
Site Isolation
Confining Untrustworthy Code in the Web Browser

Nasko Oskov, Charlie Reis

Nasko Oskov Charlie Reis

about:us

Defense

Browser evolution

Offense

How to look for
bypasses

Example
vulnerabilities

Site Isolation
architecture

Making it shippable

about:history

Late 1990s
Monolithic

Browser Process

evil.com

Late 2000s
Multi-process

Renderer Process

evil.com

Browser Process

Late 2000s
Multi-process

Renderer Process

mail.com

evil.com

Browser Process

Late 2010s
Site Isolation

Renderer Process

mail.com

Renderer Process

evil.com

Browser Process

2018
Spectre

Renderer Process

mail.com

Renderer Process

evil.com

Browser Process

about:site-isolation

Ad

Video

Article

Without Site Isolation

With Site Isolation

Renderer Process
mail.com

mail.com

Renderer Process
evil.com

evil.com

Browser Process

Example: Input events

Operating System Browser Process

Renderer Process

B

A

Input events with out-of-process iframes

Operating System

Renderer Process

A

Renderer Process

B

Browser Process

Updated browser features
● Accessibility
● Developer tools
● Drag and drop
● Extensions
● Find-in-page
● Focus
● Form autofill
● Fullscreen
● IME
● Input gestures
● JavaScript dialogs

● Mixed content handling
● Multiple monitor and

device scale factor
● Password manager
● Pointer Lock API
● Printing
● Task manager
● Resource optimizations
● Malware and phishing

detection
● Save page to disk

● Screen Orientation API
● Scroll bubbling
● Session restore
● Spellcheck
● Tooltips
● Unresponsive renderer

detector and dialog
● User gesture tracking
● View source
● Visibility APIs
● Webdriver automation
● Zoom

Process Isolation FTW
Renderer Process

mail.com

Renderer Process

evil.com

Browser Process

Not yet...

Must allow images, scripts, stylesheets

Want to protect sensitive data
(HTML, XML, JSON)

Cross-Origin Read Blocking

foo.com

foo.com Cross-site
images, scripts

Cross-site
data<img src=

"bar.com/image.jpg">

<img src=
"bar.com/secret.html">

<!-- This is JS. -->
function a() {...}

Content-Type: text/html

Mislabeled Content-Types

● Custom sniffing
● Must allow responses like:

Security Benefits

Defending against Spectre

JavaScript can leak any memory within address space.
No bugs in browser required.

Must keep data worth stealing
out of attacker's process.

Renderer Process Renderer Process

Browser Process

?
$

Compromised Renderer Processes

Harder than Spectre: Renderer process can lie to you!

UXSS, logic/memory bugs, RCE.

Must ensure browser process always
checks for access to site data.

Browser Process

Renderer Process

evil.com

Addressing Limitations

● Sites vs Origins
○ https://google.com vs https://mail.google.com:443 (due to document.domain)
○ Opt-in origin isolation

● Many data types are not yet protected
○ Headers (CORP, Sec-Fetch-Site), more CORB-protected types,

SameSite cookie defaults

● Cross-process transient execution attacks (e.g., Fallout, RIDL)
○ Combine with OS/HW mitigations

about:deployment

Don't break the web!

Performance implications?

● More processes. Memory overhead?
● Parallelism. Smaller processes.
● Latency: navigation, input events

Compatibility & Performance

Desktop: Isolate all sites

Shipped in May 2018 (Chrome 67): Windows, Mac, Linux, ChromeOS.

Many optimizations: spare process, same-site process sharing, etc

Workload helps: often many tabs open
 Subframes can often share existing same-site process

Practical to Deploy

35

80

53

99

Renderer Process Count

13%

9%

Memory Overhead

Android: Isolate subset of sites

Harder workload: single active tab

Isolate only high value sites: password-based

Shipped in September 2019 (Chrome 77)

(Still working on compromised renderer defenses here)

Fun stats for desktop launch

5 years of development

~450k lines of code, ~9k files touched

~4000 commits

Top 20 contributors landed 72% of the commits

Result

Practical to deploy

Chrome Desktop: All sites

Chrome Android: Password sites

Best path to protection against
Spectre

Can limit damage from fully
compromised renderers

about:offense

Chrome VRP covers Site Isolation bypasses

Breaking the Site Isolation process model:

● Causing two sites to use the same process

Stealing cross-site data:

● Cookies
● HTML5 storage (localStorage, IndexedDB, etc)
● CORB bypass to fetch cross-site network data

Some areas are out of scope for now

https://www.google.com/about/appsecurity/chrome-rewards/

Bounty treasure map!

Chrome treasure map

Browser Process GPU Process

Network Process

Utility process Web Renderer Extensions
Renderer

Operating
System

Older Exploits: Attack OS kernel

Browser Process

Operating
System

Web Renderer

UXSS
Logic Bugs

RCE
Web Renderer

How to look for bypasses?

No need for actual renderer exploit. Just use a debugger!

Explore the IPC surface

● *_messages.h
● *.mojom

Get creative and poke around different areas

● Escalate to higher privileged processes (e.g. Network, GPU)
● Look for corner cases - about:blank, session restore, blob:

about:bugs

917668: Cross Domain Bug in IndexedDB
By lying about origin, any renderer can

● Enumerate
● Read
● Delete

IndexedDB for other origins.

Browser Process

Web Renderer

X

https://bugs.chromium.org/p/chromium/issues/detail?id=917668

blink/public/mojom/indexeddb/indexeddb.mojom

interface IDBFactory {
 GetDatabaseInfo(associated IDBCallbacks callbacks, url.mojom.Origin origin);
 Open(associated IDBCallbacks callbacks,
 associated IDBDatabaseCallbacks database_callbacks,
 url.mojom.Origin origin,
 mojo_base.mojom.String16 name,
 int64 version,
 int64 transaction_id);
 DeleteDatabase(associated IDBCallbacks callbacks,
 url.mojom.Origin origin,
 mojo_base.mojom.String16 name,
 bool force_close);
 ...
}

IndexedDB Interface

https://cs.chromium.org/chromium/src/third_party/blink/public/mojom/indexeddb/indexeddb.mojom?rcl=918021be777af93959f06bae5f33245e581459b5&l=372

IndexedDB Bug
blink/public/mojom/indexeddb/indexeddb.mojom

interface IDBFactory {
 GetDatabaseInfo(associated IDBCallbacks callbacks, url.mojom.Origin origin);
 Open(associated IDBCallbacks callbacks,
 associated IDBDatabaseCallbacks database_callbacks,
 url.mojom.Origin origin,
 mojo_base.mojom.String16 name,
 int64 version,
 int64 transaction_id);
 DeleteDatabase(associated IDBCallbacks callbacks,
 url.mojom.Origin origin,
 mojo_base.mojom.String16 name,
 bool force_close);
 ...
}

https://cs.chromium.org/chromium/src/third_party/blink/public/mojom/indexeddb/indexeddb.mojom?rcl=918021be777af93959f06bae5f33245e581459b5&l=372

The Fix
blink/public/mojom/indexeddb/indexeddb.mojom

interface IDBFactory {
 GetDatabaseInfo(associated IDBCallbacks callbacks, url.mojom.Origin origin);
 Open(associated IDBCallbacks callbacks,
 associated IDBDatabaseCallbacks database_callbacks,
 url.mojom.Origin origin,
 mojo_base.mojom.String16 name,
 int64 version,
 int64 transaction_id);
 DeleteDatabase(associated IDBCallbacks callbacks,
 url.mojom.Origin origin,
 mojo_base.mojom.String16 name,
 bool force_close);
 ...
}

https://cs.chromium.org/chromium/src/third_party/blink/public/mojom/indexeddb/indexeddb.mojom?rcl=d1c5975caad441a10c069183bbcb4fc515468782&l=372

886976: Site Isolation bypass using Blob URL

By lying about the origin of a blob: URL, attacker can:

● Cause the process model to put attacker blob: URL in victim process
● Use the blob: URL to execute arbitrary JavaScript in the victim origin

Awarded at $8000.

https://bugs.chromium.org/p/chromium/issues/detail?id=886976

example.html

var text = '<script>console.log(“attacker code”)</script>';

var blob = new Blob([text], {type : 'text/html'});
var url = URL.createObjectURL(blob);

frames[0].location.href = url;

blob: URLs

// Lie to the browser about the origin url

blob: URLs Code
content/browser/blob_storage/blob_dispatcher_host.cc

void BlobDispatcherHost::OnRegisterPublicBlobURL(const GURL& public_url,
 const std::string& uuid) {
 ...
 // Blob urls have embedded origins. A frame should only be creating blob URLs
 // in the origin of its current document. Make sure that the origin advertised
 // on the URL is allowed to be rendered in this process.
 if (!public_url.SchemeIsBlob() ||
 !security_policy->CanCommitURL(process_id_, public_url)) {
 ...
 bad_message::ReceivedBadMessage(this, bad_message::BDH_DISALLOWED_ORIGIN);
 return;
 }
 ...

https://cs.chromium.org/chromium/src/content/browser/blob_storage/blob_dispatcher_host.cc?rcl=2078096efde1976b0fa9c820df90cedbfb2b13bc&l=59

blob: URLs Bug
content/browser/blob_storage/blob_dispatcher_host.cc

void BlobDispatcherHost::OnRegisterPublicBlobURL(const GURL& public_url,
 const std::string& uuid) {
 ...
 // Blob urls have embedded origins. A frame should only be creating blob URLs
 // in the origin of its current document. Make sure that the origin advertised
 // on the URL is allowed to be rendered in this process.
 if (!public_url.SchemeIsBlob() ||
 !security_policy->CanCommitURL(process_id_, public_url)) {
 ...
 bad_message::ReceivedBadMessage(this, bad_message::BDH_DISALLOWED_ORIGIN);
 return;
 }
 ...

https://cs.chromium.org/chromium/src/content/browser/blob_storage/blob_dispatcher_host.cc?rcl=2078096efde1976b0fa9c820df90cedbfb2b13bc&l=59

blob: URLs Fix
content/browser/child_process_security_policy_impl.cc

bool ChildProcessSecurityPolicyImpl::CanCommitURL(int child_id,
 const GURL& url) {
 ...

 if (!CanAccessDataForOrigin(child_id, url))
 return false;

 ...

}

https://chromium-review.googlesource.com/c/chromium/src/+/1235343/9/content/browser/child_process_security_policy_impl.cc#827

Finding bypasses is a thing now!

Conclusion

Site Isolation reduces value of many attacks:
 Spectre, UXSS, even RCE

We are still addressing limitations: coverage, granularity.
 Web also needs to evolve to better protect data.

Explore this new security frontier and find new attacks!

