black hat EUROPE 2019

DECEMBER 2-5, 2019

EXCEL LONDON, UK

#BHEU Y@BLACK HAT EVENTS

Trust in Apple's Secret Garden: Exploring & Reversing Apple's Continuity Protocol

Ta-Lun Yen talun_yen@trendmicro.com @evanslify

Ta-Lun Yen | Exploring Reversing & Apple's Continuity Protocol

#BHEU ¥@BLACKHATEVENTS

Whoami

- From Taiwan
- Independent Security Researcher
 - Threat Researcher @ TXOne Networks (Trend Micro), 2019/11-present
- Focused on protocol analysis, wireless, hardware
- Previously: HITCON 2018, 2019
- Powerlifting

Agenda

- Overview
 - Background
 - Continuity Protocol introduction
- Prior Studies
 - Current status of Continuity's Security
- Our attack scenario
 - Fingerprinting / Tracking / Metadata leak
 - Breaking MAC Rotation
- Demo

Apple's unboxing experience

Ta-Lun Yen | Exploring Reversing & Apple's Continuity Protocol

#BHEU ♥@BLACKHATEVENTS

Apple Continuity

Continuity Protocol

- A proprietary protocol used by Apple's devices, based on BLE & Wi-Fi
- Integrated with iCloud (Public Key Infrastructure)
- For users to move seamlessly between devices
 - Phone calls, clipboards, hotspot, camera, airdrop, messages

Why this topic?

- Research was intended to re-implement Continuity on Linux
- Switched from Mac to Linux 2018/9
 - I missed AirDrop / Instant Hotspot
 - Hotspot has gimmicks, not working 100% of time
 - Settings menu has to be open, but sometimes still fails

Why this topic?

- Continuity protocol hasn't been discussed before
- Fired up Ubertooth & PacketLogger
- It's more interesting to study its security/privacy implications

Why this topic?

- Initially reported to Apple (8/5/2019) and reviewed prior to presentation during HITCON 2019
- Resubmitted to Apple in relation to Black Hat EU presentation on 11/21/2019
- Wi-Fi CVE-2019-8854

Impact: A device may be passively tracked by its WiFi MAC address

Description: A user privacy issue was addressed by removing the broadcast MAC address.

blackhat EUROPE 2019 Related Work & References

- Garman et al. (2016) Dancing on the Lip of the Volcano: Chosen Ciphertext Attacks on Apple iMessage https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/garman
- Martin Vigo (2017) DIY Spy Program: Abusing Apple's Call Relay Protocol. https://www.martinvigo.com/diy-spy-program-abusing-apple-call-relay-protocol/
- Celosia & Cunche (2019) Fingerprinting Bluetooth-Low-Energy Devices Based on the Generic Attribute
 Profile. https://dl.acm.org/citation.cfm?id=3358617https://dl.acm.org/citation.cfm?id=3358617
- Becker et al. (2019) Tracking Anonymized Bluetooth Devices.
 https://content.sciendo.com/view/journals/popets/2019/3/article-p50.xml
- Stute et al. (2018) One Billion Apples' Secret Sauce: Recipe for the Apple Wireless Direct Link Ad hoc Protocol. https://arxiv.org/abs/1808.03156
- Martin et al. (2019) Handoff All Your Privacy: A Review of Apple's Bluetooth Low Energy Continuity Protocol. https://www.cmand.org/furiousmac/

black hat EUROPE 2019 Related Work & References

- Disclaimer
 - This research was done prior to joining Trend Micro
 - Some findings of this research are similar to (but not based on) the one released by Martin et al. in April 2019

Overview - Glossary

Ta-Lun Yen | Exploring Reversing & Apple's Continuity Protocol

#BHEU ♥@BLACKHATEVENTS

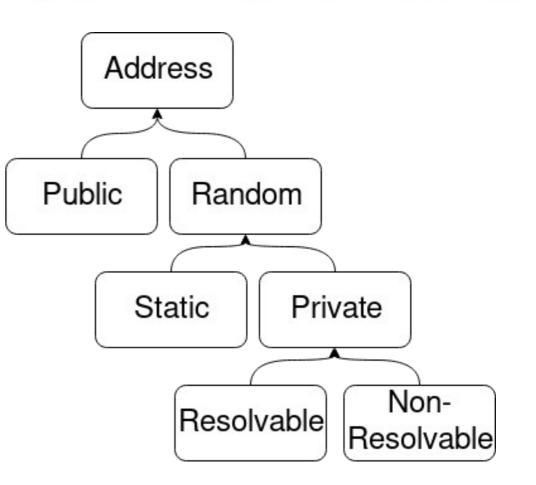
black hat EUROPE 2019 Bluetooth Low Energy

- Workhorse of the Continuity protocol
- Can be used to bootstrap another protocol in Continuity
- Out-of-band pairing via iCloud
- Use "Private resolvable address" while broadcasting

black hat EUROPE 2019 Out-of-Band via iCloud

• Device "onboard" to each iDevice after iCloud login

cloudpaird


Subsystem: com.apple.bluetooth Category: idsCloudPairing Details

2019-11-21 11:14:48.22733§

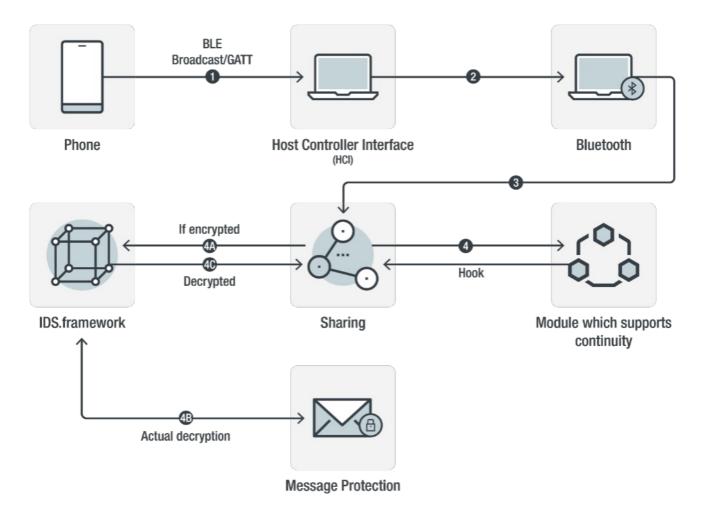
black hat EUROPE 2019 Private resolvable address

- A way to randomize MAC, remain recognizable to a few clients
- Address change on each on/off cycle & timeout
- AES-128 key (IRK) to identify devices

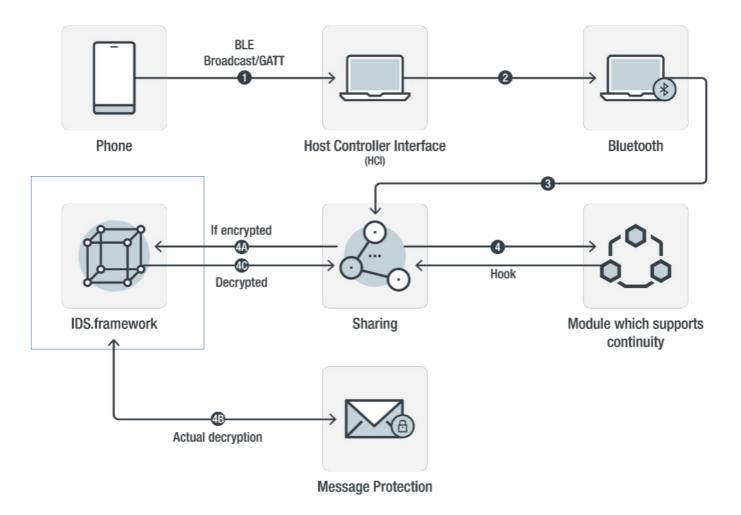
- Generic Attribute Profile
- Used to transfer data in BLE

- 128-bit UUID to identify specific resource
 - One ID for device name, one for battery level, etc

- Specific (2) ID for Continuity



Overview - Continuity


Ta-Lun Yen | Exploring Reversing & Apple's Continuity Protocol

#BHEU ¥@BLACKHATEVENTS

black hat ontinuity protocol stack

black hat ontinuity protocol stack

black hat

IDS.framework

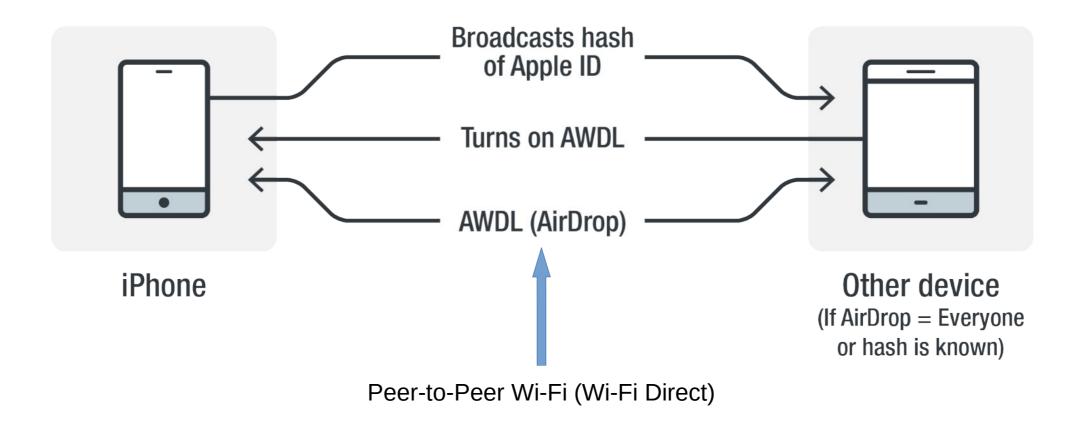
- Apple's directory service for every(!) device
- Integral part of iMessage/Continuity's encryption
- Able to fetch any device's public key with corresponding phone #/email

Encryption

- GATT Exchanges are encrypted
- RSA-1280 to decrypt AES-128 in payload
- Key obtainable through IDS (\rightarrow iCloud) & Keychain

Current Status of Continuity's Security

Ta-Lun Yen | Exploring Reversing & Apple's Continuity Protocol

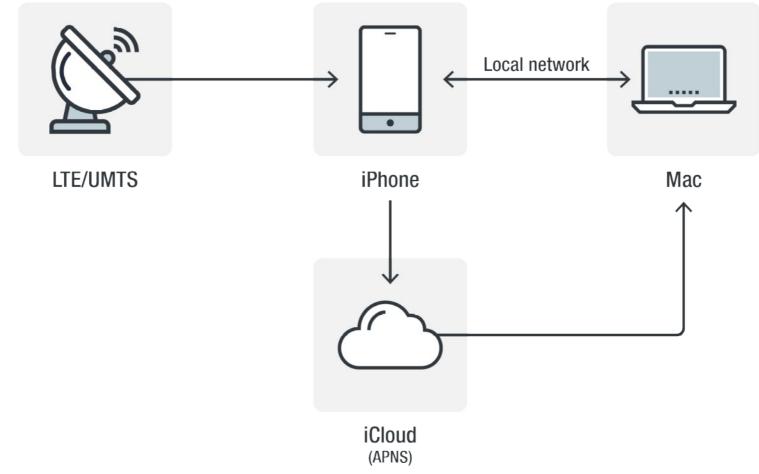

#BHEU ¥@BLACKHATEVENTS

black hat EUROPE 2019 Current Status of Continuity's Security

- Protocols with vulnerabilities before
- Both used daily & might affect daily lives
 - AirDrop
 - Send files to other iDevices without hassle
 - Call Relay
 - Make calls from other iDevice

AirDrop (AWDL)

Status of AWDL


- User Tracking (CVE-2019-8567, CVE-2019-8620)
- MitM Attack (CVE-2019-8612)

- Research & Open Source re-implementation
- * https://github.com/seemoo-lab/opendrop
 * https://github.com/seemoo-lab/owl
 * Stute et al. One Billion Apples' Secret
 Sauce: Recipe for the Apple Wireless Direct
 Link Ad hoc Protocol

Call Relay

* Vigo, 2017

Integration is hard

- Call Relay
 - CVE-2016-4635: User interface inconsistencies in handling of relayed calls
 - CVE-2016-4721: Caller spoofing on multiparty calls
 - CVE-2016-4722: End call packet spoofing
 - CVE-2016-7577: Facetime memory corruption

Protocol Implementation

Technical Details ahead

Ta-Lun Yen | Exploring Reversing & Apple's Continuity Protocol

#BHEU Y@BLACKHATEVENTS

black hat EUROPE 2019 Message Verification & Decryption

- Relies on Security.framework
 - Apple says obsolete
- Security Transforms
 - SecVerifyTransformCreate
 - SecDecryptTransformCreate

Encoding

SecEncodeTransformCreate

Creates an encode transform object.

SecDecodeTransformCreate

Creates a decode transform object.

About Security Transforms

The security transforms application programming interface (API) is a set of C-based functions in the Security framework, based on Core Foundation. It provides high-level functions for performing cryptographic tasks, such as encryption, signing, and verification. Security transforms also provide support for encodings that are commonly used in conjunction with cryptographic signatures, such as Base64.

Important: This technology is no longer recommended. Use the SecKey API to perform cryptographic tasks instead. See the Keys topic in *Certificate, Key, and Trust Services Reference*.

Ta-Lun Yen | Exploring Reversing & Apple's Continuity Protocol

INEXL

black hat EUROPE a Wessage Verification & Decryption

- SecMPVerifyAndExposeMessage
 - SecMPVerifyMessageContents(payload)
 - Used when sizeof(payload) > 17
- Raw payload from HCI
 - Calls SecKeyDigestAndVerifyWithError
 - Actual decryption is called if verified

- Data can be split into multiple packets
- Payload length at 0x38-0x39
- 0x39-end = Payload + Signature
- Total Length (bthci_acl.length) Payload length = Signature length
 [Destination Device Name:]

[Destination Device Name:] [Destination Role: Unknown (0)] [Current Mode: Unknown (-1)]

Bluetooth L2CAP Protocol

Value:

- Bluetooth Attribute Protocol
 - Opcode: Handle Value Notification (0x1b)
 - Handle: 0x000c (Unknown: Unknown)

Protection

- Messages are signed, but no MAC
- iMessage shared IDS with continuity
 - Huffman table is used in iMessage, but not Continuity * Garmin et al. 2018
 - iMessage Chosen Ciphertext Attack
- Fixed by hashing every payload and storing it in IDSMessageHashStore, fails when dupes are received

```
uStack199 = 0;
__os_log_impl(0x100000000,uVar12,0,"Received duplicate payload, returning early"
);
```

black hat

Decryption

- ~160 bytes = RSA-encrypted payload
 - ~16 bytes \rightarrow AES-128 Key
 - 16~ bytes \rightarrow Ciphertext A
- 160~ bytes → Ciphertext B
- AES-128 CTR, PK = 1
 - aes_decrypt(ciphertext A + ciphertext B) \rightarrow gzip \rightarrow binary plist

Github Project

- https://github.com/evanslify
- Currently a little script to play with broadcast only
- To-do
 - Release de-encryption & encryption
 - Emulate Hotspot behavior

Our Attack Scenario

Ta-Lun Yen | Exploring Reversing & Apple's Continuity Protocol

#BHEU ♥@BLACKHATEVENTS

black hat EUROPE 2019

Attack on Continuity

- Exploits parts in-between different protocols
- · Some behaviors which leaks device usage, identity
- Allows adversaries to track specific device
- De-anonymization

• Any BLE sniffer can serve as a tracking platform

Attack Overview

- Prerequisite: Format of Continuity broadcast
- Privacy Leak
 - Device Fingerprinting
 - OS Version, device type
 - Activity, Battery levels, etc
- Breaking MAC Randomization
- Spoofing

black hat Continuity Broadcast Format

		-	Тур	e: I	Man	ufa	ctu	rer	Spe	cif	ic	(0x	ff)					
			Com	pan	y I	D:/	Арр	le,	Inc	. (0x0	04c)					
			Dat	a: :	100	503:	1c4:	17e	62									
1	0000	00	00	4.0	00	0.2	00	00	00	26	75	0.0	00	00	60	00	00	<u>Gu</u> b
	0000	00	00	TS	00	93	00	00	00	36	10	0C	00	00	02	09	00	•••••• 6u•••b••
	0010	63	83	b4	00	fa	e2	9c	00	d6	be	89	8e	40	14	9b	52	c · · · · · · · · · · · · · · · · · · ·
	0020	bd	d0	38	63	02	01	1a	0a	ff	4c	00	10	05	03	1c	41	••8c•••• •L••••A
	0030	7e	62	37	08	2e												~b7·.

10	05	03	1c	41	7e	62
Туре	Length			Payload		

*17 types as of XCode 10.2 (PacketDecoder)

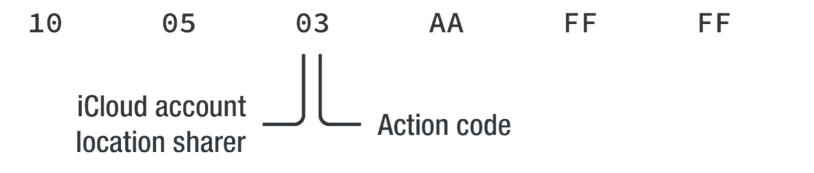
black hat EUROPE 2019 Privacy Leak - Device Fingerprinting

- OS Version / Device type
- Specific types emitted by specific device
 - e.g. iPad Wi-Fi cannot emit Tethering Source
- https://support.apple.com/ en-gb/HT204689

Туре	ID	
AirPlay Target	0x09	Apple TV
AirPrint	0x03	Printer
Handoff	0x0c	iOS => 8
Tethering Source	0x0e	iOS => 8.1
Nearby	0x10	iOS => 10

black hat EUROPE 2019 Privacy Leak - Active Fingerprinting

- Not a vulnarability itself
- Have to connect to device and interrogate it
- Able to get model number via GATT attributes


Current Time Service Current Time Properties: Read Notify Local Time Information Properties: Read Device Information Manufacturer Name String Apple Inc. Model Number String iPad11,1 $((\odot))$... Peripherals Virtual Devices Loa More

* Martin et. al, 2019

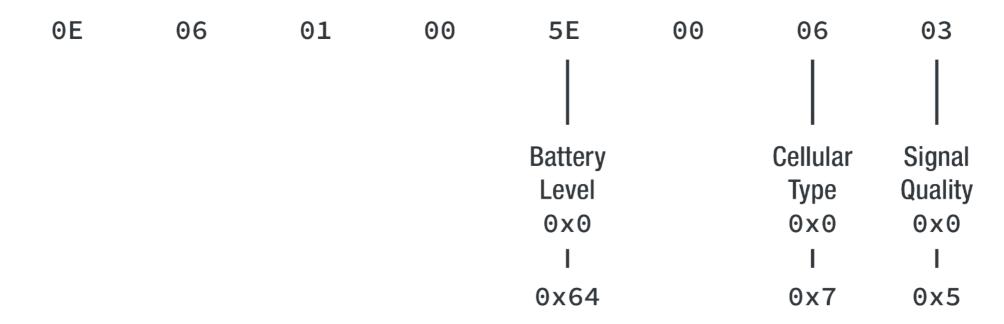
Privacy Leak - Nearby

- OS Version leak
 - Format of Wi-Fi field
- Metadata, Usage leak
 - Action values

* Martin et. al, 2019

Ta-Lun Yen | Exploring Reversing & Apple's Continuity Protocol

Туре	Description
1	iOS recently updated
3	Locked Screen
7	Transition Phase
10	Locked Screen, Inform Apple Watch
11	Active User
13	Unknown
14	Phone Call or Facetime


Fasture	iOS Version						
Feature	10	11	12				
Length (bytes)	1	4	4				
Byte 1 Byte 2-4	0×00	0×10	0×18 0×1C				
Byte 2-4	-	Data	Data				

†: 0x18 (Wi-Fi Off), 0x1C (Wi-Fi On)

FF

black hat EUROPE 2019 Privacy Leak - Instant Hotspot

- Type 0x0E, Starts broadcasting after device under same Apple ID sends Tethering Source Presence (type 0x0D)
- Leaks info from broadcast

black hat EUROPE 2019 Spoofing Instant Hotspot

- Replay & Changing bytes is possible
 - Ubertooth, faux slave mode
 - Broadcast with Public MAC
 - Find related device with known MAC

TargetO	•0000 🔳•
Target0	•०००० 1x 💷•
Target0	•०००० GPRS 💷 •
Target0	•०००० EDGE 💷
Target0	•०००० 3G 💷 •
Target0	•०००० 4G 🔳 •
Target0	•0000 LTE 🔳

Breaking MAC Randomization

Ta-Lun Yen | Exploring Reversing & Apple's Continuity Protocol

#BHEU Y@BLACKHATEVENTS

Overview

- Our objective
 - To track device regardless of MAC randomization
- Breaking MAC Rotation
 - Nearby
 - Handoff
 - IRK
- Connection between private MAC public MAC
 - Hotspot

BLE Spec

- BLE Spec recommends rotation per 15 minutes
 - Observed >15 minuted interval

• Is there any other way to track devices?

ip 10050b1cb74d0c <continuity.types.NearbyInfo object at 0x7ff7acaf2b90> 49:36:12:15:ce:30 ip 10050b1cb74d0c <continuity.types.NearbyInfo object at 0x7ff7acaf4750> 49:36:12:15:ce:30 ip 10050b1cb74d0c <continuity.types.NearbyInfo object at 0x7ff7acaf0b50> 49:36:12:15:ce:30 ip 10050b1cb74d0c <continuity.types.NearbyInfo object at 0x7ff7acaf0b50> 49:36:12:15:ce:30 ip 10050b1cb74d0c <continuity.types.NearbyInfo object at 0x7ff7acaf4390> 57:83:51:e5:a1:e9 ip 10050b1cb74d0c <continuity.types.NearbyInfo object at 0x7ff7acadcfd0> 57:83:51:e5:a1:e9 ip 10050b1cb74d0c <continuity.types.NearbyInfo object at 0x7ff7acadcbd0> 57:83:51:e5:a1:e9 ip 10050b1cb74d0c <continuity.types.NearbyInfo object at 0x7ff7acadccl0> 57:83:51:e5:a1:e9 ip 10050b1cb74d0c <continuity.types.NearbyInfo object at 0x7ff7acadce10> 57:83:51:e5:a1:e9 ip 10050b1cb74d0c <continuity.types.NearbyInfo object at 0x7ff7acadef050> 57:83:51:e5:a1:e9 ip 10050b1c4b037c <continuity.types.NearbyInfo object at 0x7ff7acaf4910> 57:83:51:e5:a1:e9

Nearby

- Payload from Nearby is not changed immediately
 - iPad Mini 5th, iOS 12.3.1 & iPhone 7, iOS 12.4.1
 - iPhone 11, iOS 13.2.3
- Track device's next random MAC with same payload

Handoff

- Move app states between devices seamlessly
- Payload contains App's identifier (encrypted)

0c	0e	СС	AAAA	??	BB (20byte)
Туре	Length	Clipboard	Counter		Payload

black hat EUROPE 2019 Handoff - Implementation

- Payload with AES-256-GCM
 - Keys can be sent via P2P or iCloud
 - One key per device

- No GCM tag validation
- IV = Counter

black hat EUROPE 2019 Handoff - Implementation

- Increment counter, +1 per "action"
- Actions
 - Notes, Browsers, Messages
 - Goodbye (when returning to "desktop")

• <u>Counter will NOT reset between MAC change</u>

- +1 per "action"
- 0x0000 0xFFFF

• 50k-ish after 2 years of usage

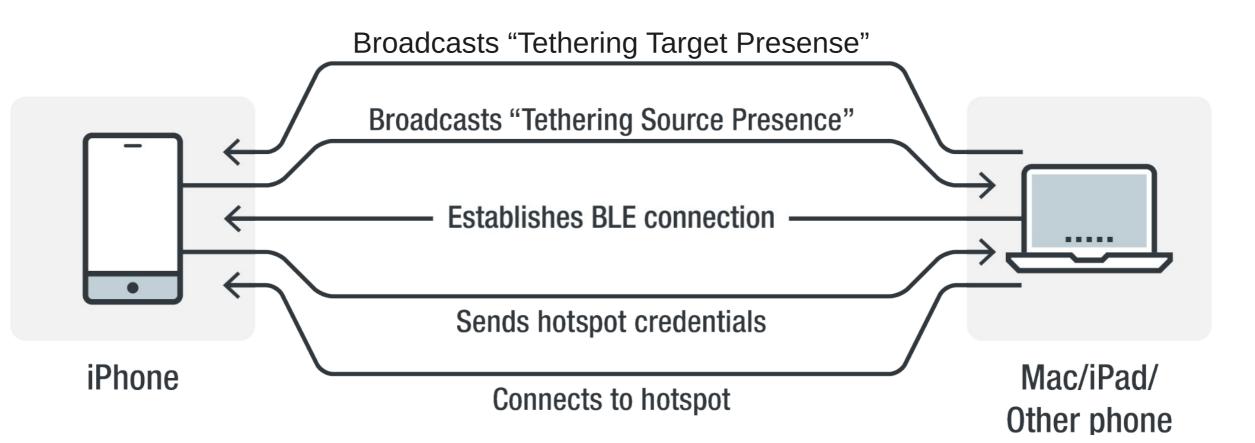
IV Reise?

• Keys rotate when IV reaches 0

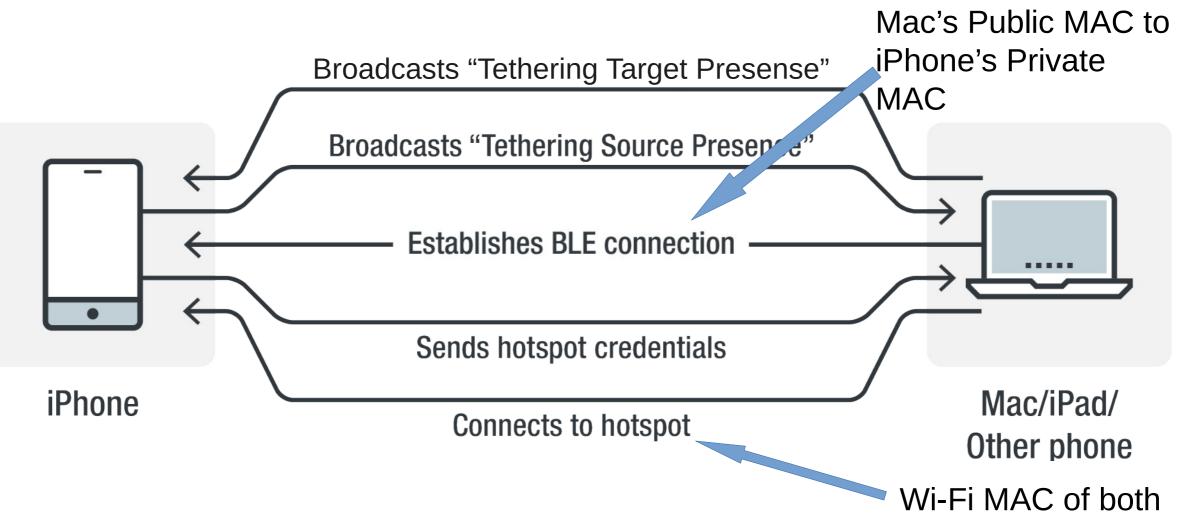
IRK Changing

- Not observed at all, even after device reset
- Can be retrieved in Console.app/PacketLogger
- IRK synced to other iDevice

¢,	▼[FCE9] VSC - LE Meta - LE Add IRK From List - AddressType - 0x00
	[FCE9] Opcode: 0xFCE9 (OGF: 0x3F OCF: 0xE9)
	Parameter Length: 24 (0x18)
	LE Ext Opcode: 0x02
	IRK: 0x
	Address Type: 0x00
	Address:


Connection between private MAC – public MAC

Ta-Lun Yen | Exploring Reversing & Apple's Continuity Protocol


#BHEU ¥@BLACKHATEVENTS

Hotspot Flow

blackhat EUROPE 2019 Hotspot Attack Scenario

Ta-Lun Yen | Exploring Reversing & Apple's Continuity Protocol

BHEU Y@BLACKHATEVENTS

black hat EUROPE 2019 Hotspot Attack Scenario

- Tethering Source Presence appears after Tethering Target
 - Device A is related to device B
 - One Private MAC & Both Public MAC
- Sniffing on both BLE&Wi-Fi
 - Probe Request/Response after BLE connection

Contextual De-Anonymization

(Instant Hotspot)

Attack Demo

Ta-Lun Yen | Exploring Reversing & Apple's Continuity Protocol

#BHEU ¥@BLACKHATEVENTS

black hat Practical Considerations

- Encrypt everything
 - Infrastructure are there already
 - Performance issues?
- But still no protection against
 - Attack against iCloud
 - Any compromised iDevice
- Wi-Fi Anonymization

black hat Practical Considerations

- Cannot protect against
 - Attack against iCloud
 - IRK & Public Keys are stored on iCloud
 - Any compromised iDevice
 - IRK & Public Keys is reachable from any iDevice in same apple ID

black hat Practical Considerations

- Wi-Fi Anonymization
 - In draft
 - MAC Randomization in Android Q
 - Management issues?

Privacy: MAC Randomization

Starting in Android 8.0, Android devices use randomized MAC addresses when probing for new networks while not currently associated with a network. In Android 9, you can enable a developer option (it's **disabled** by default) to cause the device to use a randomized MAC address when connecting to a Wi-Fi network.

Ongoing developments in IEEE 802.11 WLAN standardisation

A study group on randomized and changing MAC addresses

Amelia Andersdotter (Chair, RCM TIG, IEEE 802.11)¹

HotPETS, Stockholm, July 2019

black hat Black Hat Sound Bytes

- New approach to iDevice tracking
- Convenience implies degree of privacy hazards
- Review your implementation of new protocols carefully, especially when integrating with another protocol

Thank you!

Ta-Lun Yen talun_yen@trendmicro.com @evanslify

