
This paper was presented at Black Hat Europe 2018 

DIVIDE ET IMPERA: MEMORYRANGER RUNS DRIVERS IN 

ISOLATED KERNEL SPACES  

Igor Korkin, PhD  

Security Researcher  

Moscow, Russia  

igor.korkin@gmail.com  

ABSTRACT 

One of the main issues in the OS security is to provide trusted code execution in an untrusted environment. 

During executing, kernel-mode drivers allocate and process memory data: OS internal structures, users’ 

private information, and sensitive data of third-party drivers. All this data and the drivers code can be 

tampered with by kernel-mode malware. Microsoft security experts integrated new features to fill this gap, 

but they are not enough: allocated data can be stolen and patched and the driver’s code can be dumped 

without any security reaction. The proposed hypervisor-based system (MemoryRanger) tackles this issue by 

executing drivers in separate kernel enclaves with specific memory attributes. MemoryRanger protects code 

and data using Intel VT-x and EPT features with low performance degradation on Windows 10 x64.  

Keywords: hypervisor-based protection, Windows kernel, rootkits, attacks of memory, memory isolation. 

 

1. INTRODUCTION  

Microsoft Windows Operating System has 

dominated on the world's market of desktop and 

laptop computers for more than 30 years. Nowadays 

Windows OS is running on more than one billion 

computers in so many different fields: industries, 

banking, business and government, transport and 

logistics, research, you name it (Warren, 2018). 

Attacks on Windows OSes have always been a 

desirable goal for various malware and rootkits.  

For more than 20 years Windows OS has run in a 

protected mode, provided by the architectures of the 

x86 and x64 processors. This mode includes several 

security features, one of those are four privileged 

levels to protect the system code and data from 

being overwritten by less privileged code. 

According to the Yosifovich, Ionescu, Russinovich, 

& Solomon (2017), Windows OS uses only two 

privileged levels of the protected mode: one for OS 

kernel and drivers (kernel mode) and the other one 

for user applications (user mode).  

Thread model and assumptions. Currently, kernel-

mode drivers share the same memory address space 

with the rest of the OS kernel. All drivers can read 

and write any part of kernel-mode memory without 

any hardware restrictions. This fact makes Windows 

OS to be prone to rootkit attacks and kernel 

exploitation, see Figure 1 (Oh, 2018).  

These malware attacks leverage the same privileged 

level as the OS kernel and can be performed by the 

following (Desimone & Landau, 2018): 

 installing signed malware drivers;  

 exploiting driver vulnerabilities.  

Using kernel-mode code facilities, intruders can 

achieve the following goals (Shirole, 2014):  

 maintain hidden and long-term control of 

the infected computer,  

 escalate privileges;  

 steal users’ data;  

 disrupt industrial processes.  

All of them can be achieved by illegal read and 

write access to the code of drivers’ OS kernel as 

well as tampering with their allocated data. Recent 

examples of these attacks are here (Korkin, 2018-a).  

In the last several years, Microsoft experts have 

integrated a number of security features to protect 

OS kernel from these attacks.  

The oldest implementation is PatchGuard, which 

crashes the OS after revealing some changes of 

internal structures such as EPROCESS unlinking. A 

more recent one is Device Guard, which provides 



2 

the integrity of all loaded drivers by clearing write 

attributes for all executable memory pages. 

Therefore, any changes of any code loaded into the 

kernel will crash the OS.  

However, it is not enough to prevent kernel mode 

threats. Windows Security features provide neither 

integrity nor confidentiality of the allocated memory 

of the third-party drivers. In addition, the OS 

internal structures are not fully protected, and finally 

the drivers’ code can be dumped and analyzed by 

reverse engineering.  

Cyber security researchers are trying to fill this gap 

and propose various ideas.  

The first memory isolation concept termed 

“Multics” have been proposed by Corbató & 

Vyssotsky (1965) more than half a century ago. It is 

based on creating memory regions with different 

access permissions and was implemented for the GE 

645 mainframe computer.  

Numerous security projects designed for modern 

Intel, AMD, and ARM CPUs have been presented 

and discussed for more than 10 years.  

One recent example is AllMemPro system 

developed by Korkin (2018-a). This hypervisor-

based system protects the data allocated by third-

party drivers and prevents internal structures of 

Windows OS kernel from being patched. At the 

same time, AllMemPro does not provide code 

integrity and confidentiality.  

This paper suggests a new vision of kernel-mode 

memory protection workflow. The idea is to execute 

each driver in a separate memory enclosure. Each 

enclosure has a specific memory configuration:  

 a driver can access the memory pool, which 

it has allocated before;  

 execution of all other drivers is blocked;  

 read and write access to the memory 

allocated by other drivers is blocked.  

While OS works the control has to be switched 

between these enclosures to provide:  

 execution of drivers’ code;  

 prevention of illegal access to the code and 

data.  

The idea of such isolated kernel spaces for drivers 

has been implemented in hypervisor-based system 

called MemoryRanger.  

The remainder of the paper proceeds as follows:  

Section 2 provides a detailed review of existing 

memory protection projects. It also contains the 

comparison table with about 30 research projects 

including Windows built-in solutions.  

Section 3 contains the proposed way of applying 

Extended Page Tables (EPT) to isolate memory. 

This section includes the details of architecture and 

its implementation, benchmark results, and 

limitations outline of MemoryRanger.  

Section 4 focuses on the main conclusions and 

further research directions.  
  

  
a) b) 

Figure 1 Examples of memory access attempts: a) without a malware driver and b) with a malware driver. 

Legitimate access attempts are illustrated as solid green arrows, unauthorized ones as dashed red arrows.  

 

Kernel-mode memory

OS Kernel

Vulnerable 
Driver

Users’ 
Private Data

allocate
read/write

OS Internal 

Structures

allocate
read/write

Industrial 
Driver

Parameters & 
Commands

allocate
read/write

OS Kernel

Vulnerable 
Driver

Users  
Private Data

allocate
read/write

OS Internal 

Structures

allocate
read/write

Industrial 
Driver

Parameters & 
Commands

allocate
read/write

Kernel-mode memory
Malware 
Driver



3 

2. BACKGROUND  

This section includes analysis of Windows built-in 

tools, research papers, and proof-of-concept 

prototypes that are designed to protect kernel-mode 

memory. All of them will be compared by their 

capabilities to provide both integrity and 

confidentiality for the code of OS and third-party 

drivers as well as for their dynamically allocated 

memory.  

Since Windows XP, released more than 15 years 

ago and still is the 3rd most popular OS for PCs in 

the world (Ghosh, 2017), Microsoft has developed 

a stack of security components and integrated them 

into Windows 10. The components are the 

following: Smart Screen, Application Guard, 

Device Guard, Exploit Guard etc. (ACSC, 2018).  

The Kernel Mode Code Integrity (KMCI), which is 

a part of Device Guard, prevents code modification 

of OS kernel and third-party drivers. It 

automatically resets the write permission bits for 

executable memory pages, so any code 

modifications will immediately cause BSOD with 

bug check code 0xBE.  

Another component is PatchGuard, which protects 

the data of internal structures. It checks the 

integrity of some fields of these structures and 

causes BSOD with bug check code 0x109 after 

revealing an illegal modification. PatchGuard 

prevents, for example, EPROCESS unlinking, but 

skips privileges escalation attacks (Korkin, 2018-a).  

The detailed analysis of Device Guard and 

PatchGuard is here (Korkin, 2018-a). Windows 

security features do not protect memory allocated 

by third-party drivers from being read or 

overwritten, and only partially provide integrity of 

internal Windows structures, see Table 1.  

Security researchers from all around the world are 

trying to fill this gap and protect kernel-mode 

memory. An analysis of projects and prototypes 

will be given according to which memory class and 

from which type of access they protect: 

 a code or assemblies of OS and third-party 

drivers from illegal read- and write- access; 

 data allocated by OS and internal structures 

lists from illegal read- and write- access; 

 data allocated by third-party drivers from 

illegal read- and write- access. 

There are a lot of methods to monitor and prevent 

memory access: hardware-based and software ones; 

based on OS internal features and based on bare-

metal hypervisors. The detailed analysis of all these 

methods are presented in Section 2 Korkin & 

Tanda, (2017).  

This paper is primarily focused on the hypervisor-

based methods, because they have several 

competitive advantages: they are fast, resilient to 

kernel-mode attacks; and work on all modern 

computers.  

Yi et.al. (2017) proposed a fast data anomaly 

detection engine for kernel integrity monitoring 

called DADE. One of the authors’ motivation is to 

prevent the adversary from obtaining the highest 

privilege by attacking the kernel. The main idea is 

to trap memory modifications and check their 

eligibility using backtraces. These backtraces 

include kernel functions that are used to create 

kernel-mode objects. DADE sets the whole kernel 

memory as read only so any write toward a kernel 

memory page generates a page fault, which is 

handled by the hypervisor. To achieve it DADE 

hypervisor leverages Extended Page Tables (EPT) 

functionality supported by hardware virtualization 

extensions. DADE assumes that of OS kernel 

source code is available and it supports only Linux 

OS. DADE prototype was integrated to a KVM 

with Linux OS and tested on ARM Cortex-A15.  

Another hypervisor-based system has been 

proposed by Wang et.al. (2017). Their hypervisor-

based access control strategy (HACS) protects 

security-critical kernel data of Linux OS kernel. 

This hypervisor plays the role of PatchGuard but 

for Ubuntu OS without crashing the OS after 

revealing data modification. HACS detects and 

prevents rootkits with DKOM and Hijack system 

calls attacks. It protects both types of data: static 

kernel data and dynamically allocated kernel data 

using module with whitelist-based access control. 

The key feature of HACS is that it can detect when 

rootkits place malicious code in module’s 

initialization function (.init.text section). HACS 

leverages EPT mechanism to protect memory. It 

prohibits illegal modifications of sensitive data by 

marking the corresponding memory pages as read-

only. HACS hypervisor traps memory access 

violations that occur during write access on these 

pages. After that to process write request, it takes 



4 

advantage of the processor’s single-step 

interruption mechanism. For the legal request this 

single step helps to allow write access just for one 

instruction. HACS uses only one EPT structure to 

protect OS kernel data. This system needs to 

intercept both legal and illegal access which is time 

consuming. It is implemented on BitVisor for the 

protection of the Ubuntu OS running on an Intel 

Core i7-4790.  

Manes et.al. (2018) addresses the problem of 

rootkit attacks and kernel exploitation by presenting 

a new kernel architecture which securely isolates 

the untrusted kernel extensions. The implemented 

Domain Isolated Kernel (DIKernel) prevents three 

commonly used rootkit techniques:  

 inline hooking; 

 function pointer hooking; 

 DKOM attacks. 

DIKernel enforces memory access isolation by 

separating the kernel extensions from the rest of the 

OS kernel. DIKernel leverages the Domain Access 

Control Register (DACR), which is an ARM CPU 

hardware feature. The authors underline that using 

this feature makes it possible to organize memory 

domains with a very quick switch between them. 

DIKernel is implemented on Linux OS and tested 

on a Raspberry Pi 2 model B.  

Another research focuses on preventing privilege 

escalation attacks (Qiang et.al., 2018). These 

attacks manipulate security-sensitive data in the 

kernel by exploiting memory corruption 

vulnerabilities. The authors underline that these 

non-control-data attacks are able to bypass current 

defense mechanisms. The proposed system called 

PrivGuard monitors the change of the sensitive 

kernel data by modifying the system call entry 

point, before system call entering, and before 

system call returning. PrivGuard is only based on 

OS internal mechanisms without using any 

hypervisor facilities. PrivGuard prototype is 

implemented on Ubuntu OS using x86 architecture.  

Brookes et.al. (2016) consider attacks which 

involve dynamically disassembling kernel code 

stored in memory, privilege escalation, exploit 

artifacts management, and hiding behavior. To 

mitigate these memory disclosure attacks, the 

authors developed ExOShim, a hypervisor-based 

system, which renders all kernel code execute-only. 

The system leverages VT-x and EPT so that the 

hypervisor can install itself under a running kernel, 

which makes it possible to provide the complete 

execute-only memory access control primitives on 

all kernel code pages. By using EPT feature, 

ExOShim loads kernel code on memory frames that 

are marked as non-readable, non-writeable, but also 

executable. This is the entire premise of ExOShim. 

Another feature of ExOShim is self-protection, 

which prevents its code and data from any read, 

write, and execute access. As a result, an attacker 

cannot overcome the protection mechanism even 

trying to install malware hypervisor. ExOShim is a 

lightweight hypervisor for Windows-based OS, 

tested on Intel Core i7-3770k. ExOShim prevents 

kernel-mode code from illegal read and write 

access, and it protects only data needed to maintain 

ExOShim. It does not protect kernel-mode data of 

OS and third-party drivers.  

The issue of providing integrity for the OS kernel 

data structures is considered by the security experts 

from the HP Labs and University of Texas at 

Austin (Hofmann et.al., 2011). The authors 

proposed a hypervisor-based system OSsk to 

prevent several rootkits attacks: hiding a rootkit 

process by removing its structure from the list and 

changing function pointers to the custom functions. 

The developed prototype OSsk protects the kernel 

data structures by verifying their content in a thread 

that runs concurrently with the guest execution. 

OSck protects the system call table through 

hardware page protection and a hypervisor call 

ensuring that once the table is initialized, the guest 

OS may not modify it. OSsk is implemented as a 

part of KVM hypervisor on the Intel Core i7 860 

using Linux OS. 

Another project leveraged hardware-virtualization 

technology and EPT feature of CPU is the InkTag 

hypervisor (Hofmann et.al., 2013). It allows 

executing trusted user-mode applications under an 

untrusted operating system. InkTag runs trusted 

applications in a special high-assurance process 

(HAP) which is isolated from the OS. InkTag 

provides a special hypercall to HAP to verify the 

runtime behavior of the OS. InkTag hypervisor 

ensures privacy and integrity for the code and data 

in a HAP’s address space through encryption and 

hashing, and verifies that those services work 

correctly. InkTag is developed on the top of KVM 

hypervisor and tested using Linux OS on an Intel 



5 

Core i7 860. Although InkTag does not prevent any 

attacks on kernel memory, its concept seems very 

interesting and promising for OS security. 

Security researchers from China proposed a 

pattern-based system to check integrity of the OS 

kernel (Feng et.al., 2018). Their system BehaviorKI 

extracts a set of patterns which characterize 

malicious behaviors. During the implementation of 

BehaviorKI the authors utilize hardware-assisted 

virtualization and EPT features designed for 

memory virtualization. Their behavior-triggered 

system inspects whether the OS critical components 

are modified illegally including static and dynamic 

components. The authors designed a testbed to 

imitate malicious behavior by extracting frequent 

event sequences from malware attacks. The 

researchers underline that “dynamic non-control 

data structures store critical information and user 

identification data” and emphasize that “integrity is 

very important to the security of the computer 

system”. To reduce the performance penalty, 

BehaviorKI controls memory access events only for 

critical memory regions. This system also controls 

register operations and those involving system 

calls. BehaviorKI provides integrity for the 

following OS components: kernel code and static 

kernel data, dynamic kernel data including control-

flow and non-control data. One example of 

dynamic kernel data is the head of LKM list, which 

is used by rootkits to hide themselves. To verify 

whether kernel integrity has been tampered, 

BehaviorKI uses kernel data invariants defined via 

kernel source code analysis and OS runtime 

snapshots. This system intercepts memory access 

operations by utilizing EPT violations and 

“removing the readable or writable permission to 

the monitored memory pages from the EPT entry”. 

BehaviorKI processes these events by setting Trap 

Flag (TF) and recovers these pages to be readable 

and writable. During dispatching, the trap debug 

exception BehaviorKI blocks the permission to the 

monitored pages and clears TF to make the system 

run normally. The key feature of BehaviorKI is that 

it triggers integrity checking only when the event 

sequences match malicious behavior patterns. As a 

result, it has a lower performance overhead due to 

integrity checking compared to event-triggered 

approaches. The authors implemented BehaviorKI 

prototype on top of Xen hypervisor and tested it 

using the Intel Core i7-4710MQ and Linux OS.  

LKMG is one of the most long-running research 

projects, dealing with the OS kernel protection 

against vulnerable loadable kernel modules (LMG). 

The researchers from the USA and China have been 

developing their prototype of LKM guard (LKMG) 

for more than 7 years (Tian et.al., 2011; Tian et.al., 

2018). The authors consider that vulnerable LKM 

can modify any kernel data and code, call kernel 

functions, and read sensitive information. To 

protect OS from these attacks the authors utilize 

static analysis to extract the kernel code and data 

access patterns from kernel module’s source codes 

and then generate a security policy by combining 

these patterns with the related memory address 

information. Also the authors isolate kernel module 

from the rest of the OS and enforce its execution by 

using hardware virtualization technology. The 

security policy is developed according to the 

principle of least privilege: an LKM can only 

access the kernel data that are necessary for its 

functioning. LKMG applies two EPT structures to 

mediate memory access: one EPT for the LKM and 

another one for the OS kernel. LKMG supports 

allocated memory protection by intercepting the 

allocation and deallocation functions. For the 

dynamic allocated data, LKMG prevents illegal 

read- and write- access. Another LKMG feature is 

kernel stack protection. LKMG protects the data 

allocated by the OS from being read and 

overwritten by LKM. It also guarantees the 

integrity of the OS kernel code. However, LKMG 

does not restrict the OS kernel, it can read and 

modify LKM code and data. One of the main issues 

of this guard is that it requires OS and LKM source 

code and does not support kernel protection when 

its source code is not available. The proposed 

policy-centric approach is implemented using Xen 

hypervisor and is developed for Linux OS running 

on Intel Xeon X3430. The authors assume that 

LKMG can be applied for Windows-based OS also. 

Another project that performs integrity checking of 

the Linux OS kernel and has a similar name with 

the previous one is Linux Kernel Runtime Guard, 

or LKRG, developed by Zabrocki (2018). This 

project is designed to protect OS kernel against 

attacks via kernel vulnerabilities. LKRG performs 

post-detection and responds to unauthorized 

modifications of the Linux OS kernel and processes 

credentials. This guard provides OS kernel integrity 

and exploit detection. LKRG is currently in an 



6 

early experimental stage of the development and it 

seems quite promising.  

An interesting idea of providing integrity of the OS 

kernel code and data suggested by Kwon et.al. 

(2018). To avoid two-stage paging overhead 

authors implemented Hypernel security framework 

which relies on special hardware as well as a new 

software module called Hypersec. The hardware 

module called memory bus monitor (MBM), 

connects to the system bus between the CPU and 

main memory. MBM monitors write operations to 

every memory word and raises an interrupt upon 

finding any write attempt to the sensitive data. 

However, this bus monitor cannot be aware of the 

memory addresses of dynamically allocated kernel 

data objects, it can only be applied for monitoring 

limited kernel objects. The Hypernel prototype is 

implemented on the Versatile Express Juno r1 

Platform running Linux OS.  

EPTI developed by Hua et.el. (2018) is one of the 

recent hypervisor-based projects focused on kernel-

mode memory leakage prevention. This project 

deals with the protection of the cloud computing 

systems against Meltdown Attack. This recently 

discovered attack makes it possible to dump the 

kernel code and data from user-mode applications. 

One of the main features of EPTI is the allocatation 

and switching between two EPT structures to 

isolate user space and kernel space. Another key 

feature is that EPTI overhead is quite low because 

each EPT structure has its own TLB and as a result, 

switching between EPTs does not flush TLB. The 

authors reveal one interesting fact during 

performing a real Meltdown Attack: they found 

“that although Meltdown can read the memory 

without access permission it cannot fetch code 

without executable permission even in reorder-

execution”. EPTI leverages this fact in the 

following way: all user memory has been mapped 

as execute-never in the corresponding EPT. EPTI 

prototype has been implemented on Linux OS 

running on Intel Core i7-7700.  

Providing kernel integrity is also important even for 

smartphone OSes running on ARM CPUs. Ge, 

et.al. (2014) assume that OS kernel includes at least 

one exploitable vulnerability, which can be used by 

an adversary to hijack the control flow or to launch 

ROP attack. To prevent this attack the Sprobes 

system has been designed. This system provides 

kernel mode code integrity and prevents memory 

modifications caused by rootkits by using hardware 

extension ARM TrustZone. This makes it possible 

to partition all system resources and protect the 

confidentiality and integrity of all computations. 

Sprobes is implemented for Linux OS running on 

ARM Cortex M15.  

The idea of using several different EPT paging 

structures to protect critical memory areas from 

kernel-mode malware has been implemented in the 

LAKEED system by Tian et.al. (2017). This system 

is specifically designed to prevent the kernel-level 

keyloggers from accessing the user buffer that 

contains the keystrokes. Authors assume that 

Windows OS kernel mainly utilizes two kernel 

modules to drive a keyboard, and to protect the 

page with keystrokes, they allocate three separate 

EPTs for the two keyboard drivers and one for the 

target kernel extension. All these three EPTs have 

the same memory mapping but with different 

access permissions: the target extension can only 

access its own memory region and cannot access 

the code and data region of the keyboard drivers. In 

the keyboard driver spaces both of the two drivers 

can access each other’s data region in addition to 

their own code and data regions. LAKEED also 

prevents drivers’ code mutual access as well as 

preventing access to the code and data of the target 

kernel extension. LAKEED is tested using Intel 

Xeon E5606 CPU for Windows OS. LAKEED 

protects limited kernel data buffers, which are 

related only to the keystrokes but demonstrates the 

possibility of using hypervisor with EPT support to 

isolate both code and data. One of interesting facts 

of LAKEED implementation is that it works well 

with filter drivers with minimal overhead. This fact 

demonstrates the possibility to use various EPT 

structures to isolate all filter drivers.  

He et.al. (2017) is concerned about the security 

issue of attacking sensitive applications by 

exploiting kernel vulnerabilities. This issue makes 

sense for the current OSes, which use large 

monolithic kernel, because the kernel has complete 

access and control to/over all system resources 

including memory, device, and file management. In 

order to prevent kernel-mode attacks, the authors 

proposed a security-sensitive application (SSApp) 

protection mechanism called TZ-SSAP. This secure 

mechanism is based on a hardware-assisted 

environment provided by TrustZone technology on 



7 

ARM CPU. TZ-SSAP protects the code integrity by 

modifying the access permissions for kernel 

memory pages and traps all updates. TZ-SSAP 

protects the integrity and security of kernel data: it 

maps static data with read-only attributes as the 

kernel mode; and makes dynamic data write-

protected since it may be changed. TZ-SSAP has 

been tested on malware LKM that tries to directly 

tamper code and static data in the kernel space, as 

well as taking advantage of its privileges. The 

experimental results show that TZ-SSAP can 

prevent those attacks quite effectively. This system 

has been implemented for the ARM-Linux OS 

running on the ARM CoreTile Express A9x4 board.  

A recently presented research project at the Black 

Hat USA 2017 conference focused on preventing 

modern OSes from being exploited using ROP 

payload, “just-in-time” ROP or JIT-ROP (Pomonis 

et.al., 2017). During these attacka, the exploit 

pinpoints the exact location of ROP gadget and 

assembles them on-the-fly into a functional JIT-

ROP. The authors assume unprivileged local 

attacks, which may overwrite kernel code pointers 

with the OS via buggy kernel interfaces. To prevent 

these attacks, they present a kernel hardening 

scheme based on execute-only memory and code 

diversification called kR^X. This system includes 

two main parts: the R^X policy, and fine-grained 

KASLR. The R^X memory policy imposes the 

following property: memory can be either readable 

or executable. Fine-grained KASLR refers to a set 

of code diversification techniques specifically 

tailored to the kernel setting. This system helps to 

provide self-protection of execute-only kernel 

memory. kR^X prototype is implemented for the 

x86-64 Linux OS running on Intel Core i7-6700K 

CPU.  

The issues of detecting illegal memory access have 

been considered in the system DigTool which is 

designed to detect various kernel-mode 

vulnerabilities (Pan et.al., 2017). This system can 

identify out-of-bounds, use-after-free, and time-of-

check-to-time-of-use vulnerabilities for both kernel 

code and device drivers for Windows 7 and 10. 

DigTool leverages hypervisor facilities to monitor 

memory access by clearing the present flag (P flag) 

on the pages, which need to be monitored and 

processes page fault exceptions, which are 

triggered after any access to this page. DigTool 

enables the “single-step” operation by setting MTF 

(or TF) to trace access to this page. The authors 

focus on the two goals of illegal memory abuse: 

accessing beyond the bounds of the allocated heaps 

and referencing to already freed memory. To 

process all these events, DigTool hooks Windows 

allocation and deallocation functions: 

ExAllocatePoolWithTag, ExFreePoolWithTag, 

RtlAllocateHeap, and RtlFreeHeap. To prevent 

specifically UAF vulnerability DigTool also hooks 

InterlockedPushEntrySList and 

InterlockedPopEntrySList to be able to monitor the 

freed memory blocks in the lookaside lists. DigTool 

prevents read and write access to the freed memory 

and bounds of allocated pools.  

Wang et.al. (2015) highlighted that modern OS 

kernels are too complicated to be secure because 

they consist of tens of millions of lines of source 

code. Consequently, an increasingly large number 

of vulnerabilities are discovered in all major OS 

kernels each year. The proposed SecPod framework 

provides a trusted execution environment by 

creating a dedicated address space or secure space 

in parallel to the existing kernel address space or 

the normal space. The authors considered attacks 

resulting in illegal modifications of the page table 

attributes. The secure space is designed to enforce 

memory isolation by sanitizing the guest page table 

updates. The authors have tested their solution 

using two various attacks: under execution of 

unauthorized code and under tampering data. To 

deal with the first scenario SecPod registers a call 

back function for kernel page updates. As a result, 

after a new executable page is created in the kernel 

mode, SecPod verifies the hashes of code pages. If 

the verification is correct, the page is marked as 

executable in the shadow page table. Otherwise, it 

detects an attempt to execute an unauthorized 

kernel code. For the second scenario, SecPod 

applies data invariants, which are used to prevent 

kernel data structures from being intricately 

interconnected. SecPod is developed using KVM 

hypervisor and the EPT feature, which the authors 

called NPT. This system is tested using Ubuntu OS 

running on Intel Core i5 CPU.  

Hypervisor-based security solutions can be used to 

protect against physical attacks on main memory, 

such as cold boot attacks (Götzfried et.al., 2016). 

Intel SGX is one of the newly integrated 

technologies focused on the restriction of memory 

access. This technology leverages enclaves, but it is 



8 

only suitable to protect user mode memory. Kernel 

mode space cannot be protected by Intel’s SGX. To 

tackle this issue the authors developed HyperCrypt, 

which prevents physical attacks on kernel and user 

memory by leveraging VT-x with EPT (SLAT) 

technologies and AES symmetric encryption. 

HyperCrypt encrypts host physical pages and 

automatically decrypts pages that are currently 

accessed by the guest OS. HyperCrypt uses the 

CPU-bound encryption principle to prevent 

cryptographic keys and key material from being 

stored in RAM. HyperCrypt prototype is developed 

on top of BitVisor and is tested on Linux OS. 

HyperCrypt is not designed to prevent kernel 

memory from the kernel code access. Still the idea 

to prevent physical attacks, such as cold boot, using 

only software facilities seems very promising.  

Srivastava et.al. (2009) underline that kernel 

components of the commodity monolithic OS, like 

Windows and Linux, share a unified address space 

that allows any component to access the data and 

code. Malicious kernel-level components can hide 

their own presence by illicitly removing OS data 

structures and can escalate process privileges by 

overwriting the process’ user credentials with those 

for a root or administrative user. The authors 

presented the system called Sentry, which prevents 

kernel components with low trust by altering 

security critical data used by the kernel. Their 

system focuses primarily on the protection of 

dynamically allocated data structures. The authors 

assume that the core kernel code is protected and 

cannot be subverted by any malware. Their 

hypervisor-based design mediates the memory 

access attempts to overwrite protected data into the 

kernel address space. Sentry partitions kernel 

memory into two parts: protected and unprotected. 

It mediates memory access by using memory page 

protection bits. As a result, both legitimate and 

malicious writes to the protected pages will cause a 

page fault received by Sentry. Sentry determines 

the initiator of the access to protected data by using 

records on the kernel stack at every access. Its 

mechanism verifies memory access at the 

granularity of high-level language variables in the 

kernel’s source code. Sentry does not provide 

privacy of allocated data and of the drivers’ code 

and requires the drivers’ source code. Sentry is 

developed using XEN and Linux OS kernel.  

Lin et.al. (2007) underline that the primary cause of 

most OS failures are errors in device drivers written 

by third-party vendors. They point out that a 

malicious device driver can crash the whole OS or 

compromise its integrity because of unrestricted 

access to its resources. They proposed a system 

called iKernel to protect a kernel OS from both 

buggy and malicious device drivers. This system is 

designed to provide strong isolation mechanisms 

for device drivers using hypervisor-assisted virtual 

machine technology. The idea behind is the device 

drives isolation using separate virtual machines. As 

a result, the crash of the driver will affect only its 

virtual machine without affecting the host kernel or 

other virtual machines. This system isolates access 

to I/O ports and memory-mapped registers. iKernel 

does not provide integrity and privacy for the data 

allocated by the third-party driver. The system is 

developed using KVM virtual machine and Linux 

OS.  

The research work presented by Chen et.al. (2017) 

is focused on the fact that commodity OS kernels 

are typically implemented using low-level unsafe 

languages. As a result, memory corruption 

vulnerabilities are quite common and inevitable 

security weakness of modern OS kernels. Their 

research considers memory corruption of non-

control kernel data such as process credentials data. 

The system PrivWatcher is developed to protect the 

integrity of process credentials from these attacks 

using dual reference monitor which guarantees the 

Time-of-Check-To-Time-of-Use (TOCTTOU) 

consistency protected data fields. This system 

provides Discretionary Access Control (DAC) 

policy and prevents unauthorized processes from 

elevating their privileges. PrivWatcher does not 

protect kernel code and data allocated by 

third-party drivers from being read or patched. This 

framework has been implemented using Linux OS 

kernel with KSM.  

Another security system presented by Azab et.el. 

(2014) relies on hardware features of the ARM to 

prevent attacks that aim to do the following:  

 inject malicious code into the kernel;  

 modify privileged code binaries that 

already exist in memory.  

The proposed TrustZone-based Real-time Kernel 

Protection (TZ-RKP) provides OS kernel isolation 

using ARM Trust-Zone. TZ-RKP completely 



9 

protects the kernel code base, but does not prevent 

attacks that trick the kernel into maliciously 

modifying its own data. This system is 

implemented using Android’s Linux Kernel. 

One more security system focused on providing 

code integrity of software running on commodity 

hardware has been presented by Zhang et.al. 

(2014). The proposed HyperCheck is a hardware-

assisted integrity monitor, which successfully 

detects rootkits and code integrity attacks. 

HyperCheck prevents attacks on both targets: OS 

kernels, such as Linux and Windows and 

hypervisors, such as XEN. HyperCheck relies on 

the CPU System Management Mode (SMM) to 

acquire and transmit the state of the protected 

machine to an external machine. This system 

guarantees OS kernel code integrity only, without 

providing any protection against allocated data.  

A group of security experts from Belgium 

(Gadaleta et.al., 2012) presented HyperForce, a 

hypervisor-based framework, which guarantees the 

execution of critical code in the kernel-space 

regardless of the state of the kernel, even if the OS 

kernel has been compromised. The authors 

assumed that a kernel-level attacker can modify the 

critical code in order to compromise its efficiency 

or completely disable its operations. To provide 

kernel-mode code integrity, HyperForce takes the 

advantages of hardware-based virtualization and 

write-protects the memory pages holding the 

instructions and data of the security-critical code. 

This framework allows the code to make changes to 

its data by unlocking the memory pages before it 

triggers an interrupt, and then lock them back 

immediately after the code’s execution. HyperForce 

also write-protects the memory holding the 

Interrupt Descriptor Table (IDT) and protects the 

Interrupt Descriptor Table Register (IDTR) that 

contains the address of the IDT. HyperForce has 

been implemented using KVM and Linux OS 

kernel. HyperForce does not protect third-party 

drivers and memory allocated by them.  

Another hypervisor-based framework was 

presented at Black Hat Asia by Han et.al. (2017). 

The proposed integrity protector Shadow-box 

supports periodic and event-based monitoring of 

kernel objects. Shadow-box recognizes integrity 

breaches in static and dynamic kernel objects. 

Shadow-box relies upon its two sub-parts: a 

lightweight hypervisor (Light-box) and a security 

monitor (Shadow-watcher). The Light-box is a 

lightweight hypervisor, which isolates OS kernel 

and dynamic kernel objects. The security monitor 

Shadow-watcher monitors static kernel elements 

and checks the integrity of dynamic kernel 

elements. Shadow-box protects the integrity of 

static kernel objects: code and data by setting read 

and execute rights for the code and only read rights 

for read-only data. This framework does not 

provide code privacy as well as security for the 

third-party drivers code and their data.  

To protect commodity OS kernels from untrusted 

kernel extensions Xi, Tian, & Liu (2011) proposed 

HUKO, a hypervisor-based integrity protection 

system. This system leverages mandatory access 

control policies to limit an attacker’s ability to 

compromise the kernel integrity. HUKO protects 

code, static data and dynamic data of the OS kernel 

from being modified.  

SIDE is another system, which isolates the kernel 

from buggy device drivers developed by Sun and 

Chiueh (2011). SIDE executes a device driver in 

the same address space as the kernel but in a 

different protection domain from the kernel.  

Conclusion. The conducted analysis of the related 

research projects shows that there are numerous 

hardware-based virtualization prototypes for Linux 

and Windows OS designed to prevent malicious 

kernel mode code from accessing code and 

sensitive data in the kernel memory. At the same 

time, not one of the existing solutions provide code 

and data protection for both OS kernel and third-

party drivers, see Table 1.  

Several projects leverage Intel EPT technology to 

create isolated enclaves for drivers, for example:  

 one EPT used in HACS by Wang et.al. 

(2017), and AllMemPro by Korkin (2018-a); 

 two EPTs used in LKMG by Tian et.al. 

(2018), and EPTI by Hua et.el. (2018);  

 three EPTs used in LAKEED by Tian et.al. 

(2017); 

EPT technology seems very capable of creating 

isolated kernel spaces; the detailed analysis of this 

possibility will be presented further.  



10 

Table 1. Summary table of memory protection projects  

Title, year 

Unauthorized access to the following memory: 

OS 
Code for OS Kernel 

and 3rd party drivers 

Data of OS 

internal structures 

Data of 3rd 

party drivers 

Read Write Read Write Read Write 

Windows built-in 

Protection, 20181 
– + – + – – Windows 

Multics, 19652 – + – + – – GE 645  

Sentry, 2009 – + – + – + Linux 

iKernel, 2007 – + – + – – Linux 

HUKO, 2011 – + – + – – 
Linux, 

Windows 

OSsk, 2011 – + – + – – Linux 

HyperForce, 2012 – + – – – – Linux 

HyperCheck, 2014 – + – – – – 
Linux, 

Windows 

HyperCrypt, 20163 – – – – – – Linux 

Hypernel, 20184 – + – + – – Linux 

PrivWatcher, 2017 – – – + – – Linux 

PrivGuard, 20185 – – – + – – Linux 

TZ-RKP, 2014 – + – – – – Linux 

TZ-SSAP, 2017 + – – – – – Linux 

SIDE, 2013 – + – + – + Linux 

Sprobes, 2014 – + – – – – Linux 

SecPod, 2015 – – – + – – Linux 

ExOShim, 2016 + + – – – – Windows 

LAKEED, 20166 + + + + – – Windows 

Shadow-box, 2017 – + – + – – Linux 

kR^X, 2017 + + – – – – Linux 

Digtool, 20177 – – + + – – Windows 

DADE, 2017 – + – + – – Linux 

HACS, 2017 – – – + – – Linux 

DIKernel, 2018 – + – + – – Linux 

BehaviourKI, 2018 – + – + – – Linux 

LKRG, 2018 – + – + – – Linux 

LKMG, 2018 – + + + + + Linux 

EPTI, 2018 + – + – + – Linux 

AllMemPro, 2018 – – + + + + Windows 

MemoryRanger, 20188 + + + + + + Windows 

                                                      
1 PatchGuard protects only limited fields of OS internal structures. 
2 Multics is the first concept of memory isolation for the General Electric (GE) 645 mainframe computer.  
3 HyperCrypt prevents physical attacks such as cold boot via kernel encryption. 
4 Hypernel monitors limited kernel objects. 
5 PrivGuard prevents only privilege escalation attacks. 
6 LAKEED protects memory data related to the keystrokes. 
7 Digtool prevents accessing beyond the bounds of allocated heaps and referencing to freed memory.  
8 MemoryRanger is the proposed memory protection system 



11 

3. THE MEMORYRANGER: HOW TO RUN 

DRIVERS IN ISOLATED KERNEL SPACES 

The proposed prototype Memory Ranger is based 

on Intel Virtualization Technology (Intel VT-x) 

and extended page-table mechanism (EPT). This 

chapter includes four subsections. The first one 

deals with how to apply VT-x and EPT to isolate 

drivers. The second one presents the architecture 

of MemoryRanger and its implementation. The 

next section deals with MemoryRanger 

benchmark results. The final section discusses its 

limitations.  

3.1. EPT: The Idea of Memory Isolation 

Extended Page Tables (EPT) is an Intel 

virtualization technology for the memory 

management unit (MMU) which is designed to 

virtualize guest physical memory (Intel, 2018).  

EPT Intro. The central part of this mechanism is 

the EPT paging structures, which are used during 

memory translation. According to the section 

28.2 of the Intel manual (Intel, 2018), guest-

physical addresses are translated by traversing a 

set of EPT paging structures to produce physical 

addresses that are used to access memory. 

Without EPT the guest-physical addresses will be 

treated as physical addresses and used to access 

host memory. The address of EPT paging 

structures is stored in the hypervisor control 

structure (VMCS).  

In a nutshell, EPT plays the role of an 

intermediary or proxy during memory address 

translation.  

The organization of EPT paging structures is 

similar to the paging structures in the protected 

mode.  

A detailed analysis of applying EPT to monitor 

code execution and control memory access has 

been presented in Section 2.2.2. by Korkin & 

Tanda (2017). The details of using EPT for 

protection of allocated data are given in 

Section 3.1. by Korkin (2018-a).  

EPT provides an opportunity to trap and process 

each access on the memory page by manipulating 

the content of EPT page-table entry.  

It is possible to intercept read, write, and execute 

memory access attempts by changing the 

corresponding access attributes on EPT entry as 

well as redirecting necessary memory access 

from the original physical page to the fake one by 

changing page frame number (PFN) value in this 

EPT entry.  

Memory Isolation using EPT. The previous 

research projects show that it is possible to 

initially allocate fixed EPT paging structures with 

different access attributes and prevent memory 

access from kernel-mode drivers by switching 

between them, for example three EPTs are used 

in LAKEED by Tian et.al. (2017).  

The key idea of MemoryRanger is to dynamically 

allocate EPT paging structures and update access 

attributes on EPT page-table entries in real time.  

For example, let us consider the following initial 

scenario. OS Windows is running: OS kernel 

code and other drivers are loaded into memory. 

OS kernel code accesses OS structures and other 

drivers access their memory.  

After that, driver A is loaded, allocates the 

memory data A by calling 

nt!ExAllocatePoolWithTag routine and accesses 

this newly allocated memory buffer. Next, Driver 

B is loaded, allocates data B and accesses this 

data in a similar way.  

 



12 

 
Figure 2. Organization of EPT paging structures to isolate memory of two kernel-mode drivers and their allocated memory  

 

OS kernel code accesses the memory of drivers A and B during its 

loading. Next, OS code accesses the allocated memory of these drivers 

during the ExAllocatePoolWithTag call. In this scenario, OS kernel has 

not been restricted, but it can still be restricted.  

All the aforementioned three access from drivers to their data are legal 

and they are marked as horizontal lines, see left part of the Figure 2.  

Let us consider the following illegal memory access attempts: 

 Driver A does the following:  

o Patches the OS structures;  

o Steals and modifies data B;  

o Dumps the Driver B;  

 Driver B does the following: 

o Patches the OS structures;  

o Steals and modifies data A;  

o Dumps the Driver A;  

 Other drivers do the following:  

o Steal and modify data A and data B;  

o Dump drivers A and B.  

Without MemoryRanger all these illegal memory access attempts are 

processed without any security reaction. To prevent these attacks 

MemoryRanger allocates EPT structure for each driver in the following 

way, see the central and the right parts of the Figure 2.  

Me m oryRange r Hype rvis or

Other Drivers and Their Memory

exe = false        rw = true

OS kernel code
(e.g. ntoskrnl)

exe = true
rw = true

Driver A
exe = true
rw = true

Allocated Mem A
exe = true
rw = true

Now all drivers share the same space

Driver B
exe = true
rw = true

Allocated Mem B
exe = true
rw = true

OS structures 
(e.g. EPROCESS)

exe = true         
rw = true

Other Drivers and Their Memory

exe = true        rw = true

EPT pointer

 read/
write 

 read/
write 

read

Driver A
exe = false
rw = false

Allocated Mem A
exe = false
rw = false

Default EPT structure

Driver B
exe = false
rw = false

Allocated Mem B
exe = false
rw = false

Other Drivers and Their Memory

exe = true        rw = true

Access 
prevention

OS kernel code
(e.g. ntoskrnl)

exe = true
rw = true

Driver A
exe = true
rw = true

Allocated Mem A
exe = true
rw = true

EPT structure for Driver A

Driver B
exe = false
rw = false

Allocated Mem B
exe = false
rw = false

OS structures 
(e.g. EPROCESS)

exe = false
rw = false

 read/
write 

Access 
prevention

OS kernel code
(e.g. ntoskrnl)

exe = true
rw = true

Driver A
exe = false
rw = false

Allocated Mem A
exe = false
rw = false

EPT structure for Driver B

Driver B
exe = true
rw = true

Allocated Mem B
exe = true
rw = true

OS structures 
(e.g. EPROCESS)

exe = false         
rw = false

 read/
write 

Access 
prevention

   Execute violation: MemoryRanger 
changes EPT pointer so that the code continues 

its execution

 read/
write 

OS kernel code
(e.g. ntoskrnl)

exe = true
rw = true

OS structures 
(e.g. EPROCESS)

exe = true         
rw = true

 read/
write 

Access 
prevention

Other Drivers and Their Memory

exe = false        rw = true



13 

Step 1. The Default EPT. Let us assume that 

MemoryRanger is loaded as a common driver 

before Driver A and Driver B will be loaded.  

After its loading, MemoryRanger allocates the first 

EPT structure called the Default EPT. 

MemoryRanger places OS inside this EPT by 

setting the memory access attributes: the OS kernel 

code, OS structures, other drivers and their memory 

is executable and readable/writable. By default, 

memory pages of all newly allocated EPT 

structures are non-executable, but readable and 

writable.  

MemoryRanger receives notifications about drivers 

loading, the process creation, and memory 

allocation/deallocation by the third-party driver.  

Step 2. Creating EPT for Driver A. After 

trapping the loading of the Driver A, 

MemoryRanger creates a new EPT structure for 

Driver A with the following access attributes:  

 Memory of Driver A is marked as 

executable and readable/writable;  

 OS kernel code is marked as executable 

and readable/writable;  

 OS structures memory is marked as non-

executable and non-readable/non-writable; 

 Other drivers and their memory are marked 

as non-executable, but readable/writable. 

Additionally, MemoryRanger updates access 

attributes for the Default EPT structure: 

 Memory of driver A is marked as non-

executable and non-readable/non-writable. 

Step 3. Updating two EPTs. After Driver A 

allocates memory A, MemoryRanger updates 

access attributes for two EPTs.  

The EPT structure for Driver A gets the following 

updates:  

 Allocated memory A is marked as 

executable and readable/writable.  

The Default EPT structure updates in this way:  

 Allocated memory A is marked as non-

executable and non-readable/non-writable.  

As a result, Driver A is executed and accesses its 

allocated memory A only in the EPT for Driver A. 

Access to these memory regions from the Default 

EPT is forbidden.  

Step 4. Creating EPT for Driver B. 
MemoryRanger traps the loading of the Driver B. 

MemoryRanger creates a new EPT structure for 

Driver B with the following access attributes:  

 Memory of Driver B is marked as 

executable and readable/writable;  

 OS kernel code is marked as executable 

and readable/writable;  

 Memory of Driver A is marked as non-

executable and non-readable/non-writable; 

 OS structures memory is marked as non-

executable and non-readable/non-writable; 

 Other drivers and their memory are marked 

as non-executable, but readable/writable. 

Additionally, MemoryRanger updates access 

attributes for the Default EPT structure and EPT for 

Driver A in the following way:  

 Memory of Driver B is marked as non-

executable and non-readable/non-writable. 

Step 5. Updating three EPTs. After Driver B 

allocates memory B, MemoryRanger updates all 

EPTs in the following way.  

For the EPT structure for Driver B: 

 Allocated memory B is marked as 

executable and readable/writable.  

For the Default EPT structure: 

 Allocated memory B is marked as non-

executable and non-readable/non-writable.  

For the EPT structure for Driver A: 

 Allocated memory B is marked as non-

executable and non-readable/non-writable. 

As a result, Driver B is executed and accesses its 

allocated memory B only in the EPT for Driver B. 

Access to these memory regions from the Default 

EPT and EPT for Driver A is forbidden. 

Step 6. A new process. MemoryRanger is also 

notified when a new process is created. After that it 

reveals the memory address of EPROCESS 

structure and updates this memory for all EPTs in 

the following way.  

For the Default EPT structure: 

 EPROCESS structure is marked as 

executable and readable/writable.  



14 

For the EPT structures for Driver A and Driver B: 

 EPROCESS structure is marked as non-

executable and non-readable/non-writable.  

As a result, only OS kernel and other drivers can 

access the newly loaded EPROCESS structure from 

the Default EPT. Access to this memory from all 

other EPTs and from Driver A (Driver B) is 

forbidden.  

Step 7. Switching between EPTs. Windows OS 

kernel controls drivers’ execution using the thread 

scheduling mechanism. The system’s thread 

scheduler interrupts kernel-mode thread and moves 

control to another thread (Microsoft, 2004).  

Initially, EPT pointer includes the address of the 

Default EPT. Each time after the OS scheduler 

moves control to Driver A (or to Driver B) it tries 

to execute the driver’s code and causes an execute 

EPT violation. MemoryRanger traps this EPT 

violation, because the corresponding code 

fragments are marked as non-executable. After 

trapping, MemoryRanger checks which driver is 

executed and changes the EPT pointer to the EPT 

for Driver A (or to the EPT for Driver B) so that the 

code continues its execution, see Figure 3.  

If during execution of Driver A inside the EPT for 

Driver A the OS scheduler moves control to one of 

other drivers, its execution leads to the execute EPT 

violation, because other drivers code fragments are 

marked as non-executable in EPT for Driver A (and 

in EPT for Driver B as well). MemoryRanger traps 

the EPT violation and after deciding which code 

tries to execute, changes EPT pointer to the Default 

EPT structure.  

In a similar way, MemoryRanger changes EPT 

pointer if OS kernel code accesses OS structures 

inside EPT for Driver A (or EPT for Driver B). 

Memory regions with OS structures are marked as 

non-readable/non-writeable inside these EPTs and 

access to the memory always cause EPT violations. 

This access is granted only inside the Default EPT.  

The Final Step. Preventing illegal access. Apart 

from executing EPT violations, MemoryRanger 

also traps read and write EPT violations. 

MemoryRanger provides the principle of the 

minimal privilege: the read and write access to the 

data is granted only to the drivers, which allocated 

this data before. The examples of legal access are 

the following: 

In the Default EPT: 

 OS kernel core accesses OS structure;  

 Other drivers access their memory;  

In the EPT for Driver A (in the EPT for Driver B): 

 Driver A accesses allocated memory A 

(Driver B accesses allocated memory B). 

All other memory access attempts are trapped and 

assumed as illegal with one exception. After 

trapping the EPT violations MemoryRanger 

decides to grant or prevent an access and 

implements this decision, see Figure 3. The 

decision is made according to the following 

parameters:  

 the current value of EPT pointer;  

 source address (which code tries to access);  

 destination or target address (which data is 

accessed);  

 type of access (read or write).  

For illegal access, for example, Driver A tries to 

access memory of Driver B or Driver B tries to 

patch OS internal structures, MemoryRanger 

processes the following steps to prevent an access:  

 Redirects access by changing EPT PFN 

value from the original page to the fake 

one;  

 Allows access to this page by changing 

EPT memory access attributes;  

 Sets Monitor Trap Flag (MTF).  

As a result, after a driver reads the fake data the 

control goes to the hypervisor again. Now 

MemoryRanger puts the original settings back:  

 Restores access by setting EPT PFN value 

to the original page;  

 Blocks access to this page by changing 

EPT memory access attributes;  

 Clears MTF.  

These manipulations prevent illegal access to the 

sensitive data and code.  



15 

 

Figure 3. The proposed algorithm of dispatching EPT violations in MemoryRanger (general view) 

 

The access exception. The legal read/write 

memory access can result in EPT violation as well. 

This exception to the rule is based on memory 

paging. Windows memory management system can 

allocate memory for two various drivers in the 

same 4 kilobyte memory page. As a result, 

MemoryRanger blocks any access to this memory 

in all EPT structures.  

After the driver tries to access such a memory data, 

which is allocated by this driver earlier, 

MemoryRanger traps it. During processing of this 

violation, MemoryRanger decides that this is legal 

access and temporarily makes this data accessible: 

 Allows access to this page by changing 

EPT memory access attributes;  

 Sets MTF.  

After a driver accesses this memory, the control 

goes to the hypervisor again, and now it 

implements the following steps to protect memory: 

 Blocks access to this page by changing 

EPT memory access attributes;  

 Clears MTF.  

These steps help to grant authorized access as well 

as protecting data buffers, which were allocated at 

the same memory page.  

At the same time, this temporary access granting is 

very time-consuming. There are several ways of 

avoiding this issue; one of them is to allocate only 

page-aligned memory.  

FALSETRUE

TRUE

TRUE

TRUE
TRUE TRUE

TRUE

FALSE

FALSE

FALSE
FALSE FALSE

FALSE
If this access 

is from the OS 
kernel core?

If this access is to 
the code or data of 

recently loaded 
drivers?

If it is an execute 
violation?

If this access 
is from the OS 
kernel core?

If this access 
is from the recently 

loaded drivers?

Switch the EPT pointer 
to the Drivers EPT

E.g. EPT pointer updates 
from the ‘Default EPT’ 

to ‘EPT for Driver A’

Switch the EPT pointer 
to the Default EPT

E.g. EPT pointer changes 
from ‘EPT for Driver B’ 

to the ‘Default EPT’

Switch the EPT pointer 
to the Drivers EPT

E.g. EPT pointer changes 
from ‘EPT for Driver A’ 

to ‘EPT for Driver B’

MemoryRanger receives 
a read/write/execute EPT Violation

Switch the EPT pointer 
to the Drivers EPT

E.g. EPT pointer updates 
from the ‘Default EPT’ to 

‘EPT for Driver B’

Block this 
illegal access

E.g. ‘Other Drivers’ 
access code or 

data of ‘Driver A’

Block this 
illegal access

E.g. ‘Driver B’ 
accesses code or 
data of ‘Driver A’

Switch the EPT pointer 
to the Default EPT

E.g. OS kernel core 
accesses OS internal 

structures (EPROCESS)

Block this 
illegal access

E.g. ‘Driver B’ 
accesses a EPROCESS 

structure

MemoryRanger returns 
control to the guest OS

if (EPT pointer==
the Default EPT)

if (EPT pointer==
the Default EPT)



16 

Conclusion. To sum up, MemoryRanger (MR) 

isolates drivers execution by leveraging EPT in the 

following way:  

 Initially MR allocates the Default EPT 

structure. All loaded drivers and OS kernel 

are executed inside it.  

 After a new driver is loaded, MR allocates 

a new EPT structure with a specific 

configuration. MR updates all EPT settings 

so that only this new driver and OS kernel 

can be executed here.  

 Each time the driver allocates memory MR 

updates all EPT structures again.  

 MR updates all EPT structures after a new 

process has been launched.  

 MR provides drives execution by switching 

between EPT structures.  

 MR prevents illegal access attempts by 

redirecting them to the fake data and 

restoring EPT settings after each access.  

 MR skips legal access to the memory. 

 MR isolates code and allocated memory of 

third-party drivers, which are loaded after 

it.  

Some important details of the implementation 

details of MemoryRanger are presented in next 

Section.  

3.2. Architecture and Implementation of 

MemoryRanger 

MemoryRanger is a bare-metal hypervisor, which 

is based on hardware virtualization technology 

VT-x and Extended Page Table (EPT) feature. 

MemoryRanger hypervisor is loaded using the 

console application, which starts its legacy driver.  

To implement the algorithm from Section 3.1. 

MemoryRanger needs to process the following:  

 starting new processes;  

 loading drivers;  

 memory allocation and deallocation;  

 read/write and execute EPT violations.  

To process these events MemoryRanger includes 

the following parts, see Figure 4:  

 Kernel-mode driver with callbacks to be 

notified about new drivers and processes;  

 DdiMon hypervisor, which hooks kernel-

mode memory management routines;  

 MemoryMonRWX hypervisor, which 

handles EPT violations and EPT structures;  

 Memory Access Policy (MAP), which is a 

kind of brain for processing all the events.  

For each of the following notifications: drivers 

loading, launching processes, memory allocation 

and deallocation, MemoryRanger adds the 

corresponding data structures to the lists, and 

updates EPT structures.  

The first component is a kernel-mode driver, which 

registers two driver-supplied callback routines 

using PsSetCreateProcessNotifyRoutineEx and 

PsSetLoadImageNotifyRoutine to receive 

notifications about processes creation (MSDN, 

2018-a) and drivers loading (MSDN, 2018-b).  

Whenever a process is created the corresponding 

callback routine creates the structure 

EPROCESS_PID and sends it to the MAP. This 

structure includes two fields:  

 process ID;  

 vector of addresses and sizes of 

EPROCESS memory regions, which are 

needed to be protected.  

MAP adds this structure to the list and updates EPT 

structures using MemoryMonRWX hypervisor. 

In a similar way, another callback routine receives 

notifications about drivers loading. After a new 

driver is loaded, this callback creates the 

ISOLATED_MEM_ENCLAVE structure and 

sends it to the MAP. Here is this structure:  

 address of newly allocated EPT paging 

structure for this driver;  

 driver’s image base address;  

 driver’s image end address, which is a sum 

of base address and image size;  

 vector of allocated memory pools.  

MAP adds the ISOLATED_MEM_ENCLAVE to 

the corresponding list, creates a new EPT paging 

structure and updates all other EPT structures.  

The second component processes kernel APIs. 

MemoryRanger considers that third-party drivers 

allocate memory using ExAllocatePoolWithTag 

routine and free using ExFreePoolWithTag. 

MemoryRanger intercepts these kernel API calls 

using DdiMon. It is a hypervisor-based project, 



17 

which leverages EPT facilities to install stealth 

hooks by Tanda (2016).  

DdiMon receives a notification about memory 

allocation and sends this data to the MAP: 

 address of code, which allocates the buffer; 

 address and size of allocated memory pool. 

MAP receives it and creates the 

ALLOCATED_POOL structure. Next MAP finds 

ISOLATED_MEM_ENCLAVE structure 

corresponding to the driver, which allocates this 

memory, and adds ALLOCATED_POOL into the 

vector ‘drv_allocs’ from this structure. Finally, 

MAP updates EPT structures to take into account a 

newly allocated memory buffer.  

In a similar way, DdiMon processes memory 

deallocation and removes ALLOCATED_POOL 

structure. This scheme helps to supply up-to-date 

information about which memory pools have been 

allocated by which driver.  

The third component is MemoryMonRWX (Korkin 

& Tanda, 2017), which controls access to the 

memory in real time. This hypervisor-based 

component handles read, write, and execute 

violations and sends the following data about each 

EPT violation to the MAP: 

 the current value of EPT pointer;  

 source address (which code tries to access);  

 destination address (which data is 

accessed);  

 type of access (read, write, or execute).  

The final component is MAP, which receives this 

data and makes the decision using the lists of 

EPROCESS_PID, ISOLATED_MEM_ENCLAVE, 

ALLOCATED_POOL. MAP will then grant, or 

will prevent memory access, or will change EPT 

pointer according to the algorithm, see Figure 3.  

MemoryRanger is developed using Microsoft 

Visual C++ 2015 with integrated Windows Driver 

Kit (WDK). It is tested using Vmware Workstation 

14 and Windows 10 1709 64-bit. The source code 

of MemoryRanger is found here Korkin (2018-b). 

Demos. The proposed MemoryRanger architecture 

implements all steps to isolate drivers’ execution 

and it has been successfully tested in two scenarios. 

In the first demo, MemoryRanger protects both 

code and allocated data of third-party drivers from 

illegal access. In the second scenario, 

MemoryRanger prevents privilege escalation attack 

(Korkin, 2018-c).  

The next section will cover the benchmark 

assessment results of MemoryRanger.  

 

Figure 4 MemoryRanger Architecture with four parts: the driver, DdiMon, MemoryMonRWX, and MAP 

 

Memory Access Policy (MAP)

EPT violation 
occurs

Driver with Callback Routines Hypervisor

struct ISOLATED_MEM_ENCLAVE {
     EptData* ept;
     void* driverStart;
     void* driverEnd;
     std::vector < ALLOCATED_POOL > drv_allocs;    }

struct ALLOCATED_POOL {
void* poolStart;
void* poolEnd;   }

struct EPROCESS_PID {
     HANDLE ProcessId;
     vector < void*, int > fields;   
}

ISOLATED_
MEM_ENCLAVE

EPROCESS_PID

ISOLATED_
MEM_ENCLAVE

ISOLATED_
MEM_ENCLAVE

ALLOCATED_POOL

ALLOCATED_POOL

ALLOCATED_POOL

New Process is 
started

New Driver is 
loaded

Memory is 
allocated/ freed

DdiMon MemoryMonRWX

?
  



18 

3.3. Benchmark Results 

This section covers the benchmark results of 

MemoryRanger and compares them with the 

AllMemPro, which is the nearest competitor. 

The benchmark was evaluated in the following 

way. A driver allocates memory buffer and 

measures the duration of memory access to the data 

using Time Stamp Counter (TSC).  

The benchmark was calculated in four cases: 

 without hypervisor with enabled memory 

cache;  

 without hypervisor and disabled cache;  

 with AllMemPro hypervisor;  

 with MemoryRanger hypervisor. 

The calculated values of average memory access 

latency and its deviation are presented in Table 2. 

All the details related to the number of 

measurements and calculations are here Korkin 

(2018-a).  

The first three cases are similar with my previous 

research see Korkin (2018-a).  

The nearest competitor of MemoryRanger is 

AllMemPro (Korkin, 2018-a). It uses only one EPT 

structure to protect allocated data and traps both 

types of access attempts: legal and illegal ones. As 

a result, each memory access attempt causes 

significant time degradation.  

MemoryRanger excludes this drawback by using 

separate EPT structures for each driver. This helps 

to trap only illegal access and skip the legal ones, 

whose latency values are measured during 

benchmark.  

MemoryRanger is about three times faster than the 

nearest competitor, and it is slower by half than the 

OS without hypervisor with disabled cache. 

This time degradation happens for two reasons:  

 During the time measurement the OS 

schedule is switching EPT pointer between 

the EPT for Driver X and the Default EPT. 

 The changing EPT pointer results in TLB 

flushing and further memory access 

requires page-walk, which is time 

consuming.  

The first one is based on the fact that Windows is a 

preemptive multitasking OS and cannot be avoided.  

The second issue with the TLB flushing can be 

partially mitigated. The authors of EPTI hypervisor 

show that it is possible to speed up hypervisor by 

avoiding TLB flush after changing EPT pointer. 

This idea will be checked in further research.  

I can conclude that MemoryRanger has good 

benchmark results and these results can be 

improved.  

3.4. Discussion and Limitations 

MemoryRanger is a proof of concept prototype and 

has several limitations. 

MemoryRanger has similar limitations with 

AllMemPro developed by Korkin (2018-a):  

 Indirect memory access;  

 Self-protection;  

 Protection of memory with shared access;  

 Page file mechanism and forcing page-out;  

 Direct access to the physical memory;  

 Joint work with Windows 10 UEFI version;  

 SGX technology and Virtual Secure Mode.  

One of them is the protection of data buffers, which 

have to be accessed from both user-mode and 

kernel-mode code, for example IRP and MDL data. 

MemoryRanger does not protect this data.  

Table 2 Time evaluation 

No. Cases Memory Access Latency, TSC ticks 

1 without hypervisor with enabled cache 70±2 

2 without hypervisor with disabled cache 100.000±4.000 

3 with AllMemPro by Korkin (2018-a) 500.000±10.000 

4  with MemoryRanger 170.000±7.000 

 



19 

4. CONCLUSIONS 

To sum up I would like to highlight the following:  

1. Windows OS kernel is vulnerable to 

malware attacks and security researchers 

are trying to fill this gap.  

2. MemoryRanger protects kernel-mode code 

and allocated data from illegal access by 

executing drivers in separate enclaves.  

3. MemoryRanger provides confidentiality 

and integrity for the memory of third-party 

drivers and the OS internal structures.  

4. MemoryRanger achieves a low 

performance overhead due to allocating a 

kernel-mode enclave for each driver.  

5. MemoryRanger is a hypervisor-based 

solution with flexible architecture, which 

does not require the drivers’ source code.  

5. FUTURE STEPS 

MemoryRanger is a very promising project and 

here are my five steps for its future development.  

5.1. Spectre and Meltdown Attacks 

MemoryRanger seems to prevent data leakage from 

kernel-mode via side channel attacks based on 

hardware vulnerabilities such as Meltdown attacks 

presented by Lipp et.al. (2018).  

To prevent Meltdown attack, MemoryRanger can 

isolate user-mode and kernel-mode spaces by 

allocating additional EPT paging structures for user 

space, like EPTI (Hua et.el., 2018), and encrypt 

memory pages with sensitive data, like HyperCrypt 

by Götzfried et.al. (2016).  

MemoryRanger can isolate user-mode data from 

being stolen or modified by kernel-mode malware.  

5.2. Restriction of OS Kernel to Prevent 

Exploitation  

There are several hypervisor-based projects, which 

do not restrict OS kernel, for example LKMG. As a 

result, after malware exploits OS kernel core 

vulnerability, it can access sensitive data in 

memory. 

MemoryRanger can restrict the OS kernel core. The 

current version of MemoryRanger allocates a 

separate EPT paging structures for each driver, 

which includes the OS kernel code and the 

corresponding driver’s code. The OS kernel code 

can be restricted by excluding it from the driver’s 

EPT, after the driver has been loaded.  

5.3. Next Areas for Drivers Isolation:  

File System, Registry, Network, Devices  

Windows security does not prevent illegal access 

from kernel-mode drivers to the file system, 

registry, and network. As a result, a malware driver 

can read/write/modify, create/delete files, registry 

and network data, which are processed by user-

mode applications or other drivers. Also, a malware 

driver can access camera, microphone, and other 

devices in an unauthorized way.  

MemoryRanger can implement the corresponding 

access rules to isolate file system, registry, network, 

and devices from being accessed by malware 

drivers. 

5.4. Creating Access Rules from  

Drivers’ Source Code During Compilation  

The current version of MemoryRanger does not 

provide security shared access to the memory. As a 

result, only the driver, which allocates the data, can 

access it. One of the possible ways to tackle this 

issue is to generate memory access rules using the 

drivers’ source code. 

MemoryRanger can use memory access policies, 

which are generated during the drivers’ 

compilation. Usually, drivers, which allocate data 

for shared access, are compiled in the same 

environment, for example, one Visual Studio 

solution includes two projects with such drivers. 

5.5. Integrate into Windows Kernel  

Finally, by integrating MemoryRanger into 

Windows OS kernel, we can significantly improve 

data protection from both software and hardware 

attacks. It is time to take a step forward and protect 

data of more than one billion Windows users all 

around the world.  

6. ACKNOWLEDGMENTS 

I would like to thank Michael Chaney, ERAU 

alumni, Cyber-Research Editor, USA, for 

reviewing this research and providing constructive 

feedback, which significantly contributed to 

improving the quality of this paper.  

I am also very grateful to Ivan Nesterov 

(i.nesterow@gmail.com), head of the R&D 



20 

laboratory, Russia, for his invaluable contribution, 

ideas, and support. His main research areas include 

information security, high-performance computing, 

distributed storage systems, database design, and 

high availability applications. His software design 

experience includes applications on hybrid 

CPU/GPU special-purpose architectures for 

telecommunication and cryptography, distributed 

visualization and data science. 

7. REFERENCES 

[1] ACSC (2018, May). Hardening Microsoft 

Windows 10 version 1709 Workstations. 

Australian Cyber Security Centre (ACSC). 

Retrieved from 

https://acsc.gov.au/publications/protect/Harden

ing_Win10.pdf 

[2] Azab, A.M., Ning, P., Shah, J., Chen, Q., 

Bhutkar, R., Ganesh, G., Ma, J., & Shen, W. 

(2014). Hypervision Across Worlds: Real-time 

Kernel Protection from the ARM TrustZone 

Secure World. In Proceedings of the 2014 

ACM SIGSAC Conference on Computer and 

Communications Security (CCS '14). ACM, 

New York, NY, USA, pp. 90-102. DOI: 

https://doi.org/10.1145/2660267.2660350 

[3] Brookes, S., Denz, R., Osterloh, M., & Thayer, 

S.T. (2016, April). ExOShim: Preventing 

Memory Disclosure using Execute-Only 

Kernel Code. In Proceedings of the 11th 

International Conference on Cyber Warfare 

and Security, ICCWS'16, pp. 56-66. Retrieved 

from 

http://thayer.dartmouth.edu/tr/reports/tr15-

001.pdf 

[4] Chen, Q., Azab, A.M., Ganesh, G., & Ning., P. 

(2017). PrivWatcher: Non-bypassable 

Monitoring and Protection of Process 

Credentials from Memory Corruption Attacks. 

In Proceedings of the 2017 ACM on Asia 

Conference on Computer and Communications 

Security (ASIA CCS '17). ACM, New York, 

NY, USA, pp. 167-178. DOI: 

https://doi.org/10.1145/3052973.3053029 

[5] Corbató, F. J., & Vyssotsky, V. A. (1965). 

Introduction and Overview of the Multics 

System. In Proceedings of the AFIPS Fall Joint 

Computer Conference, FJCC. Volume 27, Part 

1. ACM, New York, NY, USA, pp. 185-196. 

DOI: 

http://dx.doi.org/10.1145/1463891.1463912 

[6] Desimone, J., & Landau, G. (2018, August 9). 

Kernel Mode Threats and Practical Defenses. 

In Proceedings of the BlackHat USA 

Conference. Las Vegas, Nevada. Retrieved 

from https://i.blackhat.com/us-18/Thu-August-

9/us-18-Desimone-Kernel-Mode-Threats-and-

Practical-Defenses.pdf 

[7] Feng, X., Yang, Q., Shi L., & Wang, Q. 

(2018). BehaviorKI: Behavior Pattern Based 

Runtime Integrity Checking for Operating 

System Kernel, 2018 IEEE International 

Conference on Software Quality, Reliability 

and Security (QRS), Lisbon, Portugal, pp. 13-

24. DOI: 

https://doi.org/10.1109/QRS.2018.00015 

[8] Gadaleta F., Nikiforakis N., Mühlberg J.T., & 

Joosen W. (2012). HyperForce: Hypervisor-

enForced Execution of Security-Critical Code. 

In Proceedings of the 27th IFIP TC 11 

International Information Security Conference. 

DOI: https://doi.org/10.1007/978-3-642-

30436-1_11 

[9] Ge, X., Vijayakumar, H., & Jaeger, T. (2014). 

SPROBES: Enforcing Kernel Code Integrity 

on the TrustZone Architecture. In Proceedings 

of the 3rd Workshop on Mobile Security 

Technologies (MoST). San Jose, CA. 

Retrieved from https://arxiv.org/abs/1410.7747 

[10] Ghosh, S. (2017, May 15). Windows XP is still 

the third most popular operating system in the 

world. Business Insider. Retrieved from 

http://uk.businessinsider.com/windows-xp-

third-most-popular-operating-system-in-the-

world-2017-5 

[11] Götzfried, J., Dörr, N., Palutke, R., & Müller, 

T. (2016). HyperCrypt: Hypervisor-Based 

Encryption of Kernel and User Space. In the 

Proceedings of the 11th International 

Conference on Availability, Reliability and 

Security (ARES). Salzburg, Austria. DOI: 

https://doi.org/10.1109/ARES.2016.13 

[12] Han, S., Kang, J. Shin, W., Kim, H., & Park, 

E. (2017). Myth and Truth about Hypervisor-

Based Kernel Protector: The Reason Why You 

Need Shadow-Box. Retrieved from 

https://www.blackhat.com/docs/asia-

17/materials/asia-17-Han-Myth-And-Truth-

about-Hypervisor-Based-Kernel-Protector-



21 

The-Reason-Why-You-Need-Shadowbox-

wp.pdf 

[13] He, Y., Zheng, X., Zhu, Z., & Shi, G. (2017). 

TZ-SSAP: Security-Sensitive Application 

Protection on Hardware-Assisted Isolated 

Environment. Security and Privacy in 

Communication Networks. Springer 

International Publishing. pp. 538-556. DOI: 

https://doi.org/10.1007/978-3-319-59608-2_30 

[14] Hofmann, O., Dunn, A., Kim, S., Roy, I., & 

Witchel, E. (2011). Ensuring operating system 

kernel integrity with OSck. In Proceedings of 

the 16th International Conference on 

Architectural Support for Programming 

Languages and Operating Systems (ASPLOS 

XVI). ACM, New York, NY, USA, 279-290. 

DOI: 

https://doi.org/10.1145/1950365.1950398 

[15] Hofmann, O., Kim, S., Dunn, A., Lee M., & 

Witchel, E. (2013, March 16–20). InkTag: 

Secure Applications on an Untrusted 

Operating System. In Proceedings of the 18th 

International Conference on Architectural 

Support for Programming Languages and 

Operating Systems (ASPLOS '13). ACM, New 

York, NY, USA, 265-278. DOI: 

https://doi.org/10.1145/2451116.2451146 

[16] Hua, Z., Du, D., Xia Y., Chen H., & Zang, B. 

(2018). EPTI: Efficient Defence against 

Meltdown Attack for Unpatched VMs. In 

Proceedings of the USENIX Annual Technical 

Conference (ATC). Boston, MA. pp. 255-266. 

Retrieved from 

https://www.usenix.org/conference/atc18/prese

ntation/hua 

[17] Intel. (2018, May). Intel® 64 and IA-32 

Architectures Software Developer’s Manual. 

Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 

3B, 3C, 3D and 4. Order Number: 325462-

067US. Retrieved from 

https://software.intel.com/en-

us/download/intel-64-and-ia-32-architectures-

sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-

3c-3d-and-4 

[18] Korkin, I. (2018-a). Hypervisor-Based Active 

Data Protection for Integrity and 

Confidentiality of Dynamically Allocated 

Memory in Windows Kernel. Paper presented 

at the Proceedings of the 13th Annual 

Conference on Digital Forensics, Security and 

Law (CDFSL), University of Texas at San 

Antonio (UTSA), San Antonio, Texas, USA. 

pp. 7-38 Retrieved from 

https://igorkorkin.blogspot.com/2018/03/hyper

visor-based-active-data-protection.html 

[19] Korkin, I. (2018-b). MemoryRanger source 

code. GitHub repository. Retrieved from 

https://github.com/IgorKorkin/MemoryRanger 

[20] Korkin, I. (2018-c). MemoryRanger Demos. 

The Attack and the Attack Prevention. [Video 

file]. Retrieved from 

https://www.youtube.com/watch?list=PL0Aer

bf3kwULpVhoHyjMUeUFLwnvur5iu&v=HN

xc-tjy3QA 

[21] Korkin, I., & Tanda, S. (2017, May 15-16). 

Detect Kernel-Mode Rootkits via Real Time 

Logging & Controlling Memory Access. Paper 

presented at the Proceedings of the 12th Annual 

Conference on Digital Forensics, Security and 

Law (CDFSL), Embry-Riddle Aeronautical 

University, Daytona Beach, Florida, USA. pp. 

39-78. Retrieved from 

https://igorkorkin.blogspot.com/2017/03/mem

orymonrwx-detect-kernel-mode.html/ 

[22] Kwon, D., Oh, K., Park, J., Yang, S., Cho, Y., 

Kang, B., & Paek, Y. (2018, June). Hypernel: 

a Hardware-Assisted Framework for Kernel 

Protection Without Nested Paging. In 

Proceedings of the 55th Annual Design 

Automation Conference (DAC '18). ACM, 

New York, NY, USA, Article 34, 6 pages. 

DOI: 

https://doi.org/10.1145/3195970.3196061 

[23] Lin, T., Chan, E. M., Farivar, R., Mallick, N., 

Carlyle, J. C., David, F. M., & Campbell, R. H. 

(2007). iKernel: Isolating Buggy and 

Malicious Device Drivers Using Hardware 

Virtualization Support. In Proceedings - DASC 

2007: Third IEEE International Symposium on 

Dependable, Autonomic and Secure 

Computing. pp. 134-142. DOI: 

https://doi.org/10.1109/ISDASC.2007.435139

8 

[24] Lipp, M., Schwarz, M, Gruss, D., Prescher, T., 

Haas, W., Fogh, A., Horn, J., Mangard, S., 

Kocher, P., Genkin, D., Yarom, Y., & 

Hamburg, M. (2018). Meltdown: Reading 

Kernel Memory from User Space. 27th 

USENIX Security Symposium. Retrieved from 

https://meltdownattack.com/meltdown.pdf 

[25] Liu, P., Tian, D., & Xiong, X. (2011). Practical 

Protection of Kernel Integrity for Commodity 



22 

OS from Untrusted Extensions. In Proceedings 

of the 18th Annual Network and Distributed 

System Security Symposium (NDSS). 

Retrieved from 

http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.477.1924&rep=rep1&type=pdf 

[26] Manes, V., Jang, D., Ryu, C., & Kang, B. 

(2018, May). Domain Isolated Kernel: A 

Lightweight Sandbox for Untrusted Kernel 

Extensions. Elsevier Computers & Security. 

Volume 74. pp. 130–143. DOI: 

https://doi.org/10.1016/j.cose.2018.01.009 

[27] Microsoft. (2004). Scheduling, Thread 

Context, and IRQL. Windows Hardware and 

Driver Central. Microsoft Download Center. 

Retrieved from 

http://download.microsoft.com/download/e/b/a

/eba1050f-a31d-436b-9281-

92cdfeae4b45/irql_thread.doc 

[28] MSDN (2018-a). 

PsSetCreateProcessNotifyRoutineEx routine. 

Kernel-Mode Driver Reference. Retrieved 

from https://docs.microsoft.com/en-

us/windows-

hardware/drivers/ddi/content/ntddk/nf-ntddk-

pssetcreateprocessnotifyroutineex 

[29] MSDN (2018-b). 

PsSetLoadImageNotifyRoutine routine. 

Kernel-Mode Driver Reference. Retrieved 

from https://docs.microsoft.com/en-

us/windows-

hardware/drivers/ddi/content/ntddk/nf-ntddk-

pssetloadimagenotifyroutine 

[30] Oh, M. (2018, September 27). Return of the 

Kernel Rootkit Malware (on Windows 10). In 

Proceedings of the BlueHat v18 Security 

Conference. Redmond, Washington, USA. 

Retrieved from 

https://www.slideshare.net/MSbluehat/bhv18-

return-of-the-kernel-rootkit-malware-on-

windows-10 

[31] Pan, J., Yan, G., & Fan, X. (2017). Digtool: A 

Virtualization-Based Framework for Detecting 

Kernel Vulnerabilities. In Proceedings of the 

26th USENIX Conference on Security 

Symposium (SEC'17). pp. 149-165. USENIX 

Association, Berkeley, CA, USA. Retrieved 

from 

https://www.usenix.org/system/files/conferenc

e/usenixsecurity17/sec17-pan.pdf 

[32] Pomonis, M., Petsios, T., Keromytis, A.D., 

Polychronakis, M., & Kemerlis, V.P. (2017). 

kR^X: Comprehensive Kernel Protection 

against Just-In-Time Code Reuse. In 

Proceedings of the 12th European Conference 

on Computer Systems (EuroSys '17). ACM, 

New York, NY, USA, 420-436. DOI: 

https://doi.org/10.1145/3064176.3064216 

[33] Qiang, W., Yang, J., Jin H., & Shi, X. (2018, 

August 21). PrivGuard: Protecting Sensitive 

Kernel Data from Privilege Escalation Attacks. 

In Proceedings of the IEEE Access, vol. 6, pp. 

46584-46594. DOI: 

https://doi.org/10.1109/ACCESS.2018.286649

8 

[34] Shirole, S. (2014, April 15). Performance 

Optimizations for Isolated Driver Domains. 

Virginia Polytechnic Institute and State 

University. Master of Science in Computer 

Science & Applications. Blacksburg, Virginia. 

Retrieved from 

https://vtechworks.lib.vt.edu/bitstream/handle/

10919/49107/Shirole_SM_T_2014.pdf 

[35] Srivastava, A., Erete, I., & Giffin, J. (2009). 

Kernel Data Integrity Protection via Memory 

Access Control. Tech. Rep. GT-CS-09-04, 

Georgia Institute of Technology. Retrieved 

from 

https://smartech.gatech.edu/handle/1853/30785 

[36] Tanda, S. (2016). Monitor Device Driver 

Interfaces (DDIMon). GitHub repository. 

Retrieved from 

https://github.com/tandasat/DdiMon 

[37] Tian, D., Jia, X., Chen, J., & Hu. C. (2017). An 

Online Approach for Kernel-level Keylogger 

Detection and Defense. Journal of Information 

Science and Engineering. Volume 2. Number 

2. pp. 445-461. Retrieved from 

http://jise.iis.sinica.edu.tw/JISESearch/pages/V

iew/PaperView.jsf?keyId=155_2013 

[38] Tian, D., Xiong, X., Hu, C., & Liu, P. (2011). 

Policy-Centric Protection of OS Kernel from 

Vulnerable Loadable Kernel Modules. In 

Information Security Practice and Experience - 

7th International Conference, ISPEC 2011, pp. 

317-332. Springer-Verlag, Berlin, Heidelberg. 

DOI: https://doi.org/10.1007/978-3-642-

21031-0_24 

[39] Tian, D., Xiong, X., Hu, C., & Liu, P. (2018, 

March 8). A Policy-Centric Approach to 

Protecting OS Kernel from Vulnerable LKMs. 



23 

Journal of Software: Practice and Experience. 

DOI: https://doi.org/10.1002/spe.2576 

[40] Wang, J.P., Zhao, P., & Ma, H.T. (2017, July). 

HACS: A Hypervisor-Based Access Control 

Strategy to Protect Security-Critical Kernel 

Data. 2nd International Conference on 

Computer Science and Technology (CST 

2017). Guilin, China, DOI: 

https://doi.org/10.12783/dtcse/cst2017/12516 

[41] Wang, X., Chen Y., Wang, Z., Qi Y., & Zhou, 

Y. (2015). SecPod: a Framework for 

Virtualization-based Security Systems. 

USENIX Annual Technical Conference 

(ATC’15). USENIX Association. Retrieved 

from 

https://www.usenix.org/conference/atc15/techn

ical-session/presentation/wang-xiaoguang 

[42] Warren, T. (2018, March 30). Microsoft is 

ready for a world beyond Windows. The 

Verge. Retrieved from 

https://www.theverge.com/2018/3/30/1717932

8/microsoft-windows-reorganization-future-

2018 

[43] Yi, H., Cho, Y., Paek, Y., & Ko. K., (2017, 

September 1). DADE: A Fast Data Anomaly 

Detection Engine for Kernel Integrity 

Monitoring. The Journal of Supercomputing. 

Springer US. DOI: 

https://doi.org/10.1007/s11227-017-2131-6 

[44] Yosifovich, P., Ionescu, A., Russinovich, M., 

& Solomon, D. (2017). Windows Internals, 

Part 1, 7th ed. Redmond, Washington: 

Microsoft Press. 

[45] Zabrocki, A. (2018). LKRG – Linux Kernel 

Runtime Guard ver 0.4. Retrieved from 

https://www.openwall.com/lkrg/ 

[46] Zhang, F., Wang, J., Sun, K., & Stavrou, A. 

(2014). HyperCheck: A Hardware-Assisted 

Integrity Monitor. IEEE Transactions on 

Dependable and Secure Computing, 11(4). 

https://doi.org/10.1109/TDSC.2013.53 


	1. INTRODUCTION
	2. Background
	3. The memoryranger: How to RUN DRIVERS IN ISOLATED KERNEL SPACES
	3.1. EPT: The Idea of Memory Isolation
	3.2. Architecture and Implementation of MemoryRanger
	3.3. Benchmark Results
	3.4. Discussion and Limitations

	4. CONCLUSIONS
	5. FUTURE steps
	5.1. Spectre and Meltdown Attacks
	5.2. Restriction of OS Kernel to Prevent Exploitation
	5.3. Next Areas for Drivers Isolation:  File System, Registry, Network, Devices
	5.4. Creating Access Rules from  Drivers’ Source Code During Compilation
	5.5. Integrate into Windows Kernel

	6. Acknowledgments
	7. REFERENCES

