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Overview



Adobe Acrobat/Reader

Initial release was back in 1993

One of the most widely used PDF readers

Supports on Windows/Mac/iOS/Android

Large part of the code base is old

Fully featured rich attack surface

Juicy target for vulnerability researchers
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The JavaScript Attack Surface



JavaScript API
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Understanding the Attack Surface

• Privileged vs Non-Privileged contexts are defined in the JS API documentation:

• A lot of API’s are privileged and cannot be executed from non-privileged contexts:



Adobe Acrobat JavaScript

• Adobe Acrobat/Reader exposes a rich JS 
API

• JavaScript engine is a spin of 
SpiderMonkey

• Escript.api is responsible for all JavaScript 
things

• JavaScript API documentation is available 
on the Adobe website

• A lot can be done through the JavaScript 
API (Forms, Annotations, Collaboration 
etc..)

• Mitigations exist for the JavaScript APIs

• Some API’s defined in the documentation 
are only available in Acrobat Pro/Acrobat 
standard

• Basically JavaScript API’s are executed in 
two contexts:

• Privileged Context

• Non-Privileged Context



Understanding the Attack Surface

• Privileged API’s warning example from a non-privileged context:



Trusted Functions

• Executing privileged methods in a non-privileged context



Understanding the attack surface – Folder-level Scripts

• Scripts stored in the JavaScript folder inside the Acrobat/Reader folder

• Used to implement functions for automation purposes

• Contains Trusted functions that execute privileged API’s

• By default Acrobat/Reader ships with JSByteCodeWin.bin

• JSByteCodeWin.bin is loaded when Acrobat/Reader starts up

• It’s loaded inside Root, and exposed to the Doc when a document is open



Understanding the Attack Surface - Decompiling

• JSByteCodeWin.bin is compiled into SpiderMoney 1.8 XDR bytecode 

• JSByteCodeWin.bin contains interesting Trusted functions

• Molnarg was kind enough to publish a decompiler for SpiderMonkey

• https://github.com/molnarg/dead0007

• Usage: ./dead0007 JSByteCodeWin.bin > output.js

• Output needs to be prettified

• ~27,000 lines of Javascript

https://github.com/molnarg/dead0007


Why bypass JavaScript API restrictions ?

• Possibly achieve code execution through a pure logic chain 

• Trigger more interesting functionalities 

• Most of the JavaScript APIs have been audited but 90% of the vulnerabilities exist in non-restricted APIs

• Privileged / Restricted APIs have not been properly audited

• Trigger vulnerabilities in privileged APIs



Vulnerability Discovery



Vulnerability Discovery

Gain access to a System-
Level eval()

Enumerate Trusted 
Functions with 

beginPriv/endPriv blocks

Overwrite an arbitrary 
method within the 

beginPriv/endPriv block
Execute Privileged APIs



CVE-2015-3073

• Acquire system-level eval which will allow us 
to execute JS code under root context

• Overwrite a method of one of the system 
objects with a privileged API

• In this case it was a Collab method

• Applies for other objects for example: 
App



CVE-2015-3073 - Exploit



CVE-2015-3073 - Fix



Bypassing the patch - CVE-2015-6708/6709

• Most of the system objects are not 
writable

• Other few objects were left writable

• The “Identity” object is one of them and 
it’s used all over in the Folder-level 
script



CVE-2015-6708/6709 bypass

• After the last bypass, Adobe denied 
executing privileged APIs from inside 
getters of certain objects

• The patch targeted most of the objects 
referenced inside the Folder-level script

• The Global object was left unprotected

• Same trick worked, though this only 
gets executed when the application is 
closed



CVE-2016-1042 



CVE-2018-16018



Defending the Engine



JavaScript / ECMAScript – brief history

• Began as simple scripting language in 1995

• First language specification in 1997

• Second, third edition standardized 1998 and 1999

• Fourth edition abandoned ca. 2007 - 2008

• Fifth edition 2009 – major milestone

• “Strict mode” – taming of the language

• Sixth edition – finalized in 2015 

• 7th (2016), 8th(2017), 9th (2018), 10th (2019)



JavaScript language features

• Key design decision

• Dynamic typing

• Malleable

• Easy to learn

• Seven kinds of values

• Undefined, Null, Boolean, Number, String, Symbol, Object

• Wide-variety of implicit type conversions

• Expressive and flexible

• Counter-intuitive, unexpected program behavior



JavaScript – dynamic features

• Prototype-based object-oriented language

• An object may inherit properties of another object by setting it as a prototype object

• An object may add or delete its properties dynamically

• Object oriented – message dispatch / calling methods on objects

• An object change their structure dynamically during program execution

• Object can generate the code dynamically 

• eval, Function constructor, setInterval, setTimeout

• JavaScript not quite statistically scoped

• with statement introduces new scope at runtime



JavaScript APIs

• JavaScript – extend functionality of applications

• Web applications 

• PDF viewers

• Application encapsulates trusted portion of functionality

• Application exposes relevant functionality to untrusted third-party code

• How to control access to security critical resources from the untrusted code?



JavaScript API reference monitor

• JavaScript API reference monitor

Public resources

Security-critical 
resources

Trusted / 
Privileged

API

Untrusted / 
Non-

Privileged
API



JavaScript API reference monitor

• Reference monitor
• Language-based encapsulation of security

• Challenge: how to prevent  reference monitor bypasses by exploiting 
flexibility of JavaScript programming language

• A key implementation problem:
• ensure that encapsulated code does not access a set of security critical resources 
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resources

Security-
critical 
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Untrusted 
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Public API confinement

• Goal: ensure that untrusted code cannot use the public API to obtain access 
to security critical resources



Checking API confinement
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JavaScript API encapsulation example

ev0

ev1

ev2

var evqueue = [ev0, ev1, ev2]

Encapsulated event queue

Public API

function enqueue(x){ 
evqueue.add(x); 

}

Reference to evqueue does not leak
• encapsulated event queue prevents direct access to evqueue
• Public API event only allows events to be enqueued to evqueue



JavaScript API breaking encapsulation

ev0

ev1

ev2

var evqueue = [ev0, ev1, ev2]

Encapsulated event queue

Public API

function enqueue(x)
{evqueue.push(x); }

Reference to evqueue can be exposed
var evqueue_alias;
API.add(“enqueue”, function() {evqueue_alias=this});
API.enqueue();

function add(i, x)
{evqueue[i] = x; }





JavaScript API Implementation

• API implementation: part of the trusted codebase

• Properties / requirements
• small (in comparison with the client code)

• carefully written code – simple, idiomatic

• Analysis
• Static analysis can be feasible 

• Stronger guarantees for API encapsulation

• Dissuade against unwieldy coding patterns



Static analysis of JavaScript code

• JavaScript – heap allocation for created objects

• Aliasing in OO programming
• Central feature – enables efficient sharing of objects across the execution

• Essential feature of widely used idioms (e.g., iterators)

• Reduces modularity and encapsulation

• Static reasoning about security policies
• Reason about the program states (heap  + stack)

• Crucial technique: points-to analysis



Points-to analysis

• Key technique for reasoning about object-oriented programs

• JavaScript points-to analysis
• Challenging because of wide variety of dynamic features

• Simple problem statement: 
• What objects can a variable point to?



Points-to analysis – basic example

var obj1 = ...;
var obj2 = ... ;
function foo() {
x = new obj1();
y = ident(a);

}
function bar() {
x = new obj2(); 
y = ident(a);

}
function ident(v) {
if nd(v) return v;
else return undefined;

}

foo:x -> alloc_obj1
bar:x -> alloc_objc2 
ident:v -> alloc_obj1, alloc_obj2
foo:y -> alloc_obj1, alloc_obj2
bar:y -> alloc_obj1, alloc_obj2

“basic” points-to analysis

foo:x -> alloc_obj1
bar:x -> alloc_objc2
ident:v [foo] -> alloc_obj1
ident:v [bar] -> alloc_obj2
foo:y -> alloc_obj1
bar:y -> alloc_obj1

context-sensitive points-to analysis



Points-to analysis – complex and well studied





Declarative Points-to Analysis

code
x=new A();
y=new B();
z=new C();
x=y;
y=x;
z=y;

AssignAlloc
x | alloc_A
y | alloc_B
z | alloc_C

Assign
x | y
y | x
z | y

Datalog rules
PointsTo(v,h) <-
AssignAlloc(v,h).

PointsTo(v,h) <-
Assign(v,src),
PointsTo(src,h).

PointsTo
x | alloc_A
y | alloc_B
z | alloc_C
x | alloc_B
y | alloc_A
z | alloc_B
z | alloc_A



Datalog



Declarative Points-to Analysis – adding field sensitivity

PointsTo(v,h) <-
AssignAlloc(v,h).

PointsTo(v,h) <-
Assign(v,src),
PointsTo(src,h).

FieldPointsTo(bh,f,h) <-
StoreField(src,b,f),
PointsTo(b,bh),
PointsTo(src,h).

b.f = src

bh h

PointsTo(dst,h) <-
LoadField(b,f,dst),
PointsTo(b,bh),
FieldPointsTo(bh,f,h).

dst = b.f



Static analysis – mutual recursion

points-to

call-graph

field points-to

prototype 
handling

reflection



Static analysis – security policies

• Modification of non-mutable objects

Reachable(h1,h2) <-
PointsTo(v1,h1),
PointsTo(v1,h2).

NonMutableAccess(dst) <-
StoreField(dst,_,_),
PointsTo(dst,hx),
NonMutableObject(h)
Reaches(h, hx).

Non-mutable objects: Collab, App



Points-to analysis + secure information flow

• Two approaches
• Secure information flow uses a points to analysis as client

• Unified points-to analysis and secure information flow

• Secure information flow – various flavors
• Transfer of capabilities – capability flow

• Capability
• Key idea: the methods of an API are capabilities provided to untrusted client code



Points-to analysis + secure information flow - rules

• PointsTo essentially becomes FlowsTo, 

• Introduce IsPrivileged{Var, Method} labeling for sensitive sink methods
• IsPrivilegedVar(v) – variable v is privileged

• IsPrivilegedMethod(m) – method m is privileged

IsPrivEsc(h) <-
CallGraph(sink, m),
IsPrivilegedMethod(sink),
ActualArg(sink,from),
FlowsTo(from, h).



Static analysis 

• Sound
• Represent all possible program executions

• Precise
• Reports only “true” vulnerabilities 

• Scalable
• Can it analyze large programs?

Sound

Precise

Scalable







Privilege Escalation Defense – Takeaways

1. Static analysis of JavaScript API
• Language-based sandbox

• Confinement check

2. Declarative specification of points-to analysis
• Datalog language

3. Static analysis does not have to be sound to be useful
• Measure and adjust soundness



Questions?


