
BitLeaker:

Seunghun Han, Jun-Hyeok Park
(hanseunghun || parkparkqw)@nsr.re.kr

Wook Shin, Junghwan Kang, Byungjoon Kim
(wshin || ultract || bjkim)@nsr.re.kr

Subverting BitLocker with One Vulnerability
0
1
0
1
0
1

1
1
0
1
1
1

0
1
0
1
0
1

1
1
0
1
1
1

1
0
1
0
1
0

1
0
1
0
1
0

Who Are We?

- Senior security researcher at the Affiliated Institute of ETRI
- Review board member of Black Hat Asia and KimchiCon
- Speaker at USENIX Security, Black Hat Asia, HITBSecConf,
BlueHat Shanghai, KimchiCon, BeVX, TyphoonCon and BECS

- Author of “64-bit multi-core OS principles and structure, Vol.1&2”
- a.k.a kkamagui, @kkamagui1

- Senior security researcher at the Affiliated Institute of ETRI
- Speaker at Black Hat Asia 2018 ~ 2019
- Embedded system engineer
- Interested in firmware security and IoTsecurity
- a.k.adavepark, @davepark312

Previous Works

Goal of This Presentation
- We present an attack vector, S3 Sleep, to subvert the

Trusted Platform Modules (TPMs)
- S3 sleeping state cuts off the power of CPU and peripheral devices
- We found CVE-2018-6622, and it affects a discrete TPM (dTPM) and

a firmware TPM (fTPM)

- We introduce a new tool, BitLeaker
- BitLeaker extracts the Volume Master Key (VMK) of BitLocker from

TPMs
- BitLeaker can mount a BitLocker-locked partition with the VMK

DISCLAIMER
- We do not explain BitLocker’s encryption algorithm

- We focus on the protection mechanism for the VMK
- Especially, the mechanism only with a TPM!

- It is a default option of BitLocker
- We do not consider combinations of a TPM and other options (PIN
or USB startup key)

- We do not explain a vulnerability in BitLocker
- We introduce the TPM vulnerability and subvert the VMK protection
mechanism of BitLocker with it

- The vulnerability we found is in the TPM, not BitLocker!

- Father
Life is wild

To-be As-is

Reality!!

Maybe…?

BitLocker Linux

… ?! …

L IN U X

MY P C !

MY H ER O !

BitLocker kidnapped
your data!

NO, PLEASE!!!!

GIVE MY NUTS DATA BACK!!

BitLocker kidnapped
protected your data!

Data!!

FOR NUTS DATA!!!

Contents

- Background

- Subverting TPMs with One Vulnerability

- Subverting Microsoft’s BitLocker

- BitLeaker Design and Implementation

- Demo and Conclusion

Contents

- Background

- Subverting TPMs with One Vulnerability

- Subverting Microsoft’s BitLocker

- BitLeaker Design and Implementation

- Demo and Conclusion

Target System

Intel NUC8i7HVK

CPU: Intel Core i7-8809G
RAM: 32GB
OS: Windows 10, Ubuntu 18.04

VGA: AMD Radeon RX Vega M
NVME: 512GB * 2
Security: Secure Boot, TPM 2.0

Microsoft’s BitLocker (1)
- According to Microsoft’s documents…
- Is a data protection feature that integrates with the OS

- It addresses the threats of data theft or exposure from lost, stolen, or
inappropriately decommissioned computers

- Provides the most protection when used with a Trusted
Platform Module (TPM)
- BIOS/UEFI firmware establishes a chain of trust for the pre-operating

system startup with a TPM
- The firmware must support TCG-specified Static Root of Trust for

Measurement (SRTM)

- Uses the TPM by default to protect the Volume Master Key
(VMK)

- VMK encrypts the Full Volume Encryption Key (FVEK)
- FVEK is used to encrypt and decrypt a disk

Microsoft’s BitLocker (2)

<Key Management and Decryption Process – from an Ancient Scroll of Microsoft>

TPM!!!

?!

- Is a tamper-resistant device and has two versions
- TPM 2.0 is more widely deployed than TPM 1.2

- Has own processor, RAM, ROM, and
non-volatile RAM
- It has own state separated from the system

- Provides cryptographic and accumulating measurement
functions
- Integrity measurement values are accumulated to Platform

Configuration Registers (PCR #0~#23)

Trusted Platform Module (TPM) (1)

- Is used to determine the trustworthiness of a system by
investigating the values stored in PCRs
- A local verification or remote attestation can be used

- Is used to limit access to secret data based on specific
PCR values
- Seal operation encrypts secret data with PCRs of the TPM
- Unseal operation can decrypt the sealed data only if the PCR values

match the specific values
- BitLocker also uses the seal and unseal functions for VMK protection

Trusted Platform Module (TPM) (2)

- Sends integrity-relevant information (measurements) to
the TPM
- TPM accumulates the measurements (hashes) to a PCR with the

previously stored value in the PCR

- Is the CPU controlled by Core RTM (CRTM)
- The CRTM is the first set of instructions when a new chain of trust is

established

Root of Trust for Measurement (RTM)

Extend: PCRnew = Hash(PCRold || Measurementnew)

- SRTM is started by static CRTM (S-CRTM) when the host platform
starts at POWER-ON or RESTART

- It extends measurements (hashes) of components to PCRs
BEFORE passing control to them

Static RTM (SRTM)

BIOS/UEFI firmware

BIOS/UEFI
Code

: Extend a hash of next code to TPM
: Execute next code

TPM

Bootloader Kernel User
ApplicationsS-CRTM

Power On/
Restart

Examples of PCR values

SRTM PCRs

If we want to get the data back…

- We have to…
1) Recover PCRs of a TPM to unseal the VMK
2) Get the encrypted VMK from BitLocker
3) Decrypt the encrypted VMK with the TPM
4) Unlock a BitLocker-locked partition with the VMK!!

Contents

- Background

- Subverting TPMs with One Vulnerability

- Subverting Microsoft’s BitLocker

- BitLeaker Design and Implementation

- Demo and Conclusion

Security researchers have tried to get the VMK
with PHYSICAL ATTACKS!!

Tramell Hudson Pulse Security

Physical bus attacks was
rational and practical!

- TPM is a tamper-resistant device, but the bus is not
- It is hard to get data from inside of a TPM
- The bus called Low Pin Count (LPC) is not secure and tamper-

resistant!

- Researchers believed PCRs of a TPM were well-protected
- According to TPM specifications, SRTM PCRs only can be reset by

host reset (power on or reboot)
- We usually trust the specifications, but the implementation is…

PCR protection is critical!
- PCRs MUST NOT be reset by disallowed operations even

though an attacker gains root privilege!
- SRTM PCRs (PCR #0~#15) can be reset only if the host resets

- If attackers reset PCRs, they can reproduce specific PCR
values by replaying hashes
- They can unseal the secret without physical attacks

Unfortunately,

Software development
is not easy….

Specifications
he should have read…

We got the power?
- We found and published CVE-2018-6622 last year

- It could reset the TPM when the system entered the S3 sleeping
state of Advanced Configuration and Power Interface (ACPI)

- All PCRs and the state were initialized after exploiting the
vulnerability

- We could reset the TPM without PHYSICAL ACCESS
- Unlike other researches, entering the S3 sleeping state was enough

to exploit the vulnerability
- It meant we did not worry about tearing down the PC!

ACPI and Sleeping State
- ACPI is a specification about configuring hardware

components and performing power management
- When ACPI enters sleeping states, it powers off…

- S0: Normal, no context is lost
- S1: Standby, the CPU cache is lost
- S2: Standby, the CPU is POWERED OFF
- S3: Suspend, the CPU and devices are POWERED OFF
- S4: Hibernate, the CPU, devices, and RAM are POWERED OFF
- S5: Soft Off, all parts are POWERED OFF

ACPI and Sleeping State
- ACPI is a specification about configuring hardware

components and performing power management
- When ACPI enters sleeping states, it powers off…

- S0: Normal, no context is lost
- S1: Standby, the CPU cache is lost
- S2: Standby, the CPU is POWERED OFF
- S3: Suspend, the CPU and devices are POWERED OFF
- S4: Hibernate, the CPU, devices, and RAM are POWERED OFF
- S5: Soft Off, all parts are POWERED OFF

TPM is also POWERED OFF!!

Sleep Process of the SRTM

<TCG PC Client Platform Firmware Profile Specification>

OS

ACPI
(BIOS/UEFI)TPM

(1) Request to
save a state

Sleep
(S3)

(5) Request to
restore a state

(2) Request to
enter sleep

(4) Wake up(3) Sleep

(6) Resume OS

“Grey Area” Vulnerability (1)
(CVE-2018-6622)

<TCG PC Client Platform Firmware Profile Specification>

OS

ACPI
(BIOS/UEFI)TPM

(1) Request to
save a state

Sleep
(S3)

(5) Request to
restore a state

(2) Request to
enter sleep

(4) Wake up(3) Sleep

(6) Resume OS

“Grey Area” Vulnerability (2)
(CVE-2018-6622)

<Trusted Platform Module Library Part1: Architecture Specification>

What is the “corrective action”?

This means “reset the TPM”

TPM 2.0

TPM 1.2

“Grey Area” Vulnerability (2)
(CVE-2018-6622)

<Trusted Platform Module Library Part1: Architecture Specification>

TPM 2.0

TPM 1.2

What is the “corrective action”?

This means “reset the TPM”

…… ?!

I have no idea about “corrective action”

I should do nothing!

Clear!

So, I tried to exploit the TPM with the vulnerability…

My effort went to /dev/null!
and…

Intel TPM?!

NO!!!!!

Typical Types of TPMs
- Discrete TPM (dTPM)

- Is a hardware-based TPM and connected to the LPC
- Is secure, expensive, and widely deployed in high-end products
- Supports TPM 1.2 or 2.0 specification

- Firmware TPM (fTPM)
- Is a firmware-based TPM and resides in a secure processor
- Is secure (?), cheap, and also widely deployed from entry products to

high-end products
- Supports only the TPM 2.0 specification

Intel PTT

CVE-2018-6622 and fTPM
- Unfortunately, Intel Platform Trust Technology (PTT) also

had the sleep mode vulnerability
- We reported it to Intel in Feb 2019, and they would assign a new Intel

SA and a CVE!
- According to test results, many manufacturers such as Intel, Lenovo,

GIGABYTE, and ASUS were vulnerable!

- TPM related code of BIOS/UEFI firmware seems to be
shared for the dTPM and the fTPM
- How about AMD’s fTPM…?

You got the REAL power!

We could RESET the dTPM and the fTPM
with

ONE SLEEP MODE VULNERABILITY!

Kernel Module for Exploiting the Vulnerability
- Patches tpm_pm_suspend() function in Linux TPM driver

- The kernel module changes the function to “return 0;”

Contents

- Background

- Subverting TPMs with One Vulnerability

- Subverting Microsoft’s BitLocker

- BitLeaker Design and Implementation

- Demo and Conclusion

BitLocker and TPM
- TPM seals the VMK of BitLocker

- Seal operation encrypts data with a TPM bind key and TPM state
(PCRs)

- Unseal operation decrypts data with a TPM bind key when the TPM
state is the same as the sealed state

- BitLocker uses two PCR profiles
- If UEFI Secure Boot is enabled, it uses PCR #7 and #11
- If UEFI Secure Boot is disabled, it uses PCR #0, #2, #4 and #11

Query Protectors with Manage-bde tool

Query

PCR #7 and #11

PCR usage of UEFI
- PCR #0: S-CRTM, host platform extensions, and embedded option

ROMs
- PCR #1: Host platform configuration
- PCR #2: UEFI driver and application code
- PCR #3: UEFI driver and application configuration data
- PCR #4: UEFI boot manager code and boot attempts
- PCR #5: Boot manager configuration, data, GPT partition table
- PCR #6: Host platform manufacturer specification
- PCR #7: Secure boot policy
- PCR #8 - #15: Defined for use by the OS with SRTM

So, we needed

But, how?

hashes of the normal system
for PCR #7 and #11

PCRs, Measurements, and Event Logs (1)
- Event logs consist of PCR numbers, hashes, event types,

and event data
- According to the TPM spec., RTM extends hashes to a TPM and

saves event logs for each measurement
- UEFI firmware has EFI TCG protocols for TPM 1.2 and 2.0 to

communicate with TPM implementations

- So, we needed the event logs!
- We could make the TPM state normal by replaying them

PCRs, Measurements, and Event Logs (2)

PCRs, Measurements, and Event Logs (3)
- Unfortunately, event logs were gone when the kernel

started
- If ExitBootServices() of EFI_BOOT_SERVICES was called, UEFI

firmware flushed them
- It meant we had to save event logs into somewhere and retrieved

them with a kernel module!

We needed a custom BOOTLOADER!

PCRs, Measurements, and Event Logs (3)
- Unfortunately, event logs were gone when the kernel

started
- If ExitBootServices() of EFI_BOOT_SERVICES was called, UEFI

firmware flushed them
- It meant we had to save event logs into somewhere and retrieved

them with a kernel module!

We needed a custom BOOTLOADER!

NO!!!!

SOMETHING WRONG!

Custom Bootloader v1
- Custom bootloader is based on GRUB2 of Coreboot

- GRUB2 of Coreboot has a wrapper of EFI TCG2 protocol
- We did not need to make the custom bootloader from scratch

- We added a new feature to extract event logs from UEFI
firmware
- Custom bootloader gets event logs with GetEventLogs() of EFI_

TCG2_PROTOCOL
- Custom bootloader parses and saves them into 0x80000

Event Log
Header

Event Log #1

Event Log #2

Event Log #3

Event Log #N

…

Event Log #5

Event Log #4

Crypt Agile
Log Format

Custom
Bootloader v1UEFI

1) EFI_TCG2_PROTOCOL.GetEventLogs()

Linux
Kernel

Kernel
Module Replay ToolShim

Bootloader

2) Save event logs into 0x80000
(memmap=64K$0x80000)

3) Load event logs from 0x80000 and
dump them into a kernel log file

4) Replay hashes to a TPM

Analysis of UEFI Event Logs
- UEFI firmware extended Secure Boot data to PCR #7

- Secure Boot flag, platform key (PK), key exchange key (KEK),
signature database (db), forbidden signature database (dbx)

- Certificate used to verify a bootloader’s signature

- UEFI firmware extended nothing to PCR #11
- PCR #11 was all 0 values!

We needed a hash of the certificate in UEFI variables!

UEFI Firmware

Linux Boot Manager
(Shim.efi + Grub.efi)

Window Boot Manager
(Bootmgfw.efi)

Window Boot Manager
(Bootmgfw.efi) TPM

1) Vendor’s PK, KEK, db, dbx,
and Secure Boot flag

(Always same)

2-1) Microsoft Windows Production
PCA 2011

2-2) Microsoft Corporation
UEFI CA 2011

Final PCR #07 of 2-1: 257B1024…

Final PCR #07 of 2-2:DEADBEEF…

Unseal Unseal

Get Hashes from Windows Logs
- Microsoft Windows Production PCA 2011 is everywhere!

- UEFI firmware that supports Secure Boot has it
- So, we could get it from other PCs like coworker’s PC!

- Windows OS saves all measurement logs
- The logs are in the c:\Windows\Logs\MeasuredBoot directory
- We could read them using Microsoft’s TPM Platform Crypto-

Provider (PCP) Toolkit!
- ex) PCPTool GetLog

SHA256 hash of the certificate variable:
30bf464ee37f1bc0c7b1a5bf25eced275347c3ab1492d5623ae9f7663be07dd5

Unseal VMK with a TPM (1)
- Unsealing is not performed in a single TPM command!

- Several commands and parameters are needed!

- TPM2_Load(): Loads encrypted private and public data of the VMK
object with a handle used for sealing

- TPM2_StartAuthSession(): Starts a new session for unsealing
- TPM2_PolicyAuthorize(): Allows to change a policy of a session

handle
- TPM2_PolicyPCR(): Sets PCR-based policy to a session
- TPM2_Unseal(): Unseals the VMK with the loaded VMK handle and

the session handle

Unseal VMK with a TPM (2)
- Fortunately, all parameters of TPM commands were static!

- Because Windows Boot Manager (bootmgfw.efi) was the first
application after UEFI firmware
- All parameters started from the base index.

- If we got the parameters, we could reuse them FOREVER!

- How to get the parameters of each command?
- Reverse engineering of Bootmgfw.efi?

- Possible. However, we did not have much time!

Custom Bootloader v2
- We added hooks to the TPM protocol of UEFI firmware

- Custom bootloader v2 hooks functions of EFI_TCG_PROTOCOL like
HashLogExtendEvent() and SubmitCommand()

- Custom bootloader v2 dumps all TPM commands
- GRUB2 has a chainloader feature that can load another bootloader
- Boot sequence changes to UEFI firmware  Shim.efi  grub.efi 

Bootmgfw.efi
- Hooks of TPM protocol dumps all commands and executes original

functions

Windows Boot Manager
(Bootmgfw.efi)

Custom
Bootloader v2

Shim
Bootloader

Original
EFI_TCG_PROTOCOL

GetCapability
GetEventLog

HashLogExtendEvent
SubmitCommand

GetActivatePcrBanks
SetActivatePcrBanks
GetResultOfSetActive

PcrBanks

UEFI

Hooked
EFI_TCG_PROTOCOL

GetCapability
GetEventLog

HashLogExtendEvent
SubmitCommand

GetActivatePcrBanks
SetActivatePcrBanks
GetResultOfSetActive

PcrBanks

TPM2_Load()
TPM2_StartSession()

TPM2_PolicyAuthorize()
TPM2_PolicyPCR()

TPM2_Unseal()

Dump results and
return

Dump parameters
and execute

Handle used for sealing VMK
(0x81000001)

TPM2_Load command
(0x157)

Loaded handle of
sealed VMK object

(0x80000001)

Public data of
sealed VMK object

Private data of
sealed VMK object

Result code (success)

TPM2_StartAuthSession
(0x176)

Handles for protecting
new session

(RH_NULL, 0x40000007)

New session handle
(0x03000000)

Result code (success)

SHA256 of nonce for
new session

TPM2_PolicyAuthorize
(0x16b)

Session handle
(0x03000000)

Result code (success)

TPM2_PolicyPCR
(0x17f)

Session handle
(0x03000000)

Result code
(TPM_RC_VALUE)

Policy digest and bitmap
(PCR #7, #11)

TPM2_Unseal
(0x15e)

Loaded handle of sealed VMK
(0x80000001)

Session handle
(0x03000000)

TPM2_Unseal
(0x15e)

Loaded handle of sealed VMK
(0x80000001)

Session handle
(0x03000000)

Result code (success)

VMK of BitLocker!!

Get Parameters from BitLocker’s Metadata (1)
- BitLocker saved parameters into its metadata area

- A TPM-encoded VMK blob in metadata had essential data we needed!
- We could get BitLocker’s metadata with a well-known tool, Dislocker!

- Could we extract the VMK from other PCs?
- If the PC had the TPM vulnerability, we could get it!

SPEAKER!!

YA!!
YES!!

Get Parameters from BitLocker’s Metadata (2)

Public and private data
of sealed VMK for TPM2_Load

Policy digest and PCR bitmap
for TPM2_PolicyPCR

We got the last piece of the puzzle
- We finally….

- Reset a dTPM and fTPM
- Got normal hashes and replayed them to the TPM
- Got a TPM-encoded VMK blob and sent it to the exploited TPM
- Extracted the VMK from the exploited TPM

I GOT YOU!!

YA!!!

VMK of BitLocker!!

Contents

- Background

- Subverting TPMs with One Vulnerability

- Subverting Microsoft’s BitLocker

- BitLeaker Design and Implementation

- Demo and Conclusion

BitLeaker?
- Is a new tool to get your data back!

- It can decrypt the BitLocker-locked partition
with the sleep mode vulnerability

- Consists of several parts we made and customized
- BitLeaker bootloader, BitLeaker kernel module, BitLeaker

launcher, and Customized Dislocker

Project Link:
https://github.com/kkamagui/bitleaker

0
1
0
1
0
1

1
1
0
1
1
1

0
1
0
1
0
1

1
1
0
1
1
1

1
0
1
0
1
0

1
0
1
0
1
0

BitLeaker Bootloader
- Is the custom bootloader v2 we made!

- Dumps event logs from UEFI firmware and saves them
into RAM
- It saves event types, PCR numbers, and hashes into 0x80000
- BitLeaker kernel module uses the data

- Dumps all TPM commands of BitLocker
- It hooks EFI_TCG2_PROTOCOL of UEFI firmware and loads the

Windows boot manager, bootmgfw.efi
- It shows all TPM commands on the screen

BitLeaker Kernel Module
- Exploits the sleep mode vulnerability

- It changes tpm_pm_suspend() function to NULL function
- When the system wakes up from sleep mode, TPM is reset

- Dumps event types, PCR numbers, and hashes of
BitLeaker bootloader into a kernel log file
- It reads data of BitLeaker bootloader from 0x80000 and saves them

to a kernel log file (kmsg)
- BitLeaker launcher uses the data

BitLeaker Launcher
- Loads BitLeaker kernel module and exploits a TPM

- After exploiting, it replays hashes related to PCR #7 and #11

- Extracts the VMK and mounts a BitLocker-locked partition
- It gets a TPM-encoded blob with customized Dislocker

- Dislocker extracts the blob from BitLocker’s metadata area
- It sends TPM commands with the blob and extracts the VMK
- It mounts a BitLocker-locked partition with the customized Dislocker

Customized TPM2-Tools and Dislocker
- Customized TPM2-Tools v1.0

- Can send SHA256 hashes and TPM commands to a TPM
- We added those features to the TPM2-Tools v1.0

- Customized Dislocker
- Can load the VMK directly and mount a BitLocker-locked partition
- We added the feature and contributed it to the Dislocker project

- https://github.com/Aorimn/dislocker/pull/182

BitLeaker and USB Bootable Device

Ubuntu 18.04
BitLeaker Bootloader+

BitLeaker Kernel Module+

BitLeaker Bootable USB

BitLeaker Launcher+
Customized TPM2-Tools+

Customized Dislocker+

0
1
0
1
0
1

1
1
0
1
1
1

0
1
0
1
0
1

1
1
0
1
1
1

1
0
1
0
1
0

1
0
1
0
1
0

Model Status
BIOS TPM

Vendor Version Release Date Manufacturer Vendor String

Intel
NUC8i7HVK Vulnerable Intel J68196-503 12/17/2018 Intel Corporation

(fTPM) Intel

Intel
NUC5i5MYHE Vulnerable Intel

MYBDWi5v.86A.
0055.2019.0820

.1505
08/20/2019 Infineon (IFX)

(dTPM) SLB9665

HP
EliteDesk 800 G4 Safe HP Q21 02/15/2019 Infineon (IFX)

(dTPM) SLB9670

Dell
Optiplex 7060 Safe Dell 1.4.2 06/11/2019 NTC

(dTPM) rls NPCT 75x

ASUS
Q170M-C Vulnerable American

Megatrends Inc. 4212 07/24/2019 Infineon (IFX)
(dTPM) SLB9665

ASUS
PRIME Z390-A Safe American

Megatrends Inc. 1302 09/02/2019 Intel Corporation
(fTPM) Intel

ASRock
Z390 Extreme Safe ASRock P4.20 07/29/2019 Intel Corporation

(fTPM) Intel

GIGABYTE
AORUS Z390 Elite Safe American

Megatrends Inc. F8 06/05/2019 Intel Corporation
(fTPM) Intel

GIGABYTE
Z370-HD3 Safe American

Megatrends Inc. F13 08/13/2019 Intel Corporation
(fTPM) Intel

MSI
MAG Z390M MORTAR Safe American

Megatrends Inc. 1.50 08/08/2019 Intel Corporation
(fTPM) Intel

The version we found
the vulnerability!

DEMO

BitLeaker v1.0

Conclusion and
Black Hat Sound Bytes

- One vulnerability can subvert the dTPM and fTPM with the
ACPI S3 sleeping state
- We found CVE-2018-6622, and fTPM also has the same vulnerability

- BitLeaker can decrypt a BitLocker-locked partition
- It extracts the VMK from TPMs and mounts the encrypted partition

- Update your BIOS/UEFI firmware with the latest version!
- If there is no patched firmware, use BitLocker with the PIN
- Check your system with the latest Napper version

- https://github.com/kkamagui/napper-for-tpm

Questions ?

Project : https://github.com/kkamagui/bitleaker
Contact: hanseunghun@nsr.re.kr, @kkamagui1

parkparkqw@nsr.re.kr, @DavePark312

CONTRIBUTION!

SPEAKER!!

Reference
- Seunghun, H., Wook, S., Jun-Hyeok, P., and HyoungChun K. Finally, I can Sleep Tonight: Catching Sleep Mode

Vulnerabilities of the TPM with the Napper. Black Hat Asia. 2019.
- Seunghun, H., Wook, S., Jun-Hyeok, P., and HyoungChun K. A Bad Dream: Subverting Trusted Platform

Module While You Are Sleeping. USENIX Security. 2018.
- Seunghun, H., Jun-Hyeok, P., Wook, S., Junghwan, K., and HyoungChun K. I Don’t Want to sleep Tonight:

Subverting Intel TXT with S3 Sleep. Black Hat Asia. 2018.
- Dislocker project, https://github.com/Aorimn/dislocker
- Napper project, https://github.com/kkamagui/napper-for-tpm
- Microsoft. BitLocker Drive Encryption. http://download.microsoft.com/download/a/f/7/af7777e5-7dcd-4800-8a0a-

b18336565f5b/bitlockerflow.doc
- Pulse Security. Extracting BitLocker keys from a TPM. https://pulsesecurity.co.nz/articles/TPM-sniffing
- NCC Group. TPM Genie. https://github.com/nccgroup/TPMGenie/blob/master/docs/CanSecWest_2018_-

_TPM_Genie_-_Jeremy_Boone.pdf
- Microsoft. Advanced troubleshooting for Windows boot problems. https://docs.microsoft.com/en-

us/windows/client-management/img-boot-sequence
- Microsoft. Diving into Secure Boot. https://blogs.technet.microsoft.com/dubaisec/2016/03/14/diving-into-secure-

boot/

