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Abstract 
Speculative-execution based attacks and side-channels are more and more common as disclosures 

continue to increase scrutiny by researchers in this field. In this whitepaper, we demonstrate a new type 

of side-channel attack based on speculative execution of the SWAPGS instruction inside the OS kernel. 

This attack is capable of circumventing all existing protective measures, such as CPU microcode patches 

or kernel address space isolation (KVA shadowing/KPTI). We practically demonstrate this by showing how 

the speculative execution of the SWAPGS instruction may allow an attacker to leak portions of the kernel 

memory, by employing a variant of Spectre V1. 

Disclaimer 
We assume the reader has knowledge of CPU internals (branch prediction, out-of-order execution, 

speculative execution, pipeline, and caches), OS internals (system calls, interrupt and exception handling 

and KPTI), and side-channels and speculative-execution attacks in-general. It is best to read about 

Meltdown, Spectre, L1TF and MDS before approaching this whitepaper. That material provides 

fundamental building blocks about such attacks that are used in this whitepaper, but not described in 

detail. Rather, in this whitepaper we focus on only how the newly discovered attack works. 
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Introduction 
While side-channel attacks have been well-known for some time, speculative-execution based attacks are 

new, and signs indicate they will persist for some time. Some of the most famous ones to date are 

Meltdown [1], Spectre [2], L1TF [3] and MDS [4] [5] [6]. These vulnerabilities allow an attacker to break 

the basic memory isolation provided by the hardware to access data which would normally not be 

accessible. At the most fundamental level, these vulnerabilities rely on a feature common in modern CPUs 

called speculative execution. This feature allows the CPU to execute instructions before knowing whether 

their execution is required. For example, branch prediction can lead to speculative execution. Each time 

the CPU encounters a conditional branch (an instruction which redirects the execution to another address 

if a certain condition is met), the CPU has to decide whether that branch should be taken or not very early 

in the front-end of the CPU, before actually executing the branch (in order to know where to start fetching 

the next instruction). To enhance performance, the CPU attempts to predict the outcome of the branch, 

and it starts executing instructions from the address indicated by the branch condition. However, later 

on, during the actual execution of the branch instruction, the CPU determines if the predicted outcome is 

correct or not. If it is, the instructions fetched and executed speculatively are committed normally, as they 

fall within the normal execution path. However, if the CPU determines that it mispredicted the branch, it 

discards all the instructions that were fetched and executed until that point, and it resteers the front-end 

to the correct address. This is not normally an issue as the discarded instruction don’t produce any 

architecturally visible results (register or memory modifications) until the CPU determines they are 

needed. However, they do produce microarchitectural changes which can be observed by an attacker – 

in particular, they can leave cache traces. These cache traces are enough to leak secrets from arbitrary 

security boundaries (for example, from one process to another, from the kernel memory to the user 

memory, from SGX enclaves or from VMX root to VMX non-root), forming  the basic block of speculative 

execution attacks. 

Mitigations for this class of vulnerabilities are tricky to implement, and they generally fall in 3 categories: 

1. Hardware fixes, which are available only in newer CPUs which address the flaws directly in silicon; 

2. Software mitigations, which are implementations made entirely in software; the best example 

here is Kernel Page Table Isolation (KPTI) [7], which isolates the kernel memory into a different 

virtual address space, thus rendering several speculative side-channel attacks, such as Meltdown, 

ineffective; 

3. Microcode mitigations, which require hardware and software cooperation: the hardware vendor 

supplies a microcode patch to expose some new functionalities (for example, the Spectre v2, L1TF 

or MDS mitigations) which are then used by hypervisor or operating system vendors to mitigate 

the vulnerabilities. 

Currently, all the side-channels noted above are mitigated by at least one of the three listed categories. 

However, in this whitepaper we present a novel side-channel attack which bypasses all known mitigations 

by abusing a poorly-documented behavior of a system instruction called SWAPGS. The newly discovered 

side-channel allows an attacker to leak some portions of the kernel memory space, which would normally 

be protected by KPTI.  



The SWAPGS instruction 
SWAPGS is a system instruction (which means it can be executed only in kernel mode), available in 64-bit 

mode, and is intended to be used by only the operating system to switch between two Model Specific 

Registers (MSRs): the IA32_GS_BASE (for simplicity, it will sometimes be referred to as GS base) and the 

IA32_KERNEL_GS_BASE. The Intel Software Developer Manual [8] describes the behavior of this 

instruction in detail (Volume 2: Instruction Set Reference, A-Z, CHAPTER 4 INSTRUCTION SET REFERENCE, 

M-U). This allows the kernel to quickly gain access to internal, per-CPU data structures, as soon as a 

transition is made from user-mode to kernel mode. The normal usage scenario is that during a user-mode 

process execution, IA32_GS_BASE points to the user-mode per-CPU data structure - the Thread 

Information Block (TIB) on Windows - while the IA32_KERNEL_GS_BASE points to the kernel per-CPU data 

structure, the Kernel Processor Control Region (KPCR). When an event which switches from user-mode to 

kernel-mode occurs (for example, a SYSCALL, an interrupt, or an exception), one of the first things the 

kernel does is execute the SWAPGS instruction to switch the two MSRs; make IA32_GS_BASE point to the 

kernel per-CPU data, and IA32_KERNEL_GS_BASE to point to the user-mode per-CPU data. When the GS 

segment register is used to access memory, the CPU automatically uses the value in IA32_GS_BASE as the 

base address. IA32_KERNEL_GS_BASE is never used directly in addressing, and can only be accessed via 

the RDMSR, WRMSR or SWAPGS instructions. In contrast, the current value in IA32_GS_BASE can also be 

modified from user-space by using the WRGSBASE instruction. 

The SWAPGS instruction is used mainly at the entry point of a SYSCALL or interrupt handler. The following 

example is the SYSCALL handler on a 64 bit Windows: 

nt!KiSystemCall64Shadow: 
0f01f8               swapgs 
654889242510700000   mov   qword ptr gs:[7010h],rsp 
65488b242500700000   mov   rsp,qword ptr gs:[7000h] 
650fba24251870000001 bt    dword ptr gs:[7018h],1 
7203                 jb    nt!KiSystemCall64Shadow+0x24  
0f22dc               mov   cr3,rsp 
 

As one can see, in this case SWAPGS is the first instruction executed after the user-kernel transition. This 

is important since immediately after, the user-mode stack pointer RSP is saved in the structure pointed 

by the freshly loaded GS. Next, a check is made to see if KPTI is enabled for this particular process. If it is, 

the kernel-mode CR3 will be loaded (it was previously loaded into RSP from the KPCR).  

In contrast, here is the code which handles a page-fault exception: 

nt!KiPageFaultShadow: 
f644241001           test    byte ptr [rsp+10h],1 
7462                 je      fault_from_kernel  
0f01f8               swapgs 
650fba24251870000001 bt      dword ptr gs:[7018h],1 
720c                 jb      nt!KiPageFaultShadow+0x22  
65488b242500700000   mov     rsp,qword ptr gs:[7000h] 
0f22dc               mov     cr3,rsp 
fault_from_kernel:   ... 
 

This code is slightly different. It first checks to see if the exception originated in kernel-mode (the first 

TEST instruction), and if it didn’t, it executes SWAPGS to load the KPCR address into the GS base register 



(since this means the exception originated in user-mode, and therefore, the GS base would point to the 

user-mode TIB). The rest of the code is similar to the SYSCALL handler.  

Another interesting gadget is the following: 

f60596a1390001     test    byte ptr [nt!KiKvaShadow],1 
7503               jne     skip_swapgs 
0f01f8             swapgs 
654c8b142588010000 mov     r10,qword ptr gs:[188h] 
65488b0c2588010000 mov     rcx,qword ptr gs:[188h] 
488b8920020000     mov     rcx,qword ptr [rcx+220h] 
488b8930080000     mov     rcx,qword ptr [rcx+830h] 
6548890c2570020000 mov     qword ptr gs:[270h],rcx 
 

This code sequence is present in all exception handlers. Its role is unclear since a breakpoint established 

on this SWAPGS instruction revealed that it is never hit (from neither KPTI-enabled processes, nor 

processes with KPTI disabled), and therefore, this instruction probably very rarely executes. 

The exploit 
Since SWAPGS can be executed speculatively inside user-mode, an attacker can leak the address of the 

per-CPU data, normally available to only the kernel. This is a variant of Rogue System Register Load, and 

seems to work on only Intel CPUs. While this by itself may not mean too much, it allows an attacker to 

mount a KASLR bypass attack, thus subverting one of the most basic anti-exploit measures employed in 

the kernel. This is very intuitive, and is not the subject of this white-paper. Instead, we focus on leaking 

kernel memory.  

There are 2 main scenarios that we have identified; SWAPGS not getting executed speculatively when it 

should, and SWAPGS getting speculatively executed when it should not. We discuss both scenarios in the 

following sections. However, the second scenario is much more serious, and our exploit (and the rest of 

the whitepaper) is based on it. 

Scenario 1: SWAPGS not getting speculatively executed when it should 
In this scenario a mispredicted branch redirects execution to a GS based addressing but without executing 
the SWAPGS instruction, although it should have, immediately after a user-to-kernel transition. Let’s 
consider again the following example: 
 
nt!KiPageFaultShadow: 
[1] f644241001           test    byte ptr [rsp+10h],1 
[2] 7462                 je      fault_from_kernel  
[3] 0f01f8               swapgs 
[4] 650fba24251870000001 bt      dword ptr gs:[7018h],1 
[5] 720c                 jb      nt!KiPageFaultShadow+0x22  
[6] 65488b242500700000   mov     rsp,qword ptr gs:[7000h] 
[7] 0f22dc               mov     cr3,rsp 
fault_from_kernel:       ... 

 
This code sequence is executed when a Page-Fault (#PF) takes place. First it tests the CS register saved on 
the stack to see if the #PF originated in kernel. If it did originate in kernel, it jumps over the SWAPGS 
instruction, as the IA32_GS_BASE already points to the KPCR (since we were already in kernel when the 
#PF took place, it is assumed SWAPGS had already executed). However, when the #PF originates in user-



mode, SWAPGS has to be executed to make IA32_GS_BASE point to the KPCR. If the branch is 
mispredicted, execution continues in kernel with the user-mode IA32_GS_BASE active instead, thus 
opening another door for exploitation. An analysis of the Windows kernel shows that this does not seem 
to be a problem in practice since immediately after the user-to-kernel transition, the user CR3 is still 
active, and to gain access to the entire kernel memory space, the kernel CR3 must be loaded. As one can 
see in the above code sequence, the kernel CR3 is loaded only after the SWAPGS instructions, and it is a 
serializing instruction, meaning that it cannot execute speculatively (all the instructions before instruction 
7 must be retired before executing it). 

Scenario 2: SWAPGS getting speculatively executed when it shouldn’t 
More interesting things happen when the SWAPGS instruction is executed speculatively inside the kernel. 

This is particularly problematic if it is followed by GS based addressing, which speculatively accesses the 

user-mode GS instead of the kernel one (since SWAPGS speculatively switched IA32_GS_BASE with 

IA32_KERNEL_GS_BASE). We disassembled the Windows kernel to see what instructions usually follow 

the SWAPGS instruction, and were surprised. Let’s consider again one of our previous examples, which is 

the base of our exploit, and will be referred to from now on as the gadget (note that each instruction is 

labeled, for easier explanations): 

[1] f60596a1390001     test    byte ptr [nt!KiKvaShadow],1  
[2] 7503               jne     skip_swapgs [4]          
[3] 0f01f8             swapgs                                                    
[4] 654c8b142588010000 mov     r10,qword ptr gs:[188h] 
[5] 65488b0c2588010000 mov     rcx,qword ptr gs:[188h] 
[6] 488b8920020000     mov     rcx,qword ptr [rcx+220h] 
[7] 488b8930080000     mov     rcx,qword ptr [rcx+830h] 
[8] 6548890c2570020000 mov     qword ptr gs:[270h],rcx 
 

As one can see, the SWAPGS instruction 3 is followed by multiple GS based addressing instructions. In 
addition, the SWAPGS instruction is preceded by a conditional jump 2, which may sometimes be 
mispredicted. This means that sometimes, the GS based instructions access user-mode memory, because 
they are executing speculatively after SWAPGS. If an attacker modifies in user-mode IA32_GS_BASE, the 
speculative region would basically access whatever address the attacker wrote in that register (for 
example, using the WRGSBASE instruction). For example, if an attacker writes the value 0x1000 in 
IA32_GS_BASE, the CPU will speculatively access address 0x1000+0x188=0x1188 twice. The most 
interesting part is that the value loaded from the attacker-controlled address is further dereferenced. In 
our example, whatever value is loaded from address 0x1188, it will further be dereferenced by instruction 
6, mov rcx,qword [rcx+220h]. If, for example, at address 0x1188 lies the value 0xCC000, this MOV 
instruction will attempt to load a QWORD from address 0xCC000+0x220=0xCC220. Furthermore, 
whatever value lies at address 0xCC220 will be dereferenced again by the next instruction 7, mov 
rcx,qword [rcx+830h]. The result is a triple attacker-controlled dereference. How can we use this to our 
advantage? We will see this in Variant 2. Leak arbitrary kernel addresses. 
 

Variant 1. Test if a certain value is located at a given kernel address 
The first method of abusing the speculative behavior of the SWAPGS instruction relies on the fact that the 

CPU speculatively does at least 2 memory accesses. These 2 accesses are sufficient to allow an attacker to 

test if a value is located at a selected address inside the kernel. This can be considered a search primitive, 

as it allows the attacker to search for certain values in kernel memory. However, not any random value 

can be searched, as we will soon see. Let’s consider again the exploit gadget listed previously. If SWAPGS 

is executed speculatively, and the GS base ends up pointing to an attacker-controlled value - let’s call it K 



- then instructions 4 & 5 will load a QWORD from address K+0x188 – let’s call the loaded qword Q. 

Furthermore, instruction 6 will load a QWORD from the address Q+0x220. The main question is, what 

happens if the attacker previously allocated memory at address Q+0x220? The answer is pretty 

straightforward; if the attacker already mapped that address, then the CPU, in its attempt to access it, 

leaves a signal inside the data caches, as the contents of address Q+0x200 would be cached. Now that the 

basic pieces of the puzzle are all present, we can construct the search primitive. Assuming the attacker 

wants to see if value V is located at kernel address K, he would do the following: 

1. Allocate memory at address V-0x220 

2. Write the kernel address K-0x188 into the IA32_GS_BASE register, using, for example, WRGSBASE 

3. Wait for an interrupt or generate a fault, which would transition from user to kernel 

4. If branch 2 is mispredicted:  

a. SWAPGS will be speculatively executed 

b. Value Q will be loaded from address (K-0x188)+0x188 

c. Q+0x220 will further be dereferenced 

5. When control is passed back from kernel to user, the attacker would check to see if address V is 

cached. If it is indeed cached, this confirms that value V (with a cache line bias – the actual value 

will be between V aligned to a cache line, which is usually 64 bytes, and V aligned to the next 

cache line) is located at kernel address K. Otherwise, this could mean that either the value V is 

not present at kernel address K, or that simply the branch was not mispredicted, and speculative 

execution of the SWAPGS instruction was not triggered. For better accuracy, each address would 

be tested several times, until either a match is found, or there is a certain probability that the 

value is not there. 

Variant 2. Leak arbitrary kernel addresses 
The second variant of the SWAPGS vulnerability is more generic, in that it allows the attacker to infer the 

value located at a randomly selected kernel address. However, the restriction from the previous section 

still applies (i.e., values that don’t fall within the addressable user-mode domain are not easily leakable). 

It is more challenging to leak arbitrary addresses since we don’t know what addresses to map in user-

mode in order to detect speculative kernel accesses. The naïve approach in this case is to employ a linear 

search algorithm, where obtaining the value at kernel address K would go something like this: 

1. Spray the entire user-mode virtual-address space 

2. Write the target kernel address K-0x188 into the GS base register 

3. Trigger or wait for a kernel transition 

4. If the gadget gets executed speculatively, and the value V located at address K falls within the 

addressable user-mode domain, a cache signal will be left, as address V will be cached 

5. When returning to user-mode, check which address V has been cached 

Of course, this technique is only theoretical as it is impossible to fill the entire user-mode space with 

memory; the attacker would have to allocate 247=128TB of memory. Needless to say, this is not feasible 

in practice. A more realistic approach is to allocate large chunks of memory and iterate through the entire 

address space. Realistically, there are high chances that if the allocated chunks of memory exceed the size 

of the Last Level Cache (LLC), in an attempt to see which address within the chunk has been accessed 

speculatively, the signal would disappear, as it would be evicted from the cache by the repeated tests. 

However, using chunks of memory roughly equal to the LLC is good enough, as this is usually more than 



4MB in size, going up to 32MB in high-end systems. This means that the entire user-mode address space 

can be checked in 247B/32MB=4M iterations, which starts to be feasible.  

There, are however, even better approaches. Let’s take a look at the gadget once again. Instruction 5 

loads value Q from the kernel address K. Instruction 6 then dereferences Q+220h and loads a new value, 

P, which is further dereferenced by instruction 7 which loads the value located at P+830h. This gives us a 

great opportunity; instead of allocating, for example, a 32MB chunk of memory and iterating through all 

of it to see if any address within this chunk was cached, we could spray the entire 32MB chunk of memory 

with the address of a single test variable. If the gadget gets to execute speculatively, and if the value V at 

kernel address K is within that 32MB memory region, then instruction 7 would speculatively access our 

test variable. Instead of iterating the entire 32MB memory region to see if any address is cached, we can 

directly test our variable; if it is cached, then the value V is within the tested range. Otherwise, we can 

move on with the search. This method significantly speeds up the process. The final algorithm may look 

something like this: 

1. Allocate a chunk of memory, M, with size S (where S will usually be selected depending on the 

LLC size) 

2. Fill chunk M with the address of our test variable, T-0x830 (note that we don’t know beforehand 

the offset where we should spray T, as it can between 0 and 7; this can be overcome by trying 

each possible offset) 

3. Flush the variable T from the cache, using the CLFLUSH instruction 

4. Write the kernel address K-0x188 to be leaked in GS base register using WRGSBASE 

5. Trigger the gadget to be executed speculatively 

6. Inside the kernel space, if the gadget indeed executes speculatively: 

a. Instruction 3 (SWAPGS) makes the attacker controlled GS base active (which points to the 

target kernel address K) 

b. Instruction 5 loads value Q from address K 

c. Instruction 6 loads value P from address Q+0x220 

d. Instruction 7 loads value R from address P+0x830 

e. If Q is in the range of the allocated chunk M, then P will be equal to our test variable T, 

which will be dereferenced to load R; therefore, T will be cached if the gadget is executed 

speculatively and if the value at kernel address K is in the interval described by memory 

chunk M 

7. When returning to user-mode, the attacker will test to see if variable T is cached 

a. If variable T is cached, then the value located in kernel at address K is in the interval 

described by memory chunk M (for example, if M was allocated at address 0 and has a 

size of 32MB, then the value at kernel address K is in the range [0, 33554432]), and the 

attacker may further zoom into that region by reducing the size S to be allocated (for 

example, S may be cut in half at each step) 

b. If variable T is not cached after a certain number of tries, the next interval can be checked: 

M=M+S and goto step 1 

By employing this technique, the attacker can sequentially reduce the search interval until it reduces the 

number of possible values to an acceptable range. 



Challenges 

Speculatively executing the gadget 
From this perspective, the exploit can be thought of as a new variant of Spectre v1, since it relies on 

speculatively executing unexpected instructions after a branch was mispredicted. Directly controlling the 

outcome of a conditional branch which is located in kernel is impossible, but we determined that we can 

control it, to some extent. The conditional branch in the vulnerable gadget is executed after testing 

whether the KvaShadow kernel variable has bit 0 set. If bit 0 inside KvaShadow is set, the jump will be 

taken, and the SWAPGS instruction is skipped, and therefore, not executed. To have a high probability of 

success, we must be able to indirectly manipulate the outcome of this branch, and fool the CPU into 

thinking the branch is not taken, and therefore, to speculatively execute the SWAPGS instruction. To do 

so, good knowledge about the organization of the branch prediction unit is required. Agner Fog has an 

excellent resource [9] which describes in detail how various CPU units work. Unfortunately, it appears 

that little is known about how branch predictors are organized and how they work on Intel Haswell and 

newer CPUs. To save time, we decided for to use a brute-force approach instead of carefully reverse-

engineering these aspects. The building blocks required to influence the speculative execution of our 

gadget in kernel are: 

Trick the CPU into thinking the branch instruction 2 is not taken: branch confusion. As already 

mentioned, there’s no way to directly do so, and there is little information regarding the organization of 

branch predictors on Intel Haswell CPUs and newer [10]. We therefore made the assumption that 

regardless of how it’s organized internally, the CPU must somehow use the branch instruction address in 

order to look it up inside the Branch Target Buffer (BTB). We expect that on Haswell and newer, the BTB 

is organized as any other cache, having various sets and ways (and indeed [10] hints at a 4-way set 

associative organization for Haswell, perhaps it is similar on recent CPUs as well) – this is better illustrated 

in Figure 1 Typical cache access scheme. Therefore, some bits of the branch address are used to index a 

particular set inside the cache (usually lower order bits), and other bits inside the branch address (usually 

higher order bits) are used as a tag (perhaps after applying a hash function on various portions of the 

address). Little to no information is known about actual BTB access, but we expect to be able to evict the 

target branch from the vulnerable gadget by allocating a long sequence of conditional branches which are 

situated at the same page offset as the target branch. For example, if the target branch is located at offset 

0xCEE inside the memory page, we would allocate a large memory area (for example, several KB or MB in 

size), and inside each page of this buffer, at offset 0xCEE, we place an identical conditional branch, but 

which is never taken. This has two effects. First, the actual target branch will most likely be evicted from 

the BTB, and second, if there is a collision between the tag bits inside the BTB, we would directly cause 

the branch to not be taken. In reality, all we care about is evicting the branch from the BTB, because the 

CPU would normally employ static prediction on branches it sees for the first time. A very good write-up 

[10] hints that Intel Haswell CPUs always predict newly seen branches as not-taken, which is exactly what 

we need. Intel Ivy-Bridge seems to weakly predict ahead as not taken, which is again what we want. The 

Intel Optimization manual [11] states in Chapter 3, Section 4, subsection 1, paragraph 3, that the static 

predictor would predict backward taken, forward not taken, which confirms the described findings, and 

is favorable for our exploit.  

Make sure the KvaShadow variable is not cached: cache thrashing. This is easier to do in practice, but 

other CPU cores executing in parallel may interfere by caching it back whenever it’s accessed. To make 



sure this variable is not cached, we employ a technique very similar to the one described in the previous 

section, but instead of flushing the BTB, the data caches are flushed. In doing so, we simply determine the 

page offset of the KvaShadow variable, and allocate a large chunk of memory (at least the last-level cache 

in size), and thereby access that offset in each of our memory chunk’s pages. This ensures, with sufficient 

probability, that the variable is evicted from the caches, and the conditional branch is not only 

mispredicted, but it will have to wait until the variable is read from memory (which should take several 

hundred clock cycles). This gives us enough speculative execution time to employ the attack. The typical 

cache access mechanism is illustrated in Figure 1 Typical cache access scheme. 

 

Figure 1 Typical cache access scheme 

Test variable alignment 
When we spray the decoy memory buffer with the address of the test variable (which, if cached, indicates 

that the kernel value lies within the tested memory interval), we don’t know the actual alignment of the 

kernel value Q located at K. For example, if we spray address of the test variable T starting with offset 0 

(M + 0x310, M + 0x318, M + 0x320, M + 0x328, etc.) inside the memory chunk M; but if the value Q at 

kernel address K is aligned to 3, for example 0x103, the exploit will fail, as instruction 6 loads a value 

aligned to 3 (from M + 0x323, which does not contain the address of T). To overcome this, we can try each 

possible alignment since there are only 8 possible values (a QWORD is loaded from memory, which is 8 

bytes in size). Modern CPUs have more than 2 cores, regularly 4 and even more than 8. The attack can be 

parallelized to run on each core, with a different alignment. Figure 2 A misaligned load would access other 

locations, instead of the test variable shows how a misaligned load would not produce the desired effect 

of accessing the test variable, and instead it would access another address. 



 

Figure 2 A misaligned load would access other locations, instead of the test variable 

Cache Line Bias 
Caches work with the granularity of a line, which is usually 64 bytes on modern CPUs. This means that if 

an address is cached, the entire 64 bytes region surrounding that address is cached. For example, if we 

wish to leak from a kernel address K which contains the value 0x123, the region that is cached is [0x100, 

0x13F]; therefore, we know that the value located at that address is in that interval, but we wouldn’t 

know the exact value of the low order 6 bits. To identify the value of these low order bits, we can try to 

leak the value from kernel address K-1 – this will translate into the value 0x123??, where the question 

marks represent whatever byte value is located at address K-1. We call this technique address shifting, 

since we can shift 1 byte at a time from the kernel value which we dereference. The concept of cache line 

bias is illustrated in Figure 3 Cache line bias when inferring the kernel memory value. 

 

Figure 3 Cache line bias when inferring the kernel memory value 

Leakable domain 
The main disadvantage of this technique is that it cannot leak any arbitrary value; it can only leak values 

which resemble valid user-mode addresses. Due to the restrictions of 64-bit addressing, which uses 48-

bit linear addresses, an address is considered to be a valid user mode address if it’s in the range 

[0x0000000000000000, 0x00007FFFFFFFFFFF]. Intel announced recently that it wishes to extend the size 

of linear addresses from 48-bit to 57-bit, the LA57 technology [12], which will extend this domain to 

[0x0000000000000000, 0x007FFFFFFFFFFFFF]. A quick statistic on a Windows RS5 ntoskrnl.exe memory 



image revealed that 33.7% of its contents can be leaked (approximatively 3.3MB out of 10MB). If we 

consider 57-bit addressing, about 51.2% of the contents can be leaked (approximatively 5.1MB out of 

10MB). We’ve also tested a random 10MB area of the non-paged pool, and we concluded that with 48-

bit addressing, 55.9% of the contents can be leaked, whereas with 57-bit addressing 65.8% of the contents 

can be leaked. 

Leaking other values 
Although we didn’t take the time to investigate further, we believe that any value which resembles a valid, 

canonical address may be leakable (although this should be more challenging). The rationale behind this 

is an article [13] which demonstrates how the ASLR can be bypassed by observing which cache sets are 

evicted by the Page Miss Handler (PMH) when performing a page-walk. In essence, the problem presented 

in this article – obtaining the value of an unknown virtual-address which is accessed by the attacker, is 

very similar to the problem we have; obtaining the value of random data accessed speculatively, and then 

dereferenced. This may be more problematic in practice, however, as in our case, there will be lots of 

noise, due to the necessity of transitioning in kernel each time to do an access of the secret value. We do 

believe that with enough time and resources, this method may be feasible in practice, and would allow 

an attacker to leak any canonical value. Given 48-bit linear addresses, this would increase the domain of 

leakable values to 37.7%, and given 57-bit linear addresses, this would allow for 64.8% of the nt image 

memory contents to be leaked. In practice, these two techniques may be combined. For the 10MB random 

non-paged pool area, this would allow for 65.0% of the contents to be leaked with 48-bit addressing and 

74.6% with 57-bit addressing. 

Performance 
The performance of the attack varies greatly. Performance depends on how often the branch before the 

SWAPGS instruction is mispredicted, and the affected CPUs cache size. If an attacker is careful and patient 

enough, this may not be such a problem. However, in practice, we expect the variant 2 of the attack to be 

rather slow, with a speed not faster than a few bytes every few minutes, since it must search the value in 

a large space. Variant 1, however, is much faster. Confirmation for the presence of a given value at a 

tested kernel address takes place in well under 1 second. Since our goal was not to create a fully-functional 

exploit, but rather a PoC which proves the feasibility of leaking kernel values, we find the current 

performance acceptable. We anticipate that the leaking rate can be greatly improved by better controlling 

the mistraining of the branch prediction unit. 

We measured the actual performance for Variant 1 (searching for a kernel value), with the following test: 

Knowing that the first QWORD value inside the nt kernel image is 0x0000000300905A4D, and knowing 

the base address of the nt image, we measured, on average, how much time and how many tries are 

required for the speculative gadget to be triggered and leave a measurable cache signal inside user-space. 

We mapped address 0x0000000300905A4D+0x220 in user mode, we wrote the kernel base in 

IA32_GS_BASE register using the WRGSBASE instruction, and we triggered a kernel transition by 

generating an Undefined-Opcode Exception (#UD) using the UD2 instruction. Our measurement indicates 

that -  on average - it takes about 0.0001 seconds, or about 2 tries, for the gadget to be triggered and 

leave the cache signal which confirms that a value within the interval [0x0000000300905A40, 

0x0000000300905A80] is located at the tested kernel address. Of course, to maximize our chances of 

triggering speculative execution of the gadget, we employed the branch confusion and cache thrashing 



techniques previously described. The test was conducted on a Windows 10 RS5 x64, powered by Intel 

Core i7-8650U with 8 logical cores. 

Other operating systems and CPUs 
The focus of our research was Microsoft Windows, as it was a low hanging fruit in terms of demonstrating 

the exploit. A quick analysis of the Linux kernel revealed that although it contains a gadget which may be 

used in an attack, it lies inside the Non-Maskable Interrupt (NMI) handler. We therefore believe that Linux 

would be difficult (if not impossible) to attack. A quick analysis of the Hyper-V kernel and of the Xen 

hypervisor kernel revealed that the SWAPGS instruction is not used, so exploitation is impossible. Other 

operating systems and hypervisors have not been investigated, although Microsoft, during the 

coordination of the disclosure, notified all the interested partied about this vulnerability. In addition, our 

PoC reliaes on the WRGSBASE instruction to modify the GS base in user-mode. This instruction is present 

starting with Ivy Bridge, and we expect that older CPUs to be much more difficult, if not impossible to 

exploit. 

We tested two AMD CPUs: AMD64 Family 16 Model 2 Stepping 3 AuthenticAMD ~3211 Mhz and AMD64 

Family 15 Model 6 Stepping 1 AuthenticAMD ~2100 Mhz and neither exhibited speculative behavior for 

the SWAPGS instruction.  

Since the SWAPGS instruction is present only on x86-64, we don’t expect other CPU architectures, such 

as ARM, MIPS, POWER, SPARC or RISC-V to be vulnerable. However, we don’t exclude the existence of 

other similarly sensitive instructions that may execute speculatively. 

Mitigations 
The bad news is current mitigations such as microcode patches or KPTI do not address this newly 

discovered technique. The good news is there are several options for mitigating this vulnerability. 

Clobber the user-mode GS on user-kernel transitions 
One way to mitigate this vulnerability is by ensuring the user-mode GS base contains a known value, and 

not something controlled by the attacker. This must be done very soon after the transition, preferably 

before any conditional branches take place (which may allow exploitation still). However, this technique 

requires considerable work on the kernel side from all OS vendors. Considering there are simpler ways to 

mitigate this issue, it will probably never be leveraged as a fix. 

Supervisory Mode Access Prevention 
Supervisory Mode Access Prevention (SMAP) is a technology which prohibits user-mode pages from being 

accessed while in kernel mode. As the attack relies on speculatively accessing user-mode memory from 

kernel space to infer sensitive value, SMAP is more than capable of mitigating this issue. SMAP is already 

used by Linux kernels on CPUs which provide support. On Windows, SMAP requires significant 

engineering, since the driver model allows user-mode memory access by default. 

Serialize the execution of the SWAPGS instruction 
The most straight-forward way of mitigating this remains the serialization of the SWAPGS instruction. This 

can be done by placing an instruction such as LFENCE before or after each sensitive SWAPGS instructions. 

Normally, the modification itself is trivial, and the performance impact should likewise be minimal, as only 

the rarely taken branch is affected. However, care must be taken since this only covers scenario 2, where 



SWAPGS is executed speculatively when it should not. To also cover scenario 1, a serializing instruction 

must be placed at the beginning of each block of code executed as a result of a branch skipping SWAPGS. 

This ensures that code is not executed speculatively without having executed SWAPGS beforehand, if it 

was required. 

Hardware fixes 
Of course, the most complete solution to this problem is to fix the CPU. Releasing a patch for the CPU is 

not as simple as releasing one for software. This will probably not happen very soon – perhaps future 

CPUs will be designed with avoiding this flaw in-mind such-that they disallow speculative execution of the 

SWAPGS instruction. Microcode updates are excluded as well, as Intel clearly stated when we initially 

reported the vulnerability that they do not wish to address this problem in affected CPUs. 

Hypervisor based mitigations 
Hypervisor Memory Introspection (HVI) is a technology that leverages CPU virtualization (Intel VT-x, for 

example) to provide new levels of protection. HVI analyses the memory of the guest virtual-machine (VM), 

identifies objects of interest, and uses technologies such as the Extended Page Table (EPT) to protect said 

objects against unauthorized access. Using the hypervisor, the vulnerable gadgets can be searched inside 

the OS memory, and they can be instrumented in order to make them safe (for example, by serializing 

them). 

Conclusions 
Speculative-execution based attacks are the new standard when it comes to cutting edge exploits and 

attacks. Fortunately, there aren’t any widely known examples of these types of vulnerabilities being 

exploited in the wild. Perhaps this is because the community is highly mobilized to find and report these 

issues to vendors as soon as possible, or it’s simply because they were not discovered yet. Overall, having 

this new category of attacks in the spotlight is beneficial, from a security standpoint, as many researchers 

focus on discovering new ways of abusing poorly understood behaviors or structures present in the CPU. 

In this whitepaper, we presented a novel approach (a technique very similar to Spectre V1) of leaking 

sensitive information from the kernel. By abusing the fact that the SWAPGS instruction can be executed 

speculatively, one can force arbitrary memory dereferences in kernel, which leaves traces within the data 

caches. These signals can be picked up by the attacker to infer the value located at the given kernel 

address.  

We have identified three main use cases for this technique: 

1. Obtain the value of the IA32_KERNEL_GS_BASE from user-mode, and thus bypass KASLR 

2. Search values in kernel memory – check if a given value is located at a given kernel address 

3. Leak arbitrary memory – by employing a divide et impera technique, an attacker may be able to 

leak values from arbitrary kernel addresses 

The advantage of this newly described technique is that it bypasses every known mitigation to date. The 

disadvantages are that it can leak only values which resemble valid user-mode addresses, and in the 

second use-case, it can be slow. However, since the introduction of LA57 by Intel, the domain of leakable 

values increased from 47 bit to 56 bit. In addition, there have been attacks demonstrated which are 

capable of leaking portions of a virtual address by observing which sets have been evicted by the page-



walker when translating a linear address. Luckily, mitigations for this new technique can be implemented 

entirely in software, and they don’t require microcode patches. Serializing SWAPGS execution mitigates 

this type of attacks. Furthermore, we used our Hypervisor Introspection solution to mitigate this 

vulnerability before patches were publicly available for it. 

  



Glossary 
 pipeline – technique used by modern CPUs, which involves splitting instruction execution into 

different stages (fetch, decode, rename, execute, write-back, etc.); modern CPUs have anywhere 

from 4 to 20 or 30 pipeline stages 

 out of order execution – technique used by modern CPUs which allows them to execute 

instructions whenever the input data is available, rather than executing them in program order 

 speculative execution – ability to execute instruction before knowing whether they are required 

or not 

 branch prediction – technique used by modern CPUs in order to guess the outcome & destination 

of branches, so that instruction execution can continue before knowing whether the branch is 

actually taken or not 

 cache – small & fast memory, placed very close to the CPU core, which contains data that was 

recently accessed (temporal locality) or data that is around recently accessed data (spatial 

locality); various types of caches may exist (data cache, instruction cache, micro-op cache) and 

levels (level 1, 2, 3, etc. – the higher the level, the bigger the cache capacity is and the slower the 

access time is) 

 instruction retirement – when the CPU knows for sure the results of an instruction are valid (no 

fault was generated) and the instruction is not speculative, it will retire it, which means the results 

are written into the logical registers/caches/memory. Instruction retirement takes place in 

program order, which means the instructions appear to execute in the order in which they were 

written 

 

  



Timeline of the discovery 
07 August 2018 – Notified Intel that the SWAPGS instruction can be executed speculatively in user-mode, 

which allows an attacker to leak the address of sensitive kernel-mode structures, such as KPCR on 

Microsoft Windows 

29 August 2018 – Intel responded that the behavior of the SWAPGS instruction is known, and that they 

do not intend to address it in affected CPUs 

21 September 2018 – Insisting that this behavior is problematic, and it should be addressed 

08 October 2018 – Intel responded that their position regarding a potential KASLR bypass remains 

unchanged 

29 March 2019 – Reported to Intel that the speculative behavior of the SWAPGS instruction, if triggered 

in kernel mode, allows an attacker to bypass KPTI and thus leak kernel memory 

01 April 2019 - Intel responded and said they've started investigating 

02 April 2019 - Intel confirmed the issue but worked with ecosystem partners to mitigate at the OS kernel 

level. They connected us with Microsoft who agreed to coordinate with others in the industry to address 

the issue at the software level. 

03 April 2019 – Reported to Intel that the Linux kernel contains vulnerable gadgets as well, though a PoC 

was not developed, and the complexity of an exploit is unknown 

03 April 2019 – Intel responded that they will investigate, and that we should let them approach Linux 

kernel dev community 

10 April 2019 – Got into contact with Microsoft, and was asked for more technical details 

16 April 2019 – Provided Microsoft the requested technical details 

17 April 2019 – Microsoft responded that they were investigating 

18 April 2019 – Microsoft responded that they believe the gadget cannot be used to leak arbitrary memory 

22 April 2019 – Provided Microsoft a new PoC, which demonstrated the ability of leaking arbitrary 

memory 

23 April 2019 – Microsoft responded that they were investigating 

30 April 2019 – We ask Microsoft if they have any updates 

01 May 2019 – Microsoft responded that they have finished reviewing the report, and that they are 

waiting for OS team feedback, and are discussing with Intel regarding coordination 

07 May 2019 – We ask Microsoft if they have any updates 

07 May 2019 – Microsoft confirms that they reproduced the report and they are targeting a July patch, 

but this is subject to change, depending on how coordination goes 

14 May 2019 – We ask Microsoft if they have any updates 



15 May 2019 – Microsoft responded they are wrapping up the Microarchitectural Data Sampling issue 

from Intel, and that they will provide updates soon 

24 May 2019 – Microsoft said they made good progress with the investigation, and that they are targeting 

mid-summer/late summer for the fix; also, they are talking with Intel regarding industry coordination 

24 May 2019 – Notified Microsoft that we intend to present our findings at BlackHat 

05 June 2019 – We ask Microsoft if they have any updates on the BlackHat presentation part 

06 June 2019 – Microsoft responds they made good progress and are beginning the coordination with the 

interested industry vendors; they ask how much advance notice we need for BlackHat 

06 June 2019 – We specify that we do not wish to present a 0-day, and we wish for all affected vendors 

to have time to address the issue before publishing anything 

11 June 2019 – Microsoft asks if they can approach Linux and if we have a PoC for Linux 

12 June 2019 – We respond we are okay with approaching Linux, and that we will see if a Linux PoC is 

doable 

13 June 2019 – We notify that a Linux PoC is much more difficult to implement than a Windows one, and 

they should approach them without a PoC 

18 June 2019 – Microsoft confirms they will approach Linux without a PoC 

19 June 2019 – Microsoft asks for our explicit permission to reach Linux Kernel Devs and other vendors 

19 June 2019 – We explicitly offer our permission 

19 June 2019 – Microsoft asks if we agree with a general summary of the issue 

19 June 2019 – We agree with the general summary 

25 June 2019 – We ask for updates, specifically: if they notified the community, if they notified AMD, if 

they assigned a CVE number, and if they have a release date for the patches 

28 June 2019 – We receive the update, stating that Linux is still working on mitigations, AMD was involved, 

there is a tentative CVE-2019-1125 (but not sure if Microsoft will issue it), and that the disclosure date is 

not final yet. We are asked if we still wish to present at BlackHat 

28 June 2019 – We ask if AMD confirmed the issue, and we confirm we still with to present at BlackHat; 

we also state that we are open towards helping for a better community sync, if needed 

28 June 2019 – Microsoft states that they may have a definitive answer from AMD by the beginning of 

July; they also state the tentative date for the fix – 9th of July. They also throw the idea of a possible delay 

for the fix, since not all parties may address the problem in time. However, they clearly state the intended 

date for the fix to be 9th of July 

28 June 2019 – We state that our PR/Mrkt teams are pushing for the 6th of August, and that would be the 

worst case scenario date for us. We state that we are working on a technical white-paper describing the 

problem and how it can be abused 



28 June 2019 – Microsoft stated that some parties may not be ready before 6th of August, and if it’s 

acceptable for us to push the date 

28 June 2019 – We state that we do not wish to jeopardize anyone, and we express our concern regarding 

the coordination process, as it takes too long, since the issue is already almost a year old 

28 June 2019 – Microsoft asks for the timeline, as they did not know the issue is this old 

28 June 2019 – We provide the timeline, starting with the initial reporting to Intel, in August 2018 

28 June 2019 – Microsoft compliments Bitdefender on putting the safety first, even if this means wasting 

a great chance, such as presenting at BlackHat 

28 June 2019 – We kindly ask how did Microsoft end up handling this kind of (hardware) issue 

01 July 2019 – Microsoft exposes the reason behind them being in charge with this case. They also state 

they will release the patches on July 6th, but won’t document the fix publicly until August 6th, to leave 

enough time for other vendor to test and deploy their fixes. They also ask what we plan to do in case of a 

tip-off 

02 July 2019 – We responded that in the case of a tip-off, we should have a coordinated communication 

plan, and we ask what their plan is in this regard 

10 July 2019 – We send this whitepaper for review 

10 July 2019 – Microsoft acknowledges us sending the whitepaper, and requests permission to share it 

with the community 

10 July 2019 – We confirm we agree with the whitepaper sharing 

10 July 2019 – Microsoft thanks us, and indicates they will review it, and send feedback, if needed 

19 July 2019 – Microsoft reports that everything is going as planned for the 6th of August releases, and 

that they would keep us posted, anything should change 

20 July 2019 – We confirm our PR/comm teams are prepared for the 6th of August release; if anything 

should intervene, we must synchronize their and out PR/comm teams 

30 July 2019 – We ask if they reviewed the whitepaper, and if there is any feedback 

30 July 2019 – Feedback is provided, the whitepaper is adjusted accordingly 

06 August 2019  - Public disclosure.  
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