

Abdul-Aziz Hariri Edgar Pek

Vulnerability Analysis Team Manager

Manage case load, distribution, pricing etc.
Root Cause analysis / Vulnerability Research / Exploit
development
Pwn2Own Preparation / Judging entries

Past Experiences
Bits Arabia, Insight-Tech and Morgan Stanley

Past research:
Pwn4Fun 2014 renderer exploit writer
Microsoft Bounty submission
Patents on Exploit Mitigation Technologies
Adobe Reader research
200+ CVEs

BS in Computer Sciences – University of Balamand

Twitter: @abdhariri

Security Researcher
Triaging incoming vulnerabilities

Helping product teams reproduce and fix the vulns

Security automation

Past experiences
Academic research, Microsoft Research,

Samsung Research

Past research
THOTCON 0xA – Linux Kernel Exploitation Workshop
Exhaustive security testing – model checking
Modular program verification
Satisfiability Modulo Theories

PhD, Computer Science – University of Illinois at
Urbana-Champaign
Twitter: @EdgarPek

Overview

Adobe Acrobat/Reader

Initial release was back in 1993

One of the most widely used PDF readers

Supports on Windows/Mac/iOS/Android

Large part of the code base is old

Fully featured rich attack surface

Juicy target for vulnerability researchers

General Architecture

Escript AnnotsCatalog

Search

HTML2PDF

weblink

XPS2PDF AcroForm

Compare Preflight

ImageConversion

ReadOutLoudSendMail

… … … …

AXSLE CoolType JP2KLib AGM

ACE PE WebkitAG

Acrobat/Acrord32

Onix32

Core

Plug-ins

Backend

ZDI submissions

0

50

100

150

200

250

2015 2016 2017 2018

The JavaScript Attack Surface

JavaScript API

Escript AnnotsCatalog

Search

HTML2PDF

weblink

XPS2PDF AcroForm

Compare Preflight

ImageConversion

ReadOutLoudSendMail

… … … …

AXSLE CoolType JP2KLib AGM

ACE PE WebkitAG

Acrobat/Acrord32

Onix32

Core

Plug-ins

Backend

Understanding the Attack Surface

• Privileged vs Non-Privileged contexts are defined in the JS API documentation:

• A lot of API’s are privileged and cannot be executed from non-privileged contexts:

Adobe Acrobat JavaScript

• Adobe Acrobat/Reader exposes a rich JS
API

• JavaScript engine is a spin of
SpiderMonkey

• Escript.api is responsible for all JavaScript
things

• JavaScript API documentation is available
on the Adobe website

• A lot can be done through the JavaScript
API (Forms, Annotations, Collaboration
etc..)

• Mitigations exist for the JavaScript APIs

• Some API’s defined in the documentation
are only available in Acrobat Pro/Acrobat
standard

• Basically JavaScript API’s are executed in
two contexts:

• Privileged Context

• Non-Privileged Context

Understanding the Attack Surface

• Privileged API’s warning example from a non-privileged context:

Trusted Functions

• Executing privileged methods in a non-privileged context

Understanding the attack surface – Folder-level Scripts

• Scripts stored in the JavaScript folder inside the Acrobat/Reader folder

• Used to implement functions for automation purposes

• Contains Trusted functions that execute privileged API’s

• By default Acrobat/Reader ships with JSByteCodeWin.bin

• JSByteCodeWin.bin is loaded when Acrobat/Reader starts up

• It’s loaded inside Root, and exposed to the Doc when a document is open

Understanding the Attack Surface - Decompiling

• JSByteCodeWin.bin is compiled into SpiderMoney 1.8 XDR bytecode

• JSByteCodeWin.bin contains interesting Trusted functions

• Molnarg was kind enough to publish a decompiler for SpiderMonkey

• https://github.com/molnarg/dead0007

• Usage: ./dead0007 JSByteCodeWin.bin > output.js

• Output needs to be prettified

• ~27,000 lines of Javascript

https://github.com/molnarg/dead0007

Why bypass JavaScript API restrictions ?

• Possibly achieve code execution through a pure logic chain

• Trigger more interesting functionalities

• Most of the JavaScript APIs have been audited but 90% of the vulnerabilities exist in non-restricted APIs

• Privileged / Restricted APIs have not been properly audited

• Trigger vulnerabilities in privileged APIs

Vulnerability Discovery

Vulnerability Discovery

Gain access to a System-
Level eval()

Enumerate Trusted
Functions with

beginPriv/endPriv blocks

Overwrite an arbitrary
method within the

beginPriv/endPriv block
Execute Privileged APIs

CVE-2015-3073

• Acquire system-level eval which will allow us
to execute JS code under root context

• Overwrite a method of one of the system
objects with a privileged API

• In this case it was a Collab method

• Applies for other objects for example:
App

CVE-2015-3073 - Exploit

CVE-2015-3073 - Fix

Bypassing the patch - CVE-2015-6708/6709

• Most of the system objects are not
writable

• Other few objects were left writable

• The “Identity” object is one of them and
it’s used all over in the Folder-level
script

CVE-2015-6708/6709 bypass

• After the last bypass, Adobe denied
executing privileged APIs from inside
getters of certain objects

• The patch targeted most of the objects
referenced inside the Folder-level script

• The Global object was left unprotected

• Same trick worked, though this only
gets executed when the application is
closed

CVE-2016-1042

CVE-2018-16018

Defending the Engine

JavaScript / ECMAScript – brief history

• Began as simple scripting language in 1995

• First language specification in 1997

• Second, third edition standardized 1998 and 1999

• Fourth edition abandoned ca. 2007 - 2008

• Fifth edition 2009 – major milestone

• “Strict mode” – taming of the language

• Sixth edition – finalized in 2015

• 7th (2016), 8th(2017), 9th (2018), 10th (2019)

JavaScript language features

• Key design decision

• Dynamic typing

• Malleable

• Easy to learn

• Seven kinds of values

• Undefined, Null, Boolean, Number, String, Symbol, Object

• Wide-variety of implicit type conversions

• Expressive and flexible

• Counter-intuitive, unexpected program behavior

JavaScript – dynamic features

• Prototype-based object-oriented language

• An object may inherit properties of another object by setting it as a prototype object

• An object may add or delete its properties dynamically

• Object oriented – message dispatch / calling methods on objects

• An object change their structure dynamically during program execution

• Object can generate the code dynamically

• eval, Function constructor, setInterval, setTimeout

• JavaScript not quite statistically scoped

• with statement introduces new scope at runtime

JavaScript APIs

• JavaScript – extend functionality of applications

• Web applications

• PDF viewers

• Application encapsulates trusted portion of functionality

• Application exposes relevant functionality to untrusted third-party code

• How to control access to security critical resources from the untrusted code?

JavaScript API reference monitor

• JavaScript API reference monitor

Public resources

Security-critical
resources

Trusted /
Privileged

API

Untrusted /
Non-

Privileged
API

JavaScript API reference monitor

• Reference monitor
• Language-based encapsulation of security

• Challenge: how to prevent reference monitor bypasses by exploiting
flexibility of JavaScript programming language

• A key implementation problem:
• ensure that encapsulated code does not access a set of security critical resources

Public
resources

Security-
critical

resources

Untrusted
API

Public API confinement

• Goal: ensure that untrusted code cannot use the public API to obtain access
to security critical resources

Checking API confinement

Untrusted JS
Trusted JS

r1

r2
r3

r0

r5

fapi

cr

r1 r2

r3

r5

cr

JavaScript API encapsulation example

ev0

ev1

ev2

var evqueue = [ev0, ev1, ev2]

Encapsulated event queue

Public API

function enqueue(x){
evqueue.add(x);

}

Reference to evqueue does not leak
• encapsulated event queue prevents direct access to evqueue
• Public API event only allows events to be enqueued to evqueue

JavaScript API breaking encapsulation

ev0

ev1

ev2

var evqueue = [ev0, ev1, ev2]

Encapsulated event queue

Public API

function enqueue(x)
{evqueue.push(x); }

Reference to evqueue can be exposed
var evqueue_alias;
API.add(“enqueue”, function() {evqueue_alias=this});
API.enqueue();

function add(i, x)
{evqueue[i] = x; }

JavaScript API Implementation

• API implementation: part of the trusted codebase

• Properties / requirements
• small (in comparison with the client code)

• carefully written code – simple, idiomatic

• Analysis
• Static analysis can be feasible

• Stronger guarantees for API encapsulation

• Dissuade against unwieldy coding patterns

Static analysis of JavaScript code

• JavaScript – heap allocation for created objects

• Aliasing in OO programming
• Central feature – enables efficient sharing of objects across the execution

• Essential feature of widely used idioms (e.g., iterators)

• Reduces modularity and encapsulation

• Static reasoning about security policies
• Reason about the program states (heap + stack)

• Crucial technique: points-to analysis

Points-to analysis

• Key technique for reasoning about object-oriented programs

• JavaScript points-to analysis
• Challenging because of wide variety of dynamic features

• Simple problem statement:
• What objects can a variable point to?

Points-to analysis – basic example

var obj1 = ...;
var obj2 = ... ;
function foo() {
x = new obj1();
y = ident(a);

}
function bar() {
x = new obj2();
y = ident(a);

}
function ident(v) {
if nd(v) return v;
else return undefined;

}

foo:x -> alloc_obj1
bar:x -> alloc_objc2
ident:v -> alloc_obj1, alloc_obj2
foo:y -> alloc_obj1, alloc_obj2
bar:y -> alloc_obj1, alloc_obj2

“basic” points-to analysis

foo:x -> alloc_obj1
bar:x -> alloc_objc2
ident:v [foo] -> alloc_obj1
ident:v [bar] -> alloc_obj2
foo:y -> alloc_obj1
bar:y -> alloc_obj1

context-sensitive points-to analysis

Points-to analysis – complex and well studied

Declarative Points-to Analysis

code
x=new A();
y=new B();
z=new C();
x=y;
y=x;
z=y;

AssignAlloc
x | alloc_A
y | alloc_B
z | alloc_C

Assign
x | y
y | x
z | y

Datalog rules
PointsTo(v,h) <-
AssignAlloc(v,h).

PointsTo(v,h) <-
Assign(v,src),
PointsTo(src,h).

PointsTo
x | alloc_A
y | alloc_B
z | alloc_C
x | alloc_B
y | alloc_A
z | alloc_B
z | alloc_A

Datalog

Declarative Points-to Analysis – adding field sensitivity

PointsTo(v,h) <-
AssignAlloc(v,h).

PointsTo(v,h) <-
Assign(v,src),
PointsTo(src,h).

FieldPointsTo(bh,f,h) <-
StoreField(src,b,f),
PointsTo(b,bh),
PointsTo(src,h).

b.f = src

bh h

PointsTo(dst,h) <-
LoadField(b,f,dst),
PointsTo(b,bh),
FieldPointsTo(bh,f,h).

dst = b.f

Static analysis – mutual recursion

points-to

call-graph

field points-to

prototype
handling

reflection

Static analysis – security policies

• Modification of non-mutable objects

Reachable(h1,h2) <-
PointsTo(v1,h1),
PointsTo(v1,h2).

NonMutableAccess(dst) <-
StoreField(dst,_,_),
PointsTo(dst,hx),
NonMutableObject(h)
Reaches(h, hx).

Non-mutable objects: Collab, App

Points-to analysis + secure information flow

• Two approaches
• Secure information flow uses a points to analysis as client

• Unified points-to analysis and secure information flow

• Secure information flow – various flavors
• Transfer of capabilities – capability flow

• Capability
• Key idea: the methods of an API are capabilities provided to untrusted client code

Points-to analysis + secure information flow - rules

• PointsTo essentially becomes FlowsTo,

• Introduce IsPrivileged{Var, Method} labeling for sensitive sink methods
• IsPrivilegedVar(v) – variable v is privileged

• IsPrivilegedMethod(m) – method m is privileged

IsPrivEsc(h) <-
CallGraph(sink, m),
IsPrivilegedMethod(sink),
ActualArg(sink,from),
FlowsTo(from, h).

Static analysis

• Sound
• Represent all possible program executions

• Precise
• Reports only “true” vulnerabilities

• Scalable
• Can it analyze large programs?

Sound

Precise

Scalable

Privilege Escalation Defense – Takeaways

1. Static analysis of JavaScript API
• Language-based sandbox

• Confinement check

2. Declarative specification of points-to analysis
• Datalog language

3. Static analysis does not have to be sound to be useful
• Measure and adjust soundness

Questions?

