


How current iOS research is done

• Third party iOS emulator on a remote server

• Development fused iPhone

• Off the shelf iPhone – jailbroken

• Off the shelf iPhone – no jailbreak



iPhone panic log



Jonathan Afek

• Aleph Research group manager at HCL/AppScan

• 15 years of experience in security research and low level development 

including vulnerability research, Linux kernel, storage systems, WiFi systems 

and FW, security systems and more.



iOS on QEMU work done by 

@zhuowei (Worth Doing Badly)





Past Research – Worth Doing Badly (@zhuowei)

• Chosen version is iPhone X iOS 12 beta 4

• Extracted the kernel image and the device tree from the software update 

package

• kernel, device tree and the kernel boot arguments were loaded in memory

• iOS RAMDisk was loaded in memory

• UART serial output was achieved

• Kernel was booted

• Launchd was executed



Past Research – Worth Doing Badly (@zhuowei)



Goals of our project

• Booting iOS on QEMU with no kernel patches

• Supporting hardware (disk, display, touch, sound, multiple CPUs, Interrupt 

controllers, etc…)

• Supporting different iOS versions

• Conducting iOS security research

• Learning about iOS and QEMU internals



Status of our project

• Booting Secure Monitor and the kernel (unpatched)

• Executing a user-mode app over launchd

• Running an interactive bash shell on an iOS kernel on QEMU 

• Supporting only on iOS 12.1 for iPhone 6s plus



DEMO - General use



Agenda

• Past public research on iOS on QEMU

• iOS kernel boot process
• Execution of non-apple executables with Trust Cache

• Bash execution with launchd

• UART interactive I/O

• Next steps



iOS kernel boot process

• Start booting the kernelcache code in EL1 as done by @zhuowei

• Crash on SMC instruction

(Secure Monitor Call)
e an



iOS kernel boot process

from https://developer.arm.com/docs/den0024/a/fundamentals-of-armv8



iOS kernel boot process

• Secure Monitor Loads at boot in EL3

• It resides in a secure memory location inaccessible from EL1 (kernel code)

• It services SMC calls from the kernel (similar to how system calls from user 

apps to the kernel are serviced)

• It is responsible for KPP (Kernel Patch Protection) in our system



iOS kernel boot process

• The kernel needs a secure monitor to service its SMCs



iOS kernel boot process

Any ideas?



iOS kernel boot process

• iPhone X uses KTRR (hardware mechanism to prevent patches) and no 

longer uses a Secure Monitor for KPP (Kernel Patch Protection)

• Loading the Secure Monitor image for iOS 12.1 for iPhone 6s plus in EL3 and 

start executing

• Loading the image at its preferred address (secure memory) with the image’s boot 

args at the next page and start execution at the entry point in EL3



iOS kernel boot process

• Loading the Secure Monitor image for iOS 12.1 for iPhone 6s plus in EL3 and 

start executing

• Data abort for trying to parse the kernelcache Mach-O header to decide which areas 

need which protections



iOS kernel boot process



iOS kernel boot process

Lowest address kernel part Kernel Mach-O header Rest of kernel

Kernel address space grows this way ->

Base address boot arg



iOS kernel boot process

• The kernel needs a secure monitor to service its SMCs

• The secure monitor requires the base address boot arg to point to the kernel 

Macho-O header



iOS kernel boot process

Any ideas?



iOS kernel boot process

Lowest address kernel part Kernel Mach-O header Rest of kernel

Kernel address space grows this way ->

Base address boot arg



iOS kernel boot process

• Loading the Secure Monitor image for iOS 12.1 for iPhone 6s plus in EL3 and 

start executing

• Tried many different solutions such as changing the base address to the loaded Mach-

O header address (above the lowest loaded section/driver)



iOS kernel boot process

• The kernel needs a secure monitor to service its SMCs

• The secure monitor requires the base address boot arg to point to the kernel 

Macho-O header

• The base address boot arg needs to point to the lowest kernel address in 

order for the kernel to operate properly



iOS kernel boot process

Any ideas?



iOS kernel boot process

Lowest address 

kernel part
Kernel Mach-O header Rest of kernel

Kernel address space grows this way ->

Base address boot arg

Another copy of raw kernel 

file beginning with the 

Mach-O header



iOS kernel boot process

And it works!



Agenda

• Past public research on iOS on QEMU

• iOS kernel boot process

• Execution of non-apple executables with Trust Cache
• Bash execution with launchd

• UART interactive I/O

• Next steps



Trust Cache

Trust Cache Executables Hash List

Executable 1

34CB

?

Execution denied!

52F8 1EC4 A971



Trust Cache

Trust Cache Executables Hash List

Executable 2

1EC4

?

Execution allowed!

52F8 1EC4 A971



Trust Cache

• iOS has 3 different types of trust caches

• A list of hardcoded hashes approved in the kernelcache

• A dynamic trust cache that can be loaded at runtime from a file

• A static trust cache in memory pointed from the device tree



Trust Cache

• Top level CoreTrust validation where execution is decided



Trust Cache

• From there dive deeper into the static trust cache lookup



Trust Cache

• Using XREFs we can see that the static trust cache is set from here



Trust 
Cache

• RE on the previous function reveals this trust cache structure 



Trust Cache

• Using XREFs we can see that this structure is read from the device tree



• Which Apple released the source code for

Trust 
Cache



Trust Cache

• Always works when only 1 hash in the list

• Only some items work when more than 1 item is in the list



Trust Cache

Any ideas?



Trust Cache

• Reversing this code revealed a binary search code which means the hashes 

are expected to be sorted in this list



Trust Cache

And it works!



Agenda

• Past public research on iOS on QEMU

• iOS kernel boot process

• Execution of non-apple executables with Trust Cache

• Bash execution with launchd
• UART interactive I/O

• Next steps



Bash on Launchd

• Mount the RAMDisk image on OSX

• Remove all files in /System/Library/LaunchDaemons/

• Add a single file there for running bash (com.apple.bash.plist)

• Add the bash executable to the RAMDisk

• Add the bash executable to the Trust Cache

• Unmount the RAMDisk and run QEMU



Bash on 
Launchd



Bash on Launchd

• System tries to execute bash

• Logs show missing libraries required for bash



Bash on Launchd

Any ideas?



Bash on Launchd

• The RAMDisk image comes without the dynamic loader cache on it, which is 

a file that holds most of the common runtime libs for iOS

• Copy this file into the RAMDisk at the correct path from the full disk images



Bash on Launchd

Any ideas?



Bash on Launchd

• Debug /usr/lib/dyld (the dynamic loader) which is responsible for loading 

the dynamic loader cache



Bash on Launchd



Bash on Launchd

• Stepping through the execution path with gdb showed the error was in here



Bash on Launchd

• Since we have a kernel debugger in gdb we can step into the system call in 

the kernel



Bash on Launchd

• Stepping through this function we see that the call to 

_shared_region_map_and_slide() is the part that fails



Bash on
Launchd

• Stepping in that function reveals the error here



Bash on Launchd

• The code validates that the cache file is owned by root

• Mount the RAMDisk image in a different way to allow permission editing

• Copy the cache file and chown to root



Bash on Launchd

And it works!



Agenda

• Past public research on iOS on QEMU

• iOS kernel boot process

• Execution of non-apple executables with Trust Cache

• Bash execution with launchd

• UART interactive I/O
• Next steps



Interactive UART

• UART output only was already possible with previous research

• Found where UART input is decided on in the kernel



Interactive UART

• Enabling UART input is decided based on bit #1 of a global var

• The global var is read from the “serial” kernel boot arg



Interactive UART

• Setting the “serial” boot arg to 2



Interactive UART

And it works!



DEMO - Ghidra trace



Demo – Research a vulnerability – voucher_swap

• Research done by Brandon Azad

• iOS 12.1 jailbreak

• Trigger the vulnerability while debugging





Agenda

• Past public research on iOS on QEMU

• iOS kernel boot process

• Execution of non-apple executables with Trust Cache

• Bash execution with launchd

• UART interactive I/O

• Next steps



Next steps and challenges

• IP communication 

• Non RAMDisk disk support

• More hardware devices (disk, screen, touch, sound, comms, etc..)

• Load all the regular iOS services in the original launchd dir instead of just 

bash

• More than a single CPU and an interrupt controller

• More iOS versions and devices including KTRR, PAC and other features

• More gdb scripts (allocation zones info, objects info, etc…)

• Security research



Black Hat Sound Bytes

• Use the the project and contribute! https://github.com/alephsecurity

• Check out our blog: https://alephsecurity.com

• Follow us on twitter: @alephsecurity @JonathanAfek

• Questions?


