BitLeaker:
Subverting BitLocker with One Vulnerability

Seunghun Han, Jun-Hyeok Park
(hanseunghun || parkparkqw)@nsr.re.kr

Wook Shin, Junghwan Kang, Byungjoon Kim
(wshin || ultract || bjkim)@nsr.re.kr

Who Are We?

- Senior security researcher at the Affiliated Institute of ETRI
- Review board member of Black Hat Asia and KimchiCon

- Speaker at USENIX Security, Black Hat Asia, HITBSecConf,
BlueHat Shanghai, KimchiCon, BeVX, TyphoonCon and BECS

- Author of “64-bit multi-core OS principles and structure, Vol.1&2"
- a.k.a kkamagui, W @kkamagui1

- Senior security researcher at the Affiliated Institute of ETRI
- Speaker at Black Hat Asia 2018 ~ 2019

- Embedded system engineer

- Interested in firmware security and loT security

-ak.adavepark, ¥ @davepark312

Goal of This Presentation

- We present an attack vector, S3 Sleep, to subvert the

Trusted Platform Modules (TPMs)

- S3 sleeping state cuts off the power of CPU and peripheral devices
- We found CVE-2018-6622, and it affects a discrete TPM (dTPM) and
a firmware TPM (fTPM)

- We introduce a new tool, BitLeaker

- BitLeaker extracts the Volume Master Key (VMK) of BitLocker from
TPMs
- BitLeaker can mount a BitLocker-locked partition with the VMK

DISCLAIMER

- We do not explain BitLocker’s encryption algorithm
- We focus on the protection mechanism for the VMK
- Especially, the mechanism only with a TPM!
- It is a default option of BitLocker
- We do not consider combinations of a TPM and other options (PIN
or USB startup key)

- We do not explain a vulnerability in BitLocker
- We introduce the TPM vulnerability and subvert the VMK protection
mechanism of BitLocker with it
- The vulnerability we found is in the TPM, not BitLocker!

Life is wild

- Father

MY HERO!

MY PC!

. - T -
Il

2

BitLocker recovery

Enter the recovery key for this drive

Lse i~ mombar kavs or function keys F1-F10 (use F10 for 0). No PlEASE"

Recovery kev ID (to identifv vou: kev): F5440DE2-49C8-4E9D-B141-6B023CE14128 y mm
u [

BitLockerkidnapped [iE e

or Windowdq to start

protected your data!

For more information on how to retrieve this key, go to aka.ms/recoverykeyfag from §nother PC

or mobile device.

Press Enter to continue

Press e : GIVE MY < u DATA BAGK!!
ress esC 1or maore recovery opuons (\L'A R EE

FOR::UTC DATAIN

Contents

- Background
- Subverting TPMs with One Vulnerability
- Subverting Microsoft’s BitLocker

- BitLeaker Design and Implementation

- Demo and Conclusion _

Contents

- Background ,-
- Subverting TPMs with One Vulnerability
- Subverting Microsoft’s BitLocker

- BitLeaker Design and Implementation

- Demo and Conclusion _

Target System

Intel NUC8i7HVK

CPU: Intel Core i7-8809G VGA: AMD Radeon RX Vega M
RAM: 32GB NVME: 512GB * 2
OS: Windows 10, Ubuntu 18.04 | Security: Secure Boot, TPM 2.0

Microsoft’s BitLocker (1)

- According to Microsoft’s documents...

- Is a data protection feature that integrates with the OS
- It addresses the threats of data theft or exposure from lost, stolen, or
inappropriately decommissioned computers

- Provides the most protection when used with a Trusted

Platform Module (TPM)

- BIOS/UEFI firmware establishes a chain of trust for the pre-operating
system startup with a TPM

- The firmware must support TCG-specified Static Root of Trust for
Measurement (SRTM)

Microsoft’s BitLocker (2)

- Uses the TPM by default to protect the Volume Master Key

(VMK)
- VMK encrypts the Full Volume Encryption Key (FVEK)
- FVEK is used to encrypt and decrypt a disk

TPMI!!

?1

<Key Management and Decryption Process — from an Ancient Scroll of Microsoft>

Trusted Platform Module (TPM) (1)

- Is a tamper-resistant device and has two versions
- TPM 2.0 is more widely deployed than TPM 1.2

- Has own processor, RAM, ROM, and
non-volatile RAM
- It has own state separated from the system

- Provides cryptographic and accumulating measurement

functions

- Integrity measurement values are accumulated to Platform
Configuration Registers (PCR #0~#23)

Trusted Platform Module (TPM) (2)

- Is used to determine the trustworthiness of a system by

investigating the values stored in PCRs
- A local verification or remote attestation can be used

- Is used to limit access to secret data based on specific

PCR values

- Seal operation encrypts secret data with PCRs of the TPM

- Unseal operation can decrypt the sealed data only if the PCR values
match the specific values

- BitLocker also uses the seal and unseal functions for VMK protection

Root of Trust for Measurement (RTM)

- Sends integrity-relevant information (measurements) to

the TPM

- TPM accumulates the measurements (hashes) to a PCR with the
previously stored value in the PCR

Extend: PCRnew = Hash(PCRuoid || Measurementnew)

- Is the CPU controlled by Core RTM (CRTM)

- The CRTM is the first set of instructions when a new chain of trust is
established

Static RTM (SRTM)

- SRTM is started by static CRTM (S-CRTM) when the host platform
starts at POWER-ON or RESTART

- It extends measurements (hashes) of components to PCRs
BEFORE passing control to them

BIOS/UEFI firmware

S-CRTM BIOS/UEF] Bootloader Kernel Qser_
Code Applications

~~

~=_ -

Power On/
Restart

- — » : Extend a hash of next code to TPM
— : Execute next code

Examples of PCR values

Bank/Algorithm: TPM ALG SHA256(0x000b

9e 92 34
e2 8a ff
ec 8d f5
ec 8d f5
bf fc 53
71 3e 31
ec 8d f5
82 1f a9
00 00 00

SRTM PCRs

LA L= L L L

00 00 00 0O 00 06
00 00 00 0O 00 06
43 ba c8 4c bb be

If we want to get the data back...

- We have to...
1) Recover PCRs of a TPM to unseal the VMK

2) Get the encrypted VMK from BitLocker
3) Decrypt the encrypted VMK with the TPM
4) Unlock a BitLocker-locked partition with the VMK!!

Contents

- Background

- Subverting TPMs with One Vulnerability

- Subverting Microsoft’s BitLocker

- BitLeaker Design and Implementation

- Demo and Conclusion _

Security researchers have tried to get the VMK

with PHYSICAL ATTACKS!!

Physical bus attacks was
rational and practicall!

- TPM is a tamper-resistant device, but the bus is not
- It is hard to get data from inside of a TPM
- The bus called Low Pin Count (LPC) is not secure and tamper-
resistant!

- Researchers believed PCRs of a TPM were well-protected
- According to TPM specifications, SRTM PCRs only can be reset by
host reset (power on or reboot)
- We usually trust the specifications, but the implementation is...

PCR protection is critical!

- PCRs MUST NOT be reset by disallowed operations even

though an attacker gains root privilege!
- SRTM PCRs (PCR #0~#15) can be reset only if the host resets

- If attackers reset PCRs, they can reproduce specific PCR

values by replaying hashes
- They can unseal the secret without physical attacks

Unfortunately,

Software development

IS not easy....

Specifications
he should have read...

We got the power?

- We found and published CVE-2018-6622 last year

- It could reset the TPM when the system entered the S3 sleeping
state of Advanced Configuration and Power Interface (ACPI)

- All PCRs and the state were initialized after exploiting the
vulnerabillity

- We could reset the TPM without PHYSICAL ACCESS

- Unlike other researches, entering the S3 sleeping state was enough
to exploit the vulnerability
- It meant we did not worry about tearing down the PC!

ACPI and Sleeping State

- ACPI is a specification about configuring hardware
components and performing power management

- When ACPI enters sleeping states, it powers off...
- SO: Normal, no context is lost
- S1: Standby, the CPU cache is lost
- S2: Standby, the CPU is POWERED OFF
- S3: Suspend, the CPU and devices are POWERED OFF
- S4: Hibernate, the CPU, devices, and RAM are POWERED OFF
- S5: Soft Off, all parts are POWERED OFF

ACPI and Sleeping State

- ACPI is a specification about configuring hardware
components and performing power management

- When ACPI enters sleeping states, it powers off...

TPM is also POWERED OFF!!

- S3: Suspend, the CPU and devices are POWERED OFF
- S4: Hibernate, the CPU, devices, and RAM are POWERED OFF
- S5: Soft Off, all parts are POWERED OFF

Sleep Process of the SRTM

(1) Request to
save a state OS
(2) Eﬁ?euressiteteop <)(6) Resume OS
ACPI
TPM N
(5) Request to (BIOS/UEFI)

CROGCERIELE
(3) Sleep) (4) Wake up

<TCG PC Client Platform Firmware Profile Specification>

“Grey Area” Vulnerability (1)
(CVE-2018-6622)

(1) Request to
save a state

OS

(2) Ei?eﬂesslteteop < >(6) Resume OS
ACPI
* ™M |f
5) Requestto | (BIOSIVEFY)

CROGCERIELE
(3) Sleep > (4) Wake up

<TCG PC Client Platform Firmware Profile Specification>

“Grey Area” Vulnerability (2)
(CVE-2018-6622)

TPM 2.0 What is the “corrective action”?

If the TPM receives Startup(STATE) that was not preceded by Shutdown(STATE), then,there is no state
to restore and the TPM will return TPM_RC_VALUE. The CRTM is expected to take|corrective action|to

prevent malicious software from manipulating the PCR values such that they would misrepresent the
state of the platform. The CRTM would abort the Startup(State) and restart with Startup(CLEAR).

This means “reset the TPM” j

TPM 1.2

The startup behavior defined by this specification is different than TPM 1.2 with respect to
Startup(STATE). A TPM 1.2 device will enter Failure Mode if no state is available when the TPM

receives Startup(STATE). This is not the case in this specification. It is up to the CRTM to take
corrective action if it the TPM returns TPM_RC_VALUE in response to Startup(STATE).

<Trusted Platform Module Library Part1: Architecture Specification>

r N
| have no idea about “corrective action”

=z | should do nothing!

If the TPM " ——— R N—— S, N0 State
to restore and the TPM will returii—> [ALUE. The CRTM is expected to take|corrective action|to

prevent malicious software from manipulating the PCR values such that they would misrepresent the
state of the platform. The CRTM would abort the Startup(State) and restart with Startup(CLEAR).

This means “reset the TPM” j

TPM 1.2
The startup behavior defined by this specification is different than TPM 1.2 with respect to

Startup(STATE). A TPM 1.2 device ?' 0 state is available when the TPM
receives Startup(STATE). This is no I ion. It is up to the CRTM to take

Bank/Algorithm: TPM_ALG_SHA256(0x000b)
PCR_00:
PCR_01:
PCR_02:
PCR_03:
PCR_04:
PCR_05:
PCR_06:
PCR_07:
PCR_08:
PCR_09:
PCR_10:
PCR_11:
PCR_12:
PCR_13:
PCR_14:
PCR_15:
PCR_16:
PCR_17:
PCR_18:
PCR_19:
PCR_20:
PCR_21:
PCR_22:
PCR_23:

a3
55
3d
3d
65
Oa
3d
b5
00

'CR:23: 00 00 00 OO0 0O 00 OO GO 00 OO OO 00 0O 00 00 OO OO0 00 OO 00 00 0O GO0 00 OO OO 00 0O OO0 00 00 00

So, | tried to exploit the TPM with the vulnerabillity...
and...

\AAY, effort went to /dev/null!

Typical Types of TPMs

- Discrete TPM (dTPM)

- Is a hardware-based TPM and connected to the LPC
- Is secure, expensive, and widely deployed in high-end products
- Supports TPM 1.2 or 2.0 specification

- Firmware TPM (fTPM)

- Is a firmware-based TPM and resides in a secure processor
- Is secure (?), cheap, and also widely deployed from entry products to

nigh-end products
- Supports only the TPM 2.0 specification —

CVE-2018-6622 and fTPM

- Unfortunately, Intel Platform Trust Technology (PTT) also

had the sleep mode vulnerability

- We reported it to Intel in Feb 2019, and they would assign a new Intel
SA and a CVE!

- According to test results, many manufacturers such as Intel, Lenovo,
GIGABYTE, and ASUS were vulnerable!

- TPM related code of BIOS/UEFI firmware seems to be

shared for the dTPM and the fTPM
- How about AMD’s fTPM...?

You got the REAL power!

We could RESET the dTPM and the fTPM
with

ONE SLEEP MODE VULNERABILITY!

Kernel Module for Exploiting the Vulnerability

- Patches tpm_pm_suspend() function in Linux TPM driver
- The kernel module changes the function to “return 0;”

I

B

Contents

- Background
- Subverting TPMs with One Vulnerability

- Subverting Microsoft’s BitLocker &,

- BitLeaker Design and Implementation

- Demo and Conclusion _

BitLocker and TPM

- TPM seals the VMK of BitLocker
- Seal operation encrypts data with a TPM bind key and TPM state
(PCRSs)
- Unseal operation decrypts data with a TPM bind key when the TPM
state is the same as the sealed state

- BitLocker uses two PCR profiles
- If UEFI Secure Boot is enabled, it uses PCR #7 and #11
- If UEFI Secure Boot is disabled, it uses PCR #0, #2, #4 and #11

Query Protectors with Manage-bde tool

Administrator: Command F'rl:lr'I'IFlt

Microsoft Windows [Version 10.06.18363.449]
(c) 2019 Microsoft Corporation. All rights reserved.

I Query ‘

- o - - - = -

Copyright (C) 2013 Microsoft Corporation. All rights reserved.

Volume C: []
All Key Protectors

TPM:
ID: {©eCBD2213-DE78-48C6-9964-032CA396E264 }

PCR Validation Profile: IPCR #7 and #11

7, 11

(Uses Secure Boot for integrity validation)

Numerical Password:
ID: {3E71C243-6B3E-4D3C-A748-127D405B2CF2}
Password:
7156608-5808514-165737-192214-352693-558921-879648-847399

PCR usage of UEFI

- PCR #0: S-CRTM, host platform extensions, and embedded option
NOLVES

- PCR #1: Host platform configuration

- PCR #2: UEFI driver and application code

- PCR #3: UEFI driver and application configuration data

- PCR #4: UEFI boot manager code and boot attempts

- PCR #5: Boot manager configuration, data, GPT partition table

- PCR #6: Host platform manufacturer specification

- PCR #7: Secure boot policy
- PCR #8 - #15: Defined for use by the OS with SRTM

So, we needed
hashes of the normal system

for PCR #7 and #11

But, how?

PCRs, Measurements, and Event Logs (1)

- Event logs consist of PCR numbers, hashes, event types,

and event data

- According to the TPM spec., RTM extends hashes to a TPM and
saves event logs for each measurement

- UEFI firmware has EFI TCG protocols for TPM 1.2 and 2.0 to
communicate with TPM implementations

- S0, we needed the event logs!
- We could make the TPM state normal by replaying them

PCRs, Measurements, and Event Logs (2)

6.2 Protocol Interface Structure

typedef struct tdEFI TCGZ PROTOCOL {
EFI TCG2 GET CAPABILITY GetCapability;
EFI TCG2 GET EVENT LOG GetEventLog;
EFI TCG2 HASH LOG EXTEND EVENT HashLogExtendEvent;
EFI TCGZ SUBMIT COMMAND SubmitCommand;
EFI TCG2 GET ACTIVE PCR BANKS GetActivePcrBanks;
EFI TCG2 SET ACTIVE PCR BANKS SetActivePcrBanks;
EFI TCG2 GET RESULT OF SET ACTIVE PCR BANKS

GetResultOfSetActivePcrBanks;
GUID -
#define EFI TCG2 PROTOCOL GUID \
{Ox607f766C, Ox7455, Ox42be, Ox93, \
Oxeb, ©Oxe4, Oxd7, Ox6d, Oxb2, 0x72, oxof}

EFI TCG2 PROTOCOL;

PCRs, Measurements, and Event Logs (3)

- Unfortunately, event logs were gone when the kernel

started

- If ExitBootServices() of EFI BOOT SERVICES was called, UEF]
firmware flushed them

- It meant we had to save event logs into somewhere and retrieved
them with a kernel module!

We needed a custom BOOTLOADER!

PCRs, Measurements, and Event Logs (3)

- Unfortunately, event logs were gone when the kernel

started
- If ExitBootServices() of EFI BOOT SERVICES was called, UEF]

firmware flushed them NO!!!
- It meant we had to save event logs into somewhefe and retrieved
them with a kernel module!

We needed a custom BOOTLOQADER!

SOMETHING WRONG!

Custom Bootloader v1

- Custom bootloader is based on GRUB2 of Coreboot

- GRUB2 of Coreboot has a wrapper of EFI TCG2 protocol
- We did not need to make the custom bootloader from scratch

- We added a new feature to extract event logs from UEFI

firmware

- Custom boot
TCG2 PROT
- Custom boot

oader gets event logs with GetEventLogs() of EFI
'OCOL

oader parses and saves them into 0x80000

Crypt Agile R
Log Format ’/

Event Log
Header
KN
Event Log #1 AN
\
\

Event Log #2 S
Event Log #3

’
‘ ’
Event Log #4 ,/'

Event Log #5

Event Log #N \

2) Save event logs into 0x80000 3) Load event logs from 0x80000 and

(memmap=64K$0x80000) dump them into a kernel log file
‘\‘ 'I'
Shim Custom Linux Kernel
UEFI Bootloader —> Bootloader v1 —> Kernel — Module —>| Replay Tool
\N fl’ ’_—i
e T __——’ /
1) EFI_TCG2_PROTOCOL.GetEventLogs() 4) Replay hashes to a TPM

Analysis of UEFI Event Logs

- UEFI firmware extended Secure Boot data to PCR #7

- Secure Boot flag, platform key (PK), key exchange key (KEK),
signature database (db), forbidden signature database (dbx)
- Certificate used to verify a bootloader’s signature < _

\
\

- UEFI firmware extended nothing to PCR #11 N\
- PCR #11 was all 0 values! \

We needed a hash of the certificate in UEFI variables!

2-1) Microsoft Windows Production
PCA 2011

o

A 4

Window Boot Manager
(Bootmgfw.efi)

2-2) Microsoft Corporation
UEFI CA 2011

<

UEFI Firmware

... 1) Vendor’s PK;:KEK, db, dbx,

and Securd: Boot flag o
(Always: same)

Unseal

<

Unseal

*
*
*
*
*
*
*
*
*
*
*
*
“
*

Linux Boot Manager
(Shim.efi + Grub.efi)

!

Window Boot Manager

)

v

Final PCR #07 of 2-1: 257B1024...

7+

Final PCR #07 of 2-2: DEADBEEF ...

(Bootmgfw.efi)

!

X

Get Hashes from Windows Logs

- Microsoft Windows Production PCA 2011 is everywhere!

- UEFI firmware that supports Secure Boot has it
- So, we could get it from other PCs like coworker’s PC!

- Windows OS saves all measurement logs
- The logs are in the c:\Windows\Logs\MeasuredBoot directory
- We could read them using Microsoft’s TPM Platform Crypto-
Provider (PCP) Toolkit!
- ex) PCPTool GetLog

SHA256 hash of the certificate variable:
30bf464ee37f1 bc0c7b1 a5bf259ced275347c3ab1 492d5623a99f7663b907dd5

IH Certificate Information

R — o =Y« 1 ..
..... e U I I Y S S Wash1ngtnn
M1crnsnft Rnnt Cert1F1cate Aut

This certificate is intended for the following purpose(s):
» All application policies

Issued to: Microsoft Windows Production PCA 2011
.............. . . s s s s msmEEaoms I . Issued by: Microsoft Root Certificate Authority 2010
g7asgeaseasgdtelSaaancanalia ; it ; ; ; ; ; _ Valid from 10/15/2011 o 10/13/2026

04cf77a4621c597e

Unseal VMK with a TPM (1)

- Unsealing is not performed in a single TPM command!
- Several commands and parameters are needed!

- TPM2_Load(): Loads encrypted private and public data of the VMK
object with a handle used for sealing

- TPM2_StartAuthSession(): Starts a new session for unsealing

- TPM2_PolicyAuthorize(): Allows to change a policy of a session
handle

- TPM2_PolicyPCR(): Sets PCR-based policy to a session

- TPM2_Unseal(): Unseals the VMK with the loaded VMK handle and
the session handle

Unseal VMK with a TPM (2)

- Fortunately, all parameters of TPM commands were static!
- Because Windows Boot Manager (bootmgfw.efi) was the first
application after UEFI firmware
- All parameters started from the base index.
- If we got the parameters, we could reuse them FOREVER!

- How to get the parameters of each command?
- Reverse engineering of Bootmgfw.efi?
- Possible. However, we did not have much time!

Custom Bootloader v2

- We added hooks to the TPM protocol of UEFI firmware

- Custom bootloader v2 hooks functions of EFI_ TCG_PROTOCOL like
HashLogExtendEvent() and SubmitCommand()

- Custom bootloader v2 dumps all TPM commands
- GRUBZ2 has a chainloader feature that can load another bootloader
- Boot sequence changes to UEFI firmware - Shim.efi - grub.efi 2
Bootmgfw.efi
- Hooks of TPM protocol dumps all commands and executes original
functions

Shim Custom I Windows Boot Manager
UEF] > Bootloader > Bootloader v2 (Bootmgfw.efi)

I
I
I
I
I
/

<4----
&4=-=—-

Original Hooked /
EFI_TCG_PROTOCOL EFI_TCG_PROTOCOL TPMTZP“é”?a—r't';’::sgon 0
GetCapability GetCapability TPM2_PolicyAuthorize()
GetEventLog Dump parameters GetEventLog TPM2 PolicyPCR()
HashLogExtendEvent and execute HashLogExtendEvent // TPM2_Unseal()
SubmitCommand SubmitCommand -
GetActivatePcrBanks GetActivatePcrBanks
SetActivatePcrBanks Dump results and SetActivatePcrBanks
GetResultOfSetActive return GetResultOfSetActive
PcrBanks PcrBanks

TPM2_Load command
(0x157)

Handle used for sealing VMK
(0x81000001)

Public data of
sealed VMK object

Private data of
sealed VMK object

Result code (success)

Loaded handle of
sealed VMK object
(0x80000001)

TPM2_StartAuthSession
(0x176)

Handles for protecting
new session
(RH NULL, 0x40000007)

SHAZ256 of nonce for

new session

Result code (success)

New session handle
(0x03000000)

TPM2_PolicyAuthorize

F(/,,,——— (0x16b)
P/I\ Session handle

(0x03000000)

e Result code (success)
TPM2_PolicyPCR
(0x17f)
P/ Session handle
| (0x03000000)
e \J\ Policy digest and bitmap

(PCR #7, #11)

Result code

(TPM RC VALUE)

TPM2_Unseal
(Ox15e)

L oaded handle of sealed VMK
(0x80000001)

Session handle
(0x03000000)

TPM2_Unseal
(Ox15e)

L oaded handle of sealed VMK

(0x80000001)

o

R

Session handle
(0x03000000)

]

Result code (success)

;\\\

VMK of BitLocker!!

Get Parameters from BitLocker’s Metadata (1)

- BitLocker saved parameters into its metadata area

- A TPM-encoded VMK blob in metadata had essential data we needed!
- We could get BitLocker’'s metadata with a well-known tool, Dislocker!

- Could we extract the VMK from other PCs? YES!!
- If the PC had the TPM vulnerability, we could get it! YA!!

SPEAKER!!

Get Parameters from BitLocker’s Metadata (2)

Public and private data
<1 |of sealed VMK for TPM2 Load

Policy digest and PCR bitmap

(for TPM2_PolicyPCR

We got the last piece of the puzzle

A\ CRILEUA
- Reset a dTPM and fTPM
- Got normal hashes and replayed them to the TPM
- Got a TPM-encoded VMK blob and sent it to the exploited TPM
- Extracted the VMK from the exploited TPM

vn--- [>>] Execute TPM2_Unseal... Input file tpm2_unseal.bin

nitializing Local Device TCTI Interface
[*] Input Size 27
00000000 80 02 G0 00 OO0 1b 00 G0 01 5e 80 00 GO0 01 00 60
00000010 00 09 O3 00 OO 00 0O GO0 00 00 00

[*] Output Size 97, Result: Success
000OREAO 80 A2 A0 0O OO 61 GO G0 0O OO 00 0000
00000010
00000020f <6 f5 9a c6 b4 3c 07 19 31 66 77 fh

00000030) f8 03 35 54 13 c3 40 da 17 43 36
00000040 =

e o a sl VMK of BltLocker”

[>>] Success

1GOT YOU!!

Contents

- Background
- Subverting TPMs with One Vulnerability
- Subverting Microsoft’s BitLocker

- BitLeaker Design and Implementation &,

- Demo and Conclusion

BitLeaker?

- Is a new tool to get your data back!
- It can decrypt the BitLocker-locked partition
with the sleep mode vulnerability

- Consists of several parts we made and customized
- BitLeaker bootloader, BitLeaker kernel module, BitLeaker
launcher, and Customized Dislocker

Project Link:
https://github.com/kkamagui/bitleaker

BitLeaker Bootloader

- Is the custom bootloader v2 we made!

- Dumps event logs from UEFI firmware and saves them

into RAM

- It saves event types, PCR numbers, and hashes into 0x80000
- BitLeaker kernel module uses the data

- Dumps all TPM commands of BitLocker
- It hooks EFI_ TCG2 PROTOCOL of UEFI firmware and loads the
Windows boot manager, bootmgfw.efi
- It shows all TPM commands on the screen

BitLeaker Kernel Module

- Exploits the sleep mode vulnerability
- It changes tpm_pm_suspend() function to NULL function
- When the system wakes up from sleep mode, TPM is reset

- Dumps event types, PCR numbers, and hashes of

BitLeaker bootloader into a kernel log file

- It reads data of BitLeaker bootloader from 0x80000 and saves them
to a kernel log file (kmsg)

- BitLeaker launcher uses the data

BitLeaker Launcher

- Loads BitLeaker kernel module and exploits a TPM
- After exploiting, it replays hashes related to PCR #7 and #11

- Extracts the VMK and mounts a BitLocker-locked partition
- It gets a TPM-encoded blob with customized Dislocker
- Dislocker extracts the blob from BitLocker’s metadata area
- It sends TPM commands with the blob and extracts the VMK
- It mounts a BitLocker-locked partition with the customized Dislocker

Customized TPM2-Tools and Dislocker

- Customized TPM2-Tools v1.0

- Can send SHA256 hashes and TPM commands to a TPM
- We added those features to the TPM2-Tools v1.0

- Customized Dislocker
- Can load the VMK directly and mount a BitLocker-locked partition
- We added the feature and contributed it to the Dislocker project
- https://github.com/Aorimn/dislocker/pull/182

BitLeaker and USB Bootable Device

Ubuntu 18.04
== BitLeaker Bootloader

== BitLeaker Kernel Module

== BitLeaker Launcher
== Customized TPM2-Tools
== Customized Dislocker

“~--- BitLeaker Bootable USB

BIOS

The version we found

Model Status
Vendor Version Release i)
— the vulnerability!
NUCI)';T;II-IVK (vulnerable Intel J68196-503 12/17/2018 | T ZEEE Intel
v
Intel MYBDWISV.86A. Infineon (IFX)
NUCSISMyHE | Vulnerable Intel 0055.21%1) 95.0820 08/20/2019 ATPM) SLB9665
HP Infineon (IFX)
EliteDeck 800 Gd Safe HP Q21 02/15/2019 ATPM) SLB9670
Optip?:):'mm Safe Dell 1422 06/11/2019 : d'\fpcli/l) s NPCT 75x
Q‘:‘foulvf_ . Vulnerable Megar?;?féz”mc 4212 07/24/2019 Inﬂ?f?gn%: X) SLB9665
ASUS American Intel Corporation
PRIME Z390-A Safe | Megatrends Inc. 1302 09/02/2019 (FTPM) intel
ZBQAOSE‘(’tf:me Safe ASRock P4.20 07/29/2019 | 'Mte! g‘;m;at'on Intel
GIGABYTE American Intel Corporation
AORUS 7390 Elite Safe | \jegatrends Inc. F8 06/05/2019 (FTPM) Intel
GIGABYTE American Intel Corporation
Z370-HD3 Safe | Megatrends Inc. H13 08/13/2019 (FTPM) intel
MSI American Intel Corporation
MAG Z390M MORTAR Safe Meaatrends Inc. 1.50 08/08/2019 (FTPM) Intel

BitLeaker v1.0

Conclusion and
Black Hat Sound Bytes

- One vulnerability can subvert the dTPM and fTPM with the

ACPI S3 sleeping state
- We found CVE-2018-6622, and fTPM also has the same vulnerability

- BitLeaker can decrypt a BitLocker-locked partition
- It extracts the VMK from TPMs and mounts the encrypted partition

- Update your BIOS/UEFI firmware with the latest version!
- If there is no patched firmware, use BitLocker with the PIN
- Check your system with the latest Napper version
- https://github.com/kkamagui/napper-for-tpm

Questions ?

€2

plack

CONTRIBUTION!

Project : https://github.com/kkamagui/bitleaker
Contact: hanseunghun@nsr.re.kr, @kkamagui1
parkparkqw@nsr.re.kr, @DavePark312

Reference

- Seunghun, H., Wook, S., Jun-Hyeok, P., and HyoungChun K. Finally, | can Sleep Tonight: Catching Sleep Mode
Vulnerabilities of the TPM with the Napper. Black Hat Asia. 2019.

- Seunghun, H., Wook, S., Jun-Hyeok, P., and HyoungChun K. A Bad Dream: Subverting Trusted Platform
Module While You Are Sleeping. USENIX Security. 2018.

- Seunghun, H., Jun-Hyeok, P., Wook, S., Junghwan, K., and HyoungChun K. | Don’t Want to sleep Tonight:
Subverting Intel TXT with S3 Sleep. Black Hat Asia. 2018.

- Dislocker project, https://github.com/Aorimn/dislocker

- Napper project, https://github.com/kkamagui/napper-for-tpm

- Microsoft. BitLocker Drive Encryption. http://download.microsoft.com/download/a/f/7/af7777e5-7dcd-4800-8a0a-
b18336565f5b/bitlockerflow.doc

- Pulse Security. Extracting BitLocker keys from a TPM. https://pulsesecurity.co.nz/articles/TPM-sniffing

- NCC Group. TPM Genie. https://github.com/nccgroup/TPMGenie/blob/master/docs/CanSecWest 2018 -
_TPM_Genie - Jeremy Boone.pdf

- Microsoft. Advanced troubleshooting for Windows boot problems. https://docs.microsoft.com/en-
us/windows/client-management/img-boot-sequence

- Microsoft. Diving into Secure Boot. https://blogs.technet.microsoft.com/dubaisec/2016/03/14/diving-into-secure-
boot/

