
QAIS TEMEIZA
&

DAVID OSWALD

Breaking Bootloaders on the Cheap

Qais Temeiza David Oswald

Security Researcher
Independent

 @qaistemeiza

Associate Professor
University of Birmingham, UK

 @sublevado

About Us

• Attackers have physical access to IoT/Embedded devices

• Companies put locks in the devices called Code Protection

• The ROM bootloader is responsible for checking if code

protection is enabled

Introduction

• We analyzed the bootloaders of three widely used

microcontrollers: STM8, STM32, and LPC1343

• We found a critical vulnerability in the LPC1343 bootloader

• No appropriate checks for the code protection

• To the best of our knowledge, the STM8 and STM32

bootloaders are secure against logical attacks

Brief of our Research

How Do Embedded Bootloaders Work?

Memory Mapping

Code

Dumping the Bootloader

STM-8

• Blocks communication with the bootloader when code

protection is enabled

• Loads the option byte from its region (0x004800)

• Checks if the loaded value equals to 0xAA

Option Byte Comparison

Option Byte Loading

Invoke Bootloader

Run User Code

Results for STM-8

STM-32

• A global code protection checking function that is called at

the beginning of every command function

• Does not allow writing in memory even with the lowest code

protection (RDP) level

• User code can access specific areas in RAM

Results for STM-32

LPC1343

• Chris Gerlinsky (@akacastor) did research on the LPC1343

• He managed to break CRP1 via a glitching attack

• He found that CRP checks are done using the loaded CRP
value in RAM at address 0x10000184

RAM Address

Previous Research

LPC1343 Code Read Protection

• Critical vulnerability in the LPC1343 write to RAM command,

which lead to break the code protection

• Checks that write does not write to bootloader RAM

• But no check if the write address is in the stack area !

Results for LPC1343

LPC1343 Stack

0x1000 0000

0x1000 2000

0x1000 0300
CRP

LPC1343 Command Handler

Write to RAM Address Checking

LPC1343 No Stack Area Protection

• We kept overwriting addresses until we found the return

address which is (0x10001F54)

• How?

• We tried to branch the code to a function that will just print

some string as a POC

Exploitation without CRP

Call the Write command

Use a ROP gadget to prevent the device
from crashing

Overwrite the return address with an
address inside the read CMD function

Jump to the command handler and then
repeat the exploit

Exploitation with CRP

Read CMD()

Gadget

Exploitation with CRP

Some ISP()

CMD Handler

Write CMD()

Exploitation with CRP

CMD Handler Jump(0x1FFF1061)

Read CMD()

Gadget
ISP ()

Write CMD()

W 268443476 172 <- this sets the write address to 0x10001F54

then UUEncode and send to read from e.g. 0x000002FC:

The Full Exploit

FB 0C FF 1F FF FF FF FF FF FF FF FF

FC 02 00 00 BB 10 FF 1F BB 10 FF 1F

BB 10 FF 1F BB 10 FF 1F 7F 11 FF 1F

00 00 00 00 81 0E FF 1F

Write CMD() PC

Gadget PC

Read CMD() PC

Read Location

Demo (:

• We disclosed our findings to NXP -> documentation update

• Bootloaders are fun and “easy” to reverse-engineer

• Logical vulnerabilities are present in widely used devices

• Off-the-shelf MCUs can be broken with low-cost methods

(for LPC1343 only a $5 serial-to-USB cable)

• Full exploit and other codes can be found here:

https://github.com/qais744/LPC-ROP

Summary

Thanks!
Questions?
Qais Temeiza (@qaistemeiza)
qaiskhaled744@gmail.com

David Oswald (@sublevado)
d.f.oswald@bham.ac.uk

