
Bypassing KPTI Using the Speculative Behavior of the SWAPGS

Instruction

Andrei LUȚAȘ (vlutas@bitdefender.com), Dan LUȚAȘ (dlutas@bitdefender.com)

Abstract
Speculative-execution based attacks and side-channels are more and more common as disclosures

continue to increase scrutiny by researchers in this field. In this whitepaper, we demonstrate a new type

of side-channel attack based on speculative execution of the SWAPGS instruction inside the OS kernel.

This attack is capable of circumventing all existing protective measures, such as CPU microcode patches

or kernel address space isolation (KVA shadowing/KPTI). We practically demonstrate this by showing how

the speculative execution of the SWAPGS instruction may allow an attacker to leak portions of the kernel

memory, by employing a variant of Spectre V1.

Disclaimer
We assume the reader has knowledge of CPU internals (branch prediction, out-of-order execution,

speculative execution, pipeline, and caches), OS internals (system calls, interrupt and exception handling

and KPTI), and side-channels and speculative-execution attacks in-general. It is best to read about

Meltdown, Spectre, L1TF and MDS before approaching this whitepaper. That material provides

fundamental building blocks about such attacks that are used in this whitepaper, but not described in

detail. Rather, in this whitepaper we focus on only how the newly discovered attack works.

mailto:vlutas@bitdefender.com

Introduction
While side-channel attacks have been well-known for some time, speculative-execution based attacks are

new, and signs indicate they will persist for some time. Some of the most famous ones to date are

Meltdown [1], Spectre [2], L1TF [3] and MDS [4] [5] [6]. These vulnerabilities allow an attacker to break

the basic memory isolation provided by the hardware to access data which would normally not be

accessible. At the most fundamental level, these vulnerabilities rely on a feature common in modern CPUs

called speculative execution. This feature allows the CPU to execute instructions before knowing whether

their execution is required. For example, branch prediction can lead to speculative execution. Each time

the CPU encounters a conditional branch (an instruction which redirects the execution to another address

if a certain condition is met), the CPU has to decide whether that branch should be taken or not very early

in the front-end of the CPU, before actually executing the branch (in order to know where to start fetching

the next instruction). To enhance performance, the CPU attempts to predict the outcome of the branch,

and it starts executing instructions from the address indicated by the branch condition. However, later

on, during the actual execution of the branch instruction, the CPU determines if the predicted outcome is

correct or not. If it is, the instructions fetched and executed speculatively are committed normally, as they

fall within the normal execution path. However, if the CPU determines that it mispredicted the branch, it

discards all the instructions that were fetched and executed until that point, and it resteers the front-end

to the correct address. This is not normally an issue as the discarded instruction don’t produce any

architecturally visible results (register or memory modifications) until the CPU determines they are

needed. However, they do produce microarchitectural changes which can be observed by an attacker –

in particular, they can leave cache traces. These cache traces are enough to leak secrets from arbitrary

security boundaries (for example, from one process to another, from the kernel memory to the user

memory, from SGX enclaves or from VMX root to VMX non-root), forming the basic block of speculative

execution attacks.

Mitigations for this class of vulnerabilities are tricky to implement, and they generally fall in 3 categories:

1. Hardware fixes, which are available only in newer CPUs which address the flaws directly in silicon;

2. Software mitigations, which are implementations made entirely in software; the best example

here is Kernel Page Table Isolation (KPTI) [7], which isolates the kernel memory into a different

virtual address space, thus rendering several speculative side-channel attacks, such as Meltdown,

ineffective;

3. Microcode mitigations, which require hardware and software cooperation: the hardware vendor

supplies a microcode patch to expose some new functionalities (for example, the Spectre v2, L1TF

or MDS mitigations) which are then used by hypervisor or operating system vendors to mitigate

the vulnerabilities.

Currently, all the side-channels noted above are mitigated by at least one of the three listed categories.

However, in this whitepaper we present a novel side-channel attack which bypasses all known mitigations

by abusing a poorly-documented behavior of a system instruction called SWAPGS. The newly discovered

side-channel allows an attacker to leak some portions of the kernel memory space, which would normally

be protected by KPTI.

The SWAPGS instruction
SWAPGS is a system instruction (which means it can be executed only in kernel mode), available in 64-bit

mode, and is intended to be used by only the operating system to switch between two Model Specific

Registers (MSRs): the IA32_GS_BASE (for simplicity, it will sometimes be referred to as GS base) and the

IA32_KERNEL_GS_BASE. The Intel Software Developer Manual [8] describes the behavior of this

instruction in detail (Volume 2: Instruction Set Reference, A-Z, CHAPTER 4 INSTRUCTION SET REFERENCE,

M-U). This allows the kernel to quickly gain access to internal, per-CPU data structures, as soon as a

transition is made from user-mode to kernel mode. The normal usage scenario is that during a user-mode

process execution, IA32_GS_BASE points to the user-mode per-CPU data structure - the Thread

Information Block (TIB) on Windows - while the IA32_KERNEL_GS_BASE points to the kernel per-CPU data

structure, the Kernel Processor Control Region (KPCR). When an event which switches from user-mode to

kernel-mode occurs (for example, a SYSCALL, an interrupt, or an exception), one of the first things the

kernel does is execute the SWAPGS instruction to switch the two MSRs; make IA32_GS_BASE point to the

kernel per-CPU data, and IA32_KERNEL_GS_BASE to point to the user-mode per-CPU data. When the GS

segment register is used to access memory, the CPU automatically uses the value in IA32_GS_BASE as the

base address. IA32_KERNEL_GS_BASE is never used directly in addressing, and can only be accessed via

the RDMSR, WRMSR or SWAPGS instructions. In contrast, the current value in IA32_GS_BASE can also be

modified from user-space by using the WRGSBASE instruction.

The SWAPGS instruction is used mainly at the entry point of a SYSCALL or interrupt handler. The following

example is the SYSCALL handler on a 64 bit Windows:

nt!KiSystemCall64Shadow:
0f01f8 swapgs
654889242510700000 mov qword ptr gs:[7010h],rsp
65488b242500700000 mov rsp,qword ptr gs:[7000h]
650fba24251870000001 bt dword ptr gs:[7018h],1
7203 jb nt!KiSystemCall64Shadow+0x24
0f22dc mov cr3,rsp

As one can see, in this case SWAPGS is the first instruction executed after the user-kernel transition. This

is important since immediately after, the user-mode stack pointer RSP is saved in the structure pointed

by the freshly loaded GS. Next, a check is made to see if KPTI is enabled for this particular process. If it is,

the kernel-mode CR3 will be loaded (it was previously loaded into RSP from the KPCR).

In contrast, here is the code which handles a page-fault exception:

nt!KiPageFaultShadow:
f644241001 test byte ptr [rsp+10h],1
7462 je fault_from_kernel
0f01f8 swapgs
650fba24251870000001 bt dword ptr gs:[7018h],1
720c jb nt!KiPageFaultShadow+0x22
65488b242500700000 mov rsp,qword ptr gs:[7000h]
0f22dc mov cr3,rsp
fault_from_kernel: ...

This code is slightly different. It first checks to see if the exception originated in kernel-mode (the first

TEST instruction), and if it didn’t, it executes SWAPGS to load the KPCR address into the GS base register

(since this means the exception originated in user-mode, and therefore, the GS base would point to the

user-mode TIB). The rest of the code is similar to the SYSCALL handler.

Another interesting gadget is the following:

f60596a1390001 test byte ptr [nt!KiKvaShadow],1
7503 jne skip_swapgs
0f01f8 swapgs
654c8b142588010000 mov r10,qword ptr gs:[188h]
65488b0c2588010000 mov rcx,qword ptr gs:[188h]
488b8920020000 mov rcx,qword ptr [rcx+220h]
488b8930080000 mov rcx,qword ptr [rcx+830h]
6548890c2570020000 mov qword ptr gs:[270h],rcx

This code sequence is present in all exception handlers. Its role is unclear since a breakpoint established

on this SWAPGS instruction revealed that it is never hit (from neither KPTI-enabled processes, nor

processes with KPTI disabled), and therefore, this instruction probably very rarely executes.

The exploit
Since SWAPGS can be executed speculatively inside user-mode, an attacker can leak the address of the

per-CPU data, normally available to only the kernel. This is a variant of Rogue System Register Load, and

seems to work on only Intel CPUs. While this by itself may not mean too much, it allows an attacker to

mount a KASLR bypass attack, thus subverting one of the most basic anti-exploit measures employed in

the kernel. This is very intuitive, and is not the subject of this white-paper. Instead, we focus on leaking

kernel memory.

There are 2 main scenarios that we have identified; SWAPGS not getting executed speculatively when it

should, and SWAPGS getting speculatively executed when it should not. We discuss both scenarios in the

following sections. However, the second scenario is much more serious, and our exploit (and the rest of

the whitepaper) is based on it.

Scenario 1: SWAPGS not getting speculatively executed when it should
In this scenario a mispredicted branch redirects execution to a GS based addressing but without executing
the SWAPGS instruction, although it should have, immediately after a user-to-kernel transition. Let’s
consider again the following example:

nt!KiPageFaultShadow:
[1] f644241001 test byte ptr [rsp+10h],1
[2] 7462 je fault_from_kernel
[3] 0f01f8 swapgs
[4] 650fba24251870000001 bt dword ptr gs:[7018h],1
[5] 720c jb nt!KiPageFaultShadow+0x22
[6] 65488b242500700000 mov rsp,qword ptr gs:[7000h]
[7] 0f22dc mov cr3,rsp
fault_from_kernel: ...

This code sequence is executed when a Page-Fault (#PF) takes place. First it tests the CS register saved on
the stack to see if the #PF originated in kernel. If it did originate in kernel, it jumps over the SWAPGS
instruction, as the IA32_GS_BASE already points to the KPCR (since we were already in kernel when the
#PF took place, it is assumed SWAPGS had already executed). However, when the #PF originates in user-

mode, SWAPGS has to be executed to make IA32_GS_BASE point to the KPCR. If the branch is
mispredicted, execution continues in kernel with the user-mode IA32_GS_BASE active instead, thus
opening another door for exploitation. An analysis of the Windows kernel shows that this does not seem
to be a problem in practice since immediately after the user-to-kernel transition, the user CR3 is still
active, and to gain access to the entire kernel memory space, the kernel CR3 must be loaded. As one can
see in the above code sequence, the kernel CR3 is loaded only after the SWAPGS instructions, and it is a
serializing instruction, meaning that it cannot execute speculatively (all the instructions before instruction
7 must be retired before executing it).

Scenario 2: SWAPGS getting speculatively executed when it shouldn’t
More interesting things happen when the SWAPGS instruction is executed speculatively inside the kernel.

This is particularly problematic if it is followed by GS based addressing, which speculatively accesses the

user-mode GS instead of the kernel one (since SWAPGS speculatively switched IA32_GS_BASE with

IA32_KERNEL_GS_BASE). We disassembled the Windows kernel to see what instructions usually follow

the SWAPGS instruction, and were surprised. Let’s consider again one of our previous examples, which is

the base of our exploit, and will be referred to from now on as the gadget (note that each instruction is

labeled, for easier explanations):

[1] f60596a1390001 test byte ptr [nt!KiKvaShadow],1
[2] 7503 jne skip_swapgs [4]
[3] 0f01f8 swapgs
[4] 654c8b142588010000 mov r10,qword ptr gs:[188h]
[5] 65488b0c2588010000 mov rcx,qword ptr gs:[188h]
[6] 488b8920020000 mov rcx,qword ptr [rcx+220h]
[7] 488b8930080000 mov rcx,qword ptr [rcx+830h]
[8] 6548890c2570020000 mov qword ptr gs:[270h],rcx

As one can see, the SWAPGS instruction 3 is followed by multiple GS based addressing instructions. In
addition, the SWAPGS instruction is preceded by a conditional jump 2, which may sometimes be
mispredicted. This means that sometimes, the GS based instructions access user-mode memory, because
they are executing speculatively after SWAPGS. If an attacker modifies in user-mode IA32_GS_BASE, the
speculative region would basically access whatever address the attacker wrote in that register (for
example, using the WRGSBASE instruction). For example, if an attacker writes the value 0x1000 in
IA32_GS_BASE, the CPU will speculatively access address 0x1000+0x188=0x1188 twice. The most
interesting part is that the value loaded from the attacker-controlled address is further dereferenced. In
our example, whatever value is loaded from address 0x1188, it will further be dereferenced by instruction
6, mov rcx,qword [rcx+220h]. If, for example, at address 0x1188 lies the value 0xCC000, this MOV
instruction will attempt to load a QWORD from address 0xCC000+0x220=0xCC220. Furthermore,
whatever value lies at address 0xCC220 will be dereferenced again by the next instruction 7, mov
rcx,qword [rcx+830h]. The result is a triple attacker-controlled dereference. How can we use this to our
advantage? We will see this in Variant 2. Leak arbitrary kernel addresses.

Variant 1. Test if a certain value is located at a given kernel address
The first method of abusing the speculative behavior of the SWAPGS instruction relies on the fact that the

CPU speculatively does at least 2 memory accesses. These 2 accesses are sufficient to allow an attacker to

test if a value is located at a selected address inside the kernel. This can be considered a search primitive,

as it allows the attacker to search for certain values in kernel memory. However, not any random value

can be searched, as we will soon see. Let’s consider again the exploit gadget listed previously. If SWAPGS

is executed speculatively, and the GS base ends up pointing to an attacker-controlled value - let’s call it K

- then instructions 4 & 5 will load a QWORD from address K+0x188 – let’s call the loaded qword Q.

Furthermore, instruction 6 will load a QWORD from the address Q+0x220. The main question is, what

happens if the attacker previously allocated memory at address Q+0x220? The answer is pretty

straightforward; if the attacker already mapped that address, then the CPU, in its attempt to access it,

leaves a signal inside the data caches, as the contents of address Q+0x200 would be cached. Now that the

basic pieces of the puzzle are all present, we can construct the search primitive. Assuming the attacker

wants to see if value V is located at kernel address K, he would do the following:

1. Allocate memory at address V-0x220

2. Write the kernel address K-0x188 into the IA32_GS_BASE register, using, for example, WRGSBASE

3. Wait for an interrupt or generate a fault, which would transition from user to kernel

4. If branch 2 is mispredicted:

a. SWAPGS will be speculatively executed

b. Value Q will be loaded from address (K-0x188)+0x188

c. Q+0x220 will further be dereferenced

5. When control is passed back from kernel to user, the attacker would check to see if address V is

cached. If it is indeed cached, this confirms that value V (with a cache line bias – the actual value

will be between V aligned to a cache line, which is usually 64 bytes, and V aligned to the next

cache line) is located at kernel address K. Otherwise, this could mean that either the value V is

not present at kernel address K, or that simply the branch was not mispredicted, and speculative

execution of the SWAPGS instruction was not triggered. For better accuracy, each address would

be tested several times, until either a match is found, or there is a certain probability that the

value is not there.

Variant 2. Leak arbitrary kernel addresses
The second variant of the SWAPGS vulnerability is more generic, in that it allows the attacker to infer the

value located at a randomly selected kernel address. However, the restriction from the previous section

still applies (i.e., values that don’t fall within the addressable user-mode domain are not easily leakable).

It is more challenging to leak arbitrary addresses since we don’t know what addresses to map in user-

mode in order to detect speculative kernel accesses. The naïve approach in this case is to employ a linear

search algorithm, where obtaining the value at kernel address K would go something like this:

1. Spray the entire user-mode virtual-address space

2. Write the target kernel address K-0x188 into the GS base register

3. Trigger or wait for a kernel transition

4. If the gadget gets executed speculatively, and the value V located at address K falls within the

addressable user-mode domain, a cache signal will be left, as address V will be cached

5. When returning to user-mode, check which address V has been cached

Of course, this technique is only theoretical as it is impossible to fill the entire user-mode space with

memory; the attacker would have to allocate 247=128TB of memory. Needless to say, this is not feasible

in practice. A more realistic approach is to allocate large chunks of memory and iterate through the entire

address space. Realistically, there are high chances that if the allocated chunks of memory exceed the size

of the Last Level Cache (LLC), in an attempt to see which address within the chunk has been accessed

speculatively, the signal would disappear, as it would be evicted from the cache by the repeated tests.

However, using chunks of memory roughly equal to the LLC is good enough, as this is usually more than

4MB in size, going up to 32MB in high-end systems. This means that the entire user-mode address space

can be checked in 247B/32MB=4M iterations, which starts to be feasible.

There, are however, even better approaches. Let’s take a look at the gadget once again. Instruction 5

loads value Q from the kernel address K. Instruction 6 then dereferences Q+220h and loads a new value,

P, which is further dereferenced by instruction 7 which loads the value located at P+830h. This gives us a

great opportunity; instead of allocating, for example, a 32MB chunk of memory and iterating through all

of it to see if any address within this chunk was cached, we could spray the entire 32MB chunk of memory

with the address of a single test variable. If the gadget gets to execute speculatively, and if the value V at

kernel address K is within that 32MB memory region, then instruction 7 would speculatively access our

test variable. Instead of iterating the entire 32MB memory region to see if any address is cached, we can

directly test our variable; if it is cached, then the value V is within the tested range. Otherwise, we can

move on with the search. This method significantly speeds up the process. The final algorithm may look

something like this:

1. Allocate a chunk of memory, M, with size S (where S will usually be selected depending on the

LLC size)

2. Fill chunk M with the address of our test variable, T-0x830 (note that we don’t know beforehand

the offset where we should spray T, as it can between 0 and 7; this can be overcome by trying

each possible offset)

3. Flush the variable T from the cache, using the CLFLUSH instruction

4. Write the kernel address K-0x188 to be leaked in GS base register using WRGSBASE

5. Trigger the gadget to be executed speculatively

6. Inside the kernel space, if the gadget indeed executes speculatively:

a. Instruction 3 (SWAPGS) makes the attacker controlled GS base active (which points to the

target kernel address K)

b. Instruction 5 loads value Q from address K

c. Instruction 6 loads value P from address Q+0x220

d. Instruction 7 loads value R from address P+0x830

e. If Q is in the range of the allocated chunk M, then P will be equal to our test variable T,

which will be dereferenced to load R; therefore, T will be cached if the gadget is executed

speculatively and if the value at kernel address K is in the interval described by memory

chunk M

7. When returning to user-mode, the attacker will test to see if variable T is cached

a. If variable T is cached, then the value located in kernel at address K is in the interval

described by memory chunk M (for example, if M was allocated at address 0 and has a

size of 32MB, then the value at kernel address K is in the range [0, 33554432]), and the

attacker may further zoom into that region by reducing the size S to be allocated (for

example, S may be cut in half at each step)

b. If variable T is not cached after a certain number of tries, the next interval can be checked:

M=M+S and goto step 1

By employing this technique, the attacker can sequentially reduce the search interval until it reduces the

number of possible values to an acceptable range.

Challenges

Speculatively executing the gadget
From this perspective, the exploit can be thought of as a new variant of Spectre v1, since it relies on

speculatively executing unexpected instructions after a branch was mispredicted. Directly controlling the

outcome of a conditional branch which is located in kernel is impossible, but we determined that we can

control it, to some extent. The conditional branch in the vulnerable gadget is executed after testing

whether the KvaShadow kernel variable has bit 0 set. If bit 0 inside KvaShadow is set, the jump will be

taken, and the SWAPGS instruction is skipped, and therefore, not executed. To have a high probability of

success, we must be able to indirectly manipulate the outcome of this branch, and fool the CPU into

thinking the branch is not taken, and therefore, to speculatively execute the SWAPGS instruction. To do

so, good knowledge about the organization of the branch prediction unit is required. Agner Fog has an

excellent resource [9] which describes in detail how various CPU units work. Unfortunately, it appears

that little is known about how branch predictors are organized and how they work on Intel Haswell and

newer CPUs. To save time, we decided for to use a brute-force approach instead of carefully reverse-

engineering these aspects. The building blocks required to influence the speculative execution of our

gadget in kernel are:

Trick the CPU into thinking the branch instruction 2 is not taken: branch confusion. As already

mentioned, there’s no way to directly do so, and there is little information regarding the organization of

branch predictors on Intel Haswell CPUs and newer [10]. We therefore made the assumption that

regardless of how it’s organized internally, the CPU must somehow use the branch instruction address in

order to look it up inside the Branch Target Buffer (BTB). We expect that on Haswell and newer, the BTB

is organized as any other cache, having various sets and ways (and indeed [10] hints at a 4-way set

associative organization for Haswell, perhaps it is similar on recent CPUs as well) – this is better illustrated

in Figure 1 Typical cache access scheme. Therefore, some bits of the branch address are used to index a

particular set inside the cache (usually lower order bits), and other bits inside the branch address (usually

higher order bits) are used as a tag (perhaps after applying a hash function on various portions of the

address). Little to no information is known about actual BTB access, but we expect to be able to evict the

target branch from the vulnerable gadget by allocating a long sequence of conditional branches which are

situated at the same page offset as the target branch. For example, if the target branch is located at offset

0xCEE inside the memory page, we would allocate a large memory area (for example, several KB or MB in

size), and inside each page of this buffer, at offset 0xCEE, we place an identical conditional branch, but

which is never taken. This has two effects. First, the actual target branch will most likely be evicted from

the BTB, and second, if there is a collision between the tag bits inside the BTB, we would directly cause

the branch to not be taken. In reality, all we care about is evicting the branch from the BTB, because the

CPU would normally employ static prediction on branches it sees for the first time. A very good write-up

[10] hints that Intel Haswell CPUs always predict newly seen branches as not-taken, which is exactly what

we need. Intel Ivy-Bridge seems to weakly predict ahead as not taken, which is again what we want. The

Intel Optimization manual [11] states in Chapter 3, Section 4, subsection 1, paragraph 3, that the static

predictor would predict backward taken, forward not taken, which confirms the described findings, and

is favorable for our exploit.

Make sure the KvaShadow variable is not cached: cache thrashing. This is easier to do in practice, but

other CPU cores executing in parallel may interfere by caching it back whenever it’s accessed. To make

sure this variable is not cached, we employ a technique very similar to the one described in the previous

section, but instead of flushing the BTB, the data caches are flushed. In doing so, we simply determine the

page offset of the KvaShadow variable, and allocate a large chunk of memory (at least the last-level cache

in size), and thereby access that offset in each of our memory chunk’s pages. This ensures, with sufficient

probability, that the variable is evicted from the caches, and the conditional branch is not only

mispredicted, but it will have to wait until the variable is read from memory (which should take several

hundred clock cycles). This gives us enough speculative execution time to employ the attack. The typical

cache access mechanism is illustrated in Figure 1 Typical cache access scheme.

Figure 1 Typical cache access scheme

Test variable alignment
When we spray the decoy memory buffer with the address of the test variable (which, if cached, indicates

that the kernel value lies within the tested memory interval), we don’t know the actual alignment of the

kernel value Q located at K. For example, if we spray address of the test variable T starting with offset 0

(M + 0x310, M + 0x318, M + 0x320, M + 0x328, etc.) inside the memory chunk M; but if the value Q at

kernel address K is aligned to 3, for example 0x103, the exploit will fail, as instruction 6 loads a value

aligned to 3 (from M + 0x323, which does not contain the address of T). To overcome this, we can try each

possible alignment since there are only 8 possible values (a QWORD is loaded from memory, which is 8

bytes in size). Modern CPUs have more than 2 cores, regularly 4 and even more than 8. The attack can be

parallelized to run on each core, with a different alignment. Figure 2 A misaligned load would access other

locations, instead of the test variable shows how a misaligned load would not produce the desired effect

of accessing the test variable, and instead it would access another address.

Figure 2 A misaligned load would access other locations, instead of the test variable

Cache Line Bias
Caches work with the granularity of a line, which is usually 64 bytes on modern CPUs. This means that if

an address is cached, the entire 64 bytes region surrounding that address is cached. For example, if we

wish to leak from a kernel address K which contains the value 0x123, the region that is cached is [0x100,

0x13F]; therefore, we know that the value located at that address is in that interval, but we wouldn’t

know the exact value of the low order 6 bits. To identify the value of these low order bits, we can try to

leak the value from kernel address K-1 – this will translate into the value 0x123??, where the question

marks represent whatever byte value is located at address K-1. We call this technique address shifting,

since we can shift 1 byte at a time from the kernel value which we dereference. The concept of cache line

bias is illustrated in Figure 3 Cache line bias when inferring the kernel memory value.

Figure 3 Cache line bias when inferring the kernel memory value

Leakable domain
The main disadvantage of this technique is that it cannot leak any arbitrary value; it can only leak values

which resemble valid user-mode addresses. Due to the restrictions of 64-bit addressing, which uses 48-

bit linear addresses, an address is considered to be a valid user mode address if it’s in the range

[0x0000000000000000, 0x00007FFFFFFFFFFF]. Intel announced recently that it wishes to extend the size

of linear addresses from 48-bit to 57-bit, the LA57 technology [12], which will extend this domain to

[0x0000000000000000, 0x007FFFFFFFFFFFFF]. A quick statistic on a Windows RS5 ntoskrnl.exe memory

image revealed that 33.7% of its contents can be leaked (approximatively 3.3MB out of 10MB). If we

consider 57-bit addressing, about 51.2% of the contents can be leaked (approximatively 5.1MB out of

10MB). We’ve also tested a random 10MB area of the non-paged pool, and we concluded that with 48-

bit addressing, 55.9% of the contents can be leaked, whereas with 57-bit addressing 65.8% of the contents

can be leaked.

Leaking other values
Although we didn’t take the time to investigate further, we believe that any value which resembles a valid,

canonical address may be leakable (although this should be more challenging). The rationale behind this

is an article [13] which demonstrates how the ASLR can be bypassed by observing which cache sets are

evicted by the Page Miss Handler (PMH) when performing a page-walk. In essence, the problem presented

in this article – obtaining the value of an unknown virtual-address which is accessed by the attacker, is

very similar to the problem we have; obtaining the value of random data accessed speculatively, and then

dereferenced. This may be more problematic in practice, however, as in our case, there will be lots of

noise, due to the necessity of transitioning in kernel each time to do an access of the secret value. We do

believe that with enough time and resources, this method may be feasible in practice, and would allow

an attacker to leak any canonical value. Given 48-bit linear addresses, this would increase the domain of

leakable values to 37.7%, and given 57-bit linear addresses, this would allow for 64.8% of the nt image

memory contents to be leaked. In practice, these two techniques may be combined. For the 10MB random

non-paged pool area, this would allow for 65.0% of the contents to be leaked with 48-bit addressing and

74.6% with 57-bit addressing.

Performance
The performance of the attack varies greatly. Performance depends on how often the branch before the

SWAPGS instruction is mispredicted, and the affected CPUs cache size. If an attacker is careful and patient

enough, this may not be such a problem. However, in practice, we expect the variant 2 of the attack to be

rather slow, with a speed not faster than a few bytes every few minutes, since it must search the value in

a large space. Variant 1, however, is much faster. Confirmation for the presence of a given value at a

tested kernel address takes place in well under 1 second. Since our goal was not to create a fully-functional

exploit, but rather a PoC which proves the feasibility of leaking kernel values, we find the current

performance acceptable. We anticipate that the leaking rate can be greatly improved by better controlling

the mistraining of the branch prediction unit.

We measured the actual performance for Variant 1 (searching for a kernel value), with the following test:

Knowing that the first QWORD value inside the nt kernel image is 0x0000000300905A4D, and knowing

the base address of the nt image, we measured, on average, how much time and how many tries are

required for the speculative gadget to be triggered and leave a measurable cache signal inside user-space.

We mapped address 0x0000000300905A4D+0x220 in user mode, we wrote the kernel base in

IA32_GS_BASE register using the WRGSBASE instruction, and we triggered a kernel transition by

generating an Undefined-Opcode Exception (#UD) using the UD2 instruction. Our measurement indicates

that - on average - it takes about 0.0001 seconds, or about 2 tries, for the gadget to be triggered and

leave the cache signal which confirms that a value within the interval [0x0000000300905A40,

0x0000000300905A80] is located at the tested kernel address. Of course, to maximize our chances of

triggering speculative execution of the gadget, we employed the branch confusion and cache thrashing

techniques previously described. The test was conducted on a Windows 10 RS5 x64, powered by Intel

Core i7-8650U with 8 logical cores.

Other operating systems and CPUs
The focus of our research was Microsoft Windows, as it was a low hanging fruit in terms of demonstrating

the exploit. A quick analysis of the Linux kernel revealed that although it contains a gadget which may be

used in an attack, it lies inside the Non-Maskable Interrupt (NMI) handler. We therefore believe that Linux

would be difficult (if not impossible) to attack. A quick analysis of the Hyper-V kernel and of the Xen

hypervisor kernel revealed that the SWAPGS instruction is not used, so exploitation is impossible. Other

operating systems and hypervisors have not been investigated, although Microsoft, during the

coordination of the disclosure, notified all the interested partied about this vulnerability. In addition, our

PoC reliaes on the WRGSBASE instruction to modify the GS base in user-mode. This instruction is present

starting with Ivy Bridge, and we expect that older CPUs to be much more difficult, if not impossible to

exploit.

We tested two AMD CPUs: AMD64 Family 16 Model 2 Stepping 3 AuthenticAMD ~3211 Mhz and AMD64

Family 15 Model 6 Stepping 1 AuthenticAMD ~2100 Mhz and neither exhibited speculative behavior for

the SWAPGS instruction.

Since the SWAPGS instruction is present only on x86-64, we don’t expect other CPU architectures, such

as ARM, MIPS, POWER, SPARC or RISC-V to be vulnerable. However, we don’t exclude the existence of

other similarly sensitive instructions that may execute speculatively.

Mitigations
The bad news is current mitigations such as microcode patches or KPTI do not address this newly

discovered technique. The good news is there are several options for mitigating this vulnerability.

Clobber the user-mode GS on user-kernel transitions
One way to mitigate this vulnerability is by ensuring the user-mode GS base contains a known value, and

not something controlled by the attacker. This must be done very soon after the transition, preferably

before any conditional branches take place (which may allow exploitation still). However, this technique

requires considerable work on the kernel side from all OS vendors. Considering there are simpler ways to

mitigate this issue, it will probably never be leveraged as a fix.

Supervisory Mode Access Prevention
Supervisory Mode Access Prevention (SMAP) is a technology which prohibits user-mode pages from being

accessed while in kernel mode. As the attack relies on speculatively accessing user-mode memory from

kernel space to infer sensitive value, SMAP is more than capable of mitigating this issue. SMAP is already

used by Linux kernels on CPUs which provide support. On Windows, SMAP requires significant

engineering, since the driver model allows user-mode memory access by default.

Serialize the execution of the SWAPGS instruction
The most straight-forward way of mitigating this remains the serialization of the SWAPGS instruction. This

can be done by placing an instruction such as LFENCE before or after each sensitive SWAPGS instructions.

Normally, the modification itself is trivial, and the performance impact should likewise be minimal, as only

the rarely taken branch is affected. However, care must be taken since this only covers scenario 2, where

SWAPGS is executed speculatively when it should not. To also cover scenario 1, a serializing instruction

must be placed at the beginning of each block of code executed as a result of a branch skipping SWAPGS.

This ensures that code is not executed speculatively without having executed SWAPGS beforehand, if it

was required.

Hardware fixes
Of course, the most complete solution to this problem is to fix the CPU. Releasing a patch for the CPU is

not as simple as releasing one for software. This will probably not happen very soon – perhaps future

CPUs will be designed with avoiding this flaw in-mind such-that they disallow speculative execution of the

SWAPGS instruction. Microcode updates are excluded as well, as Intel clearly stated when we initially

reported the vulnerability that they do not wish to address this problem in affected CPUs.

Hypervisor based mitigations
Hypervisor Memory Introspection (HVI) is a technology that leverages CPU virtualization (Intel VT-x, for

example) to provide new levels of protection. HVI analyses the memory of the guest virtual-machine (VM),

identifies objects of interest, and uses technologies such as the Extended Page Table (EPT) to protect said

objects against unauthorized access. Using the hypervisor, the vulnerable gadgets can be searched inside

the OS memory, and they can be instrumented in order to make them safe (for example, by serializing

them).

Conclusions
Speculative-execution based attacks are the new standard when it comes to cutting edge exploits and

attacks. Fortunately, there aren’t any widely known examples of these types of vulnerabilities being

exploited in the wild. Perhaps this is because the community is highly mobilized to find and report these

issues to vendors as soon as possible, or it’s simply because they were not discovered yet. Overall, having

this new category of attacks in the spotlight is beneficial, from a security standpoint, as many researchers

focus on discovering new ways of abusing poorly understood behaviors or structures present in the CPU.

In this whitepaper, we presented a novel approach (a technique very similar to Spectre V1) of leaking

sensitive information from the kernel. By abusing the fact that the SWAPGS instruction can be executed

speculatively, one can force arbitrary memory dereferences in kernel, which leaves traces within the data

caches. These signals can be picked up by the attacker to infer the value located at the given kernel

address.

We have identified three main use cases for this technique:

1. Obtain the value of the IA32_KERNEL_GS_BASE from user-mode, and thus bypass KASLR

2. Search values in kernel memory – check if a given value is located at a given kernel address

3. Leak arbitrary memory – by employing a divide et impera technique, an attacker may be able to

leak values from arbitrary kernel addresses

The advantage of this newly described technique is that it bypasses every known mitigation to date. The

disadvantages are that it can leak only values which resemble valid user-mode addresses, and in the

second use-case, it can be slow. However, since the introduction of LA57 by Intel, the domain of leakable

values increased from 47 bit to 56 bit. In addition, there have been attacks demonstrated which are

capable of leaking portions of a virtual address by observing which sets have been evicted by the page-

walker when translating a linear address. Luckily, mitigations for this new technique can be implemented

entirely in software, and they don’t require microcode patches. Serializing SWAPGS execution mitigates

this type of attacks. Furthermore, we used our Hypervisor Introspection solution to mitigate this

vulnerability before patches were publicly available for it.

Glossary
 pipeline – technique used by modern CPUs, which involves splitting instruction execution into

different stages (fetch, decode, rename, execute, write-back, etc.); modern CPUs have anywhere

from 4 to 20 or 30 pipeline stages

 out of order execution – technique used by modern CPUs which allows them to execute

instructions whenever the input data is available, rather than executing them in program order

 speculative execution – ability to execute instruction before knowing whether they are required

or not

 branch prediction – technique used by modern CPUs in order to guess the outcome & destination

of branches, so that instruction execution can continue before knowing whether the branch is

actually taken or not

 cache – small & fast memory, placed very close to the CPU core, which contains data that was

recently accessed (temporal locality) or data that is around recently accessed data (spatial

locality); various types of caches may exist (data cache, instruction cache, micro-op cache) and

levels (level 1, 2, 3, etc. – the higher the level, the bigger the cache capacity is and the slower the

access time is)

 instruction retirement – when the CPU knows for sure the results of an instruction are valid (no

fault was generated) and the instruction is not speculative, it will retire it, which means the results

are written into the logical registers/caches/memory. Instruction retirement takes place in

program order, which means the instructions appear to execute in the order in which they were

written

Timeline of the discovery
07 August 2018 – Notified Intel that the SWAPGS instruction can be executed speculatively in user-mode,

which allows an attacker to leak the address of sensitive kernel-mode structures, such as KPCR on

Microsoft Windows

29 August 2018 – Intel responded that the behavior of the SWAPGS instruction is known, and that they

do not intend to address it in affected CPUs

21 September 2018 – Insisting that this behavior is problematic, and it should be addressed

08 October 2018 – Intel responded that their position regarding a potential KASLR bypass remains

unchanged

29 March 2019 – Reported to Intel that the speculative behavior of the SWAPGS instruction, if triggered

in kernel mode, allows an attacker to bypass KPTI and thus leak kernel memory

01 April 2019 - Intel responded and said they've started investigating

02 April 2019 - Intel confirmed the issue but worked with ecosystem partners to mitigate at the OS kernel

level. They connected us with Microsoft who agreed to coordinate with others in the industry to address

the issue at the software level.

03 April 2019 – Reported to Intel that the Linux kernel contains vulnerable gadgets as well, though a PoC

was not developed, and the complexity of an exploit is unknown

03 April 2019 – Intel responded that they will investigate, and that we should let them approach Linux

kernel dev community

10 April 2019 – Got into contact with Microsoft, and was asked for more technical details

16 April 2019 – Provided Microsoft the requested technical details

17 April 2019 – Microsoft responded that they were investigating

18 April 2019 – Microsoft responded that they believe the gadget cannot be used to leak arbitrary memory

22 April 2019 – Provided Microsoft a new PoC, which demonstrated the ability of leaking arbitrary

memory

23 April 2019 – Microsoft responded that they were investigating

30 April 2019 – We ask Microsoft if they have any updates

01 May 2019 – Microsoft responded that they have finished reviewing the report, and that they are

waiting for OS team feedback, and are discussing with Intel regarding coordination

07 May 2019 – We ask Microsoft if they have any updates

07 May 2019 – Microsoft confirms that they reproduced the report and they are targeting a July patch,

but this is subject to change, depending on how coordination goes

14 May 2019 – We ask Microsoft if they have any updates

15 May 2019 – Microsoft responded they are wrapping up the Microarchitectural Data Sampling issue

from Intel, and that they will provide updates soon

24 May 2019 – Microsoft said they made good progress with the investigation, and that they are targeting

mid-summer/late summer for the fix; also, they are talking with Intel regarding industry coordination

24 May 2019 – Notified Microsoft that we intend to present our findings at BlackHat

05 June 2019 – We ask Microsoft if they have any updates on the BlackHat presentation part

06 June 2019 – Microsoft responds they made good progress and are beginning the coordination with the

interested industry vendors; they ask how much advance notice we need for BlackHat

06 June 2019 – We specify that we do not wish to present a 0-day, and we wish for all affected vendors

to have time to address the issue before publishing anything

11 June 2019 – Microsoft asks if they can approach Linux and if we have a PoC for Linux

12 June 2019 – We respond we are okay with approaching Linux, and that we will see if a Linux PoC is

doable

13 June 2019 – We notify that a Linux PoC is much more difficult to implement than a Windows one, and

they should approach them without a PoC

18 June 2019 – Microsoft confirms they will approach Linux without a PoC

19 June 2019 – Microsoft asks for our explicit permission to reach Linux Kernel Devs and other vendors

19 June 2019 – We explicitly offer our permission

19 June 2019 – Microsoft asks if we agree with a general summary of the issue

19 June 2019 – We agree with the general summary

25 June 2019 – We ask for updates, specifically: if they notified the community, if they notified AMD, if

they assigned a CVE number, and if they have a release date for the patches

28 June 2019 – We receive the update, stating that Linux is still working on mitigations, AMD was involved,

there is a tentative CVE-2019-1125 (but not sure if Microsoft will issue it), and that the disclosure date is

not final yet. We are asked if we still wish to present at BlackHat

28 June 2019 – We ask if AMD confirmed the issue, and we confirm we still with to present at BlackHat;

we also state that we are open towards helping for a better community sync, if needed

28 June 2019 – Microsoft states that they may have a definitive answer from AMD by the beginning of

July; they also state the tentative date for the fix – 9th of July. They also throw the idea of a possible delay

for the fix, since not all parties may address the problem in time. However, they clearly state the intended

date for the fix to be 9th of July

28 June 2019 – We state that our PR/Mrkt teams are pushing for the 6th of August, and that would be the

worst case scenario date for us. We state that we are working on a technical white-paper describing the

problem and how it can be abused

28 June 2019 – Microsoft stated that some parties may not be ready before 6th of August, and if it’s

acceptable for us to push the date

28 June 2019 – We state that we do not wish to jeopardize anyone, and we express our concern regarding

the coordination process, as it takes too long, since the issue is already almost a year old

28 June 2019 – Microsoft asks for the timeline, as they did not know the issue is this old

28 June 2019 – We provide the timeline, starting with the initial reporting to Intel, in August 2018

28 June 2019 – Microsoft compliments Bitdefender on putting the safety first, even if this means wasting

a great chance, such as presenting at BlackHat

28 June 2019 – We kindly ask how did Microsoft end up handling this kind of (hardware) issue

01 July 2019 – Microsoft exposes the reason behind them being in charge with this case. They also state

they will release the patches on July 6th, but won’t document the fix publicly until August 6th, to leave

enough time for other vendor to test and deploy their fixes. They also ask what we plan to do in case of a

tip-off

02 July 2019 – We responded that in the case of a tip-off, we should have a coordinated communication

plan, and we ask what their plan is in this regard

10 July 2019 – We send this whitepaper for review

10 July 2019 – Microsoft acknowledges us sending the whitepaper, and requests permission to share it

with the community

10 July 2019 – We confirm we agree with the whitepaper sharing

10 July 2019 – Microsoft thanks us, and indicates they will review it, and send feedback, if needed

19 July 2019 – Microsoft reports that everything is going as planned for the 6th of August releases, and

that they would keep us posted, anything should change

20 July 2019 – We confirm our PR/comm teams are prepared for the 6th of August release; if anything

should intervene, we must synchronize their and out PR/comm teams

30 July 2019 – We ask if they reviewed the whitepaper, and if there is any feedback

30 July 2019 – Feedback is provided, the whitepaper is adjusted accordingly

06 August 2019 - Public disclosure.

References

[1] M. a. S. M. a. G. D. a. P. T. a. H. W. a. F. A. a. H. J. a. M. S. a. K. P. a. G. D. a. Y. Y. a. H. M. Lipp,

"Meltdown: Reading Kernel Memory from User Space," Proceedings of the 27th USENIX

Conference on Security Symposium, https://meltdownattack.com/meltdown.pdf, 2018.

[2] D. G. D. G. W. H. M. H. M. L. S. M. T. P. M. S. Y. Y. Paul Kocher, "Spectre Attacks: Exploiting

Speculative Execution," CoRR, https://spectreattack.com/spectre.pdf, 2018.

[3] J. V. B. M. M. D. G. B. K. F. P. M. S. R. S. T. F. W. a. Y. Y. Ofir Weisse, "Foreshadow-NG: Breaking the

Virtual Memory Abstraction with Transient," https://foreshadowattack.eu/foreshadow-NG.pdf,

2018.

[4] D. M. M. L. M. S. J. V. B. D. G. D. G. F. P. B. S. Y. Y. Marina Minkin, "Fallout: Reading Kernel Writes

From User Space," https://mdsattacks.com/files/fallout.pdf, 2019.

[5] M. L. D. M. J. V. B. J. S. T. P. D. G. Michael Schwarz, "ZombieLoad: Cross-Privilege-Boundary Data

Sampling," https://zombieloadattack.com/zombieload.pdf, 2019.

[6] A. M. S. Ö. P. F. G. M. K. R. H. B. C. G. Stephan van Schaik, "RIDL: Rogue In-Flight Data Load,"

https://mdsattacks.com/files/ridl.pdf, 2019.

[7] M. L. M. S. R. F. C. S. M. Daniel Gruss, "KASLR is Dead: Long Live KASLR,"

https://gruss.cc/files/kaiser.pdf, 2017.

[8] Intel Corporation, "Intel® 64 and IA-32 Architectures Software Developer’s Manual,"

https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-

3abcd.pdf, 2019.

[9] A. Fog, "The microarchitecture of Intel, AMD and VIA CPUs,"

https://www.agner.org/optimize/microarchitecture.pdf, 2019.

[10] M. Godbolt, "Branch prediction," 2016. [Online]. Available: https://xania.org/201602/bpu-part-

one.

[11] Intel Corporation, Intel® 64 and IA-32 Architectures Optimization Reference Manual, 2019.

[12] Intel Corporation, "5-Level Paging and 5-Level EPT,"

https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf,

2017.

[13] K. R. E. B. H. B. C. G. Ben Gras, "ASLR on the Line: Practical Cache Attacks on the MMU,"

https://www.cs.vu.nl/~giuffrida/papers/anc-ndss-2017.pdf, 2017.

[14] C. C. a. J. V. B. a. M. S. a. M. L. a. B. v. B. a. P. O. a. F. P. a. D. E. a. D. Gruss, "A Systematic Evaluation

of Transient Execution Attacks and Defenses," CoRR, https://arxiv.org/pdf/1811.05441.pdf, 2018.

[15] J. Horn, "Reading privileged memory with a side-channel," Google, January 2018. [Online].

Available: https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-

side.html.

