenture All rights reserved. 36

Attack Surface Reduction

API Specialization: Evaluation

• 251 Shellcode and 30 ROP Payloads samples

– Collected from Metasploit, ExploitDB, and real-world/PoC exploits

• Applications: 10 popular end-user programs

– Web browsers, media players, text editors, etc.

• Main Result (compared to Code Stripping)

– Breaks 18.3% more shellcodes

– Breaks 298% more ROP payloads

• Negligible runtime overhead

Copyright © 2018 Accenture All rights reserved. 37

Attack Surface Reduction
API Specialization

Code Stripping Shredder

RO
P

pa
ylo

ad
s

br
ok

en
0

5
10

15
20

25
30

7Zip Chrome Edge Firefox iTunes Photoviewer Notepad++ Powershell VLC WinRar

Copyright © 2018 Accenture All rights reserved. 38

Attack Surface Reduction
API Specialization

• Shredder is a best effort attack surface reduction tool
– Move beyond code debloating, to functionality debloating

• Relies on static analysis over application binaries to create policies which are enforced at
runtime

• Policies restrict the application’s usage of critical API functions

• Experimental evaluation across 10 popular user-apps

• Main Result (compared to Code Stripping)
– Breaks 298% more ROP Payloads

Copyright © 2018 Accenture All rights reserved. 39

Conclusion

Physical Node

VM

Container

API

Application

Library/
Package

Data

• Defense in depth !

• Your Attack surface is too big, reduce it!

• Containers are still cool…ish

Copyright © 2018 Accenture All rights reserved. 40

Questions

azzedine.benameur@accenture.com

jay.chen@accenture.com

lei.a.ding@accenture.com

mikepo@cs.stonybrook.edu

