
Chain of Fools
An Exploration of Certificate Chain Validation Mishaps

Olabode Anise,
James Barclay,
Nick Mooney

Overview

● X.509 Certificates and Certification Path Validation
● Android SafetyNet Overview
● JWS Overview and SafetyNet JWS Usage
● pyOpenSSL and the X509Store
● More Bad Advice
● Misuse Resistance
● Quantifying the Use of SafetyNet
● Forging Android SafetyNet Attestations

Why Johnny can’t
properly validate
certificate chains.

“verify certificate chain python”

root_cert = load_certificate(FILETYPE_PEM,
root_cert_pem)
intermediate_cert =
load_certificate(FILETYPE_PEM,
intermediate_cert_pem)
intermediate_server_cert =
load_certificate(FILETYPE_PEM,
intermediate_server_cert_pem)
store = X509Store()
store.add_cert(root_cert)
store.add_cert(intermediate_cert)
store_ctx = X509StoreContext(store,
intermediate_server_cert)
print(store_ctx.verify_certificate())

Unfortunately, there’s a
security bug in Johnny’s
code. Johnny might never
know, though, because
everything keeps working.

X.509
Certificate
Chains
A refresher

Certificate:
Data:

 Version: 3 (0x2)
 Serial Number:
 04:00:00:00:00:01:15:4b:5a:c3:94
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=BE, O=GlobalSign nv-sa, OU=Root
CA, CN=GlobalSign Root CA
 Validity
 Not Before: Sep 1 12:00:00 1998 GMT
 Not After : Jan 28 12:00:00 2028 GMT
 Subject: C=BE, O=GlobalSign nv-sa, OU=Root
CA, CN=GlobalSign Root CA
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (2048 bit)
 Modulus: ...

Components of an X.509 Certificate

● A public key
○ Fundamentally, a certificate is an identity associated with a key pair, where other parties can

make claims about that identity

● Metadata such as subject name, SANs (valid domain names in the TLS context),
organization info

● Issuer info (when not self-signed)

The Chain of Trust

● Root CAs
○ Shipped with the operating system, sometimes the browser
○ Explicitly trusted
○ Used to sign other certificates, usually intermediate CA certificates

● Intermediate CAs
○ Not globally trusted, but part of a chain leading to a root CA

● Leaf certificates (end-entity)
○ The end of the chain, (cannot be used to sign other certificates)
○ Identifying a particular key pair

■ Ex (SafetyNet): a key pair that is used to sign a SafetyNet attestation

Validating a Certificate Chain

● The root CA must be self-signed and explicitly trusted
● The root CA must have signed the next intermediate in the chain, if one exists
● That intermediate must have signed the next…
● The last intermediate must have signed the client leaf

We also have to worry about:

● Making sure the leaf certificate legitimately describes the service
○ CN, SAN validation

● Making sure the intermediates are allowed to issue chains of n length
● Expiration and validity

(a) for all x in {1, ..., n-1}, the subject of certificate
x is the issuer of certificate x+1;

(b) certificate 1 is issued by the trust anchor;

(c) certificate n is the certificate to be validated (i.e.,
the target certificate); and

(d) for all x in {1, ..., n}, the certificate was valid at
the time in question.

Validating a Certificate Chain

When should
developers have to
worry about validating
certificate chains?

Probably never.

When might
developers actually
have to worry about
validating certificate
chains?

SafetyNet, Android Protected
Confirmation, WebAuthn

SafetyNet Overview

“SafetyNet provides a set of services and APIs
that help protect your [Android] app against
security threats, including device tampering, bad
URLs, potentially harmful apps, and fake users.”

- Protect against security threats with SafetyNet

https://developer.android.com/training/safetynet

SafetyNet APIs

1. SafetyNet Attestation API
2. SafetyNet Safe Browsing API
3. SafetyNet reCAPTCHA API
4. SafetyNet Verify Apps API

https://developer.android.com/training/safetynet/attestation.html
https://developer.android.com/training/safetynet/safebrowsing.html
https://developer.android.com/training/safetynet/recaptcha.html
https://developer.android.com/training/safetynet/verify-apps.html

SafetyNet APIs

1. SafetyNet Attestation API
2. SafetyNet Safe Browsing API
3. SafetyNet reCAPTCHA API
4. SafetyNet Verify Apps API

https://developer.android.com/training/safetynet/attestation.html
https://developer.android.com/training/safetynet/safebrowsing.html
https://developer.android.com/training/safetynet/recaptcha.html
https://developer.android.com/training/safetynet/verify-apps.html

SafetyNet Attestation API

“The SafetyNet Attestation API is an anti-abuse API that allows app developers to
assess the Android device their app is running on. The API should be used as a part
of your abuse detection system to help determine whether your servers are
interacting with your genuine app running on a genuine Android device.

The SafetyNet Attestation API provides a cryptographically-signed attestation,
assessing the device's integrity…”

SafetyNet Attestation API

https://developer.android.com/training/safetynet/attestation

How the SafetyNet Attestation API Works

1. Server requests attestation from mobile device
2. Mobile device does some health checks, produces a signed blob
3. Mobile device provides signed (JWS) blob along with intermediate certificates
4. Server checks payload and validates signature and certificate chain

JSON Web
Signatures
(JWS)
A refresher

JSON Web Signatures (JWS)

● Part of the JavaScript Object Signing and Encryption (JOSE) framework.

“JSON Web Signature (JWS) represents content secured with digital
signatures or Message Authentication Codes (MACs) using JSON-based data
structures.”

JSON Web Signature (JWS) – RFC 7515

https://jose.readthedocs.io/en/latest/
https://tools.ietf.org/html/rfc7515

JSON Web Signatures (JWS)

● A JWS is a named tuple consisting of three logical values
● JOSE Header
● JWS Payload
● JWS Signature

● Two serialization formats are supported
● JWS JSON Serialization
● JWS Compact Serialization

JWS Compact Serialization

BASE64URL(UTF8(JWS Protected Header)) || '.' ||
BASE64URL(JWS Payload) || '.' ||
BASE64URL(JWS Signature)

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9
.
eyJwYXlsb2FkIjoiVGhpcyBpcyBteSBtZXNzYWdlLiJ9
.
bqHXSzhjW6Gcp_CkONR7qLVvJy-D42mfo3NHsC7hiI0

{
"typ": "JWT",
"alg": "HS256"

}

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9
.
eyJwYXlsb2FkIjoiVGhpcyBpcyBteSBtZXNzYWdlLiJ9
.
bqHXSzhjW6Gcp_CkONR7qLVvJy-D42mfo3NHsC7hiI0

{
"payload": "This is my message."

}

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9
.
eyJwYXlsb2FkIjoiVGhpcyBpcyBteSBtZXNzYWdlLiJ9
.
bqHXSzhjW6Gcp_CkONR7qLVvJy-D42mfo3NHsC7hiI0

signature

SafetyNet JWS
Usage
How Android SafetyNet uses
JSON Web Signatures.

{
"nonce": "Yv4fvzUuGIZXJ4LBOjK1dJvT568=",
"timestampMs": 1557869580251,
"apkPackageName": "com.mooney.safetynetexploration",
"apkDigestSha256": "OdOsbsUpV9ipmUoOaRCSsWXjKIQYeAqzMUC9q9dXdEk=",
"ctsProfileMatch": true,
"apkCertificateDigestSha256": ["18P5sFPk81RAKOfL++mIXI2 sAmZ+xRu/cgqLzvdmx0A="],
"basicIntegrity": true

}

SafetyNet JWS Payload

SafetyNet attestations
include the X.509
certificate chain in the
JWS header.

pyOpenSSL
and the
X509Store
An observation, and the genesis
of our research.

pyOpenSSL

● Part of the Python Cryptographic Authority, along with other great projects like
cryptography.

● Thin wrapper around a subset of the OpenSSL library.
● Note: The Python Cryptographic Authority recommends not using pyOpenSSL

for anything other than making TLS connections, favoring
pyca/cryptography

https://github.com/pyca/cryptography
https://github.com/pyca

pyOpenSSL and the X509Store Class

● X509Store
○ “An X.509 store is used to describe a context in which to verify a

certificate. A description of a context may include a set of certificates to
trust, a set of certificate revocation lists, verification flags and more.”

● X509StoreContext
○ “An X.509 store context is used to carry out the actual verification

process of a certificate in a described context.”

● A cursory glance for how to verify certificate chains with Python will likely result
in something like this:

root_cert = load_certificate(FILETYPE_PEM, root_cert_pem)
intermediate_cert = load_certificate(FILETYPE_PEM, intermediate_cert_pem)
leaf_cert = load_certificate(FILETYPE_PEM, leaf_cert_pem)

store = X509Store()
store.add_cert(root_cert)
store.add_cert(intermediate_cert)
store_ctx = X509StoreContext(store, leaf_cert)

print(store_ctx.verify_certificate())

Verifying Certificate Chains With Python

This pattern treats any
intermediate certs as
trusted roots.

Assumptions About Certificate Chain Validation

Root Intermediate(s) Leaf

signs signs

But What If?

Root Intermediate(s) Leaf

signs signs

If controlled by adversary

How Developers Think It’s Working

Root Intermediate(s) Leaf

signs signs

Success!

X509Store

How Developers Think It’s Working

Root Rogue
self-signed CA

Rogue leaf

signs

Failure!

X509Store

How It Will Actually Work

Root Intermediate(s) Leaf

signs signs

Success!

X509Store

How It Will Actually Work

Root Rogue root CA Rogue leaf

signs

Success!

X509Store

Controllable by adversary

There is still no
good way to do
this.

We also made this same mistake.
Fortunately, we caught it in
development. Not everyone is so lucky.

● Our colleague Adam Goodman ran into this same limitation in the pyOpenSSL
API

● Adam opened a PR on the pyOpenSSL GitHub repository to add untrusted
certificate chain support to X509StoreContext.

○ This was in June of 2016.
○ This is not for lack of caring by the project maintainers, it’s just a sensitive change in a

cryptographic library, and not many people are qualified to review it.
○ This is a good reason.

● We ended up just using his fork in our code.

pyOpenSSL PR #473

https://twitter.com/akgood
https://github.com/pyca/pyopenssl/pull/473

The right way
to do things
...with a non-obvious API.

● Adam also pointed out to us that he’s seen an example of how to use
pyOpenSSL to correctly validate a certificate chain.

○ This was in a test in the letsencrypt/boulder project.
○ The way they accomplished this is not obvious, and would require an understanding of the

limitations of this API.
○ Also, this is the only place we’ve seen the API being used correctly, (so far).

Doing the Right Thing With a Non-obvious API

https://github.com/letsencrypt/boulder/blob/0c9ca050ab9673cd555b6d3361500c6442cf3202/test/v1_integration.py#L355

Doing the Right Thing With a Non-obvious API
store = OpenSSL.crypto.X509Store()
store.add_cert(parsed_root)

Check the chain certificate before adding it to the store.
store_ctx = OpenSSL.crypto.X509StoreContext(store, parsed_chain)
store_ctx.verify_certificate()
store.add_cert(parsed_chain)

Now check the end-entity certificate.
store_ctx = OpenSSL.crypto.X509StoreContext(store, parsed_cert)
store_ctx.verify_certificate()

Avoid making
developers do this
themselves.

What do we need to take into consideration?

● Correct path building
● Name validation (CN matching, etc.)

○ Null byte vulnerability

● Basic Constraints
○ IsCA, path length

● Usage Flags
● Revocation
● Permitted hash, signature algorithms

Some purpose-built software

● Web browsers are great at this!
○ Mostly calling into OS-provided libraries

● Your OS has a battle-tested way to do this
○ Mostly used for establishing TLS connections

● For Python: certvalidator
● For more specific tasks (JWS validation), use libraries like Google’s jws

https://github.com/wbond/certvalidator
https://github.com/google/jws

More bad
advice on the
internet

Part of the Intel “Security
Libraries for Data Center”

Misuse
Resistance
Primitives and APIs

● Misuse resistant primitives
● Misuse resistant APIs
● Well-supported libraries and

good documentation

Primitives and Techniques

● Deterministic signature schemes
○ EdDSA’s choice to avoid ECDSA’s “PS3 problem”

● AES-GCM-SIV
○ “Occasional nonce duplication tolerant” per Adam Langley

● Certain representations of data
○ For example, compressed curve points avoiding invalid curve attacks

In most cases, “misuse resistance” is reducing the impact of bad randomness or
reducing the impact of a developer making a mistake implementing schemes on top
of primitives.

https://twitter.com/agl__?lang=en

● libsodium
○ Important to note that the primitives can still fail spectacularly with nonce reuse

● Tony Arcieri’s Miscreant
○ Implementation of primitives where the primitives themselves are designed with misuse resistance

in mind

● Tink
○ “Using crypto in your application shouldn't have to feel like juggling chainsaws in the dark”

● Noise framework
○ Provable building blocks for crypto protocols

● General high level OS libraries
○ If your goal is “make a TLS connection,” it is likely that most questions related to certificate chains

will be automatically answered for you

APIs / Libraries

Quantifying the
Use of
SafetyNet
Analyzing Thousands of Apps

Amassing a list of Android Apps

● There are a lot of freemium sites that perform app store analytics, but

unfortunately those sources don’t allow for easy reproducibility or scale

● We opted to use AndroidRank, which provides similar data for free

● Their website provided us the most popular apps for 32 general application

categories and 17 gaming categories

● Our entire list was composed of 24,296 applications

https://www.androidrank.org/

Building a Corpus of Applications

● Downloading ~24k apps from the Google
Play Store directly wasn’t feasible

● We opted to use two Play Store mirroring
sites: apkmonk and Apkpure

● Using these sources, we were able to
download APKs for 98% of the apps we
found on AndroidRank

https://www.apkmonk.com/
https://apkpure.com/

Analyzing Apps - Overview

● Android Package (APK) is the package
format for Android apps

● APKs ≈ Zip files

● These files contain the resources, assets
and compiled versions of the source code
and libraries

Diagram of APK file structure

Analyzing APKs - Properties files

● Properties file contain configuration
information for apps

● In the case of the SafetyNet API, it details
the version that the app is using

Analyzing APKs - Manifest file

● Required in every Android app

● Provides a lot of the crucial information
concerning apps:

○ Activities, content providers, permissions the app
requests, hardware/software the app requires, etc.

● It also may include SafetyNet API keys

○ com.google.android.safetynet.ATTEST_API_KEY

○ com.google.android.safetynet.API_KEY

Analyzing APKs - classes.dex
● classes.dex is a Dalvik Executable file

that contains the compiled application
code

○ This includes both original source code and
other libraries

● By analyzing the string IDs, method IDs,
and class definitions, we can find use of
the SafetyNet APIs

4% of apps are
using SafetyNet.

Results from Initial Approach

Application Category Percent using a SafetyNet API

 Finance 18.52

Comics 12.63

Dating 11.00

Shopping 9.85

Gaming 5.23

Limitations with Initial Approach

● Any type of regex is going to be brittle and will potentially bring about a lot
of false negatives

● Searching for strings just doesn’t work when code is obfuscated, as some
source code is

● All results are biased towards files that store API authentication and
configuration information in manifest files or property files

From String to Static Analysis

● Because of the limitations of string analysis, we decided to use a
third-party library analysis tool: LibScout

● LibScout works by extracting profiles from an original library and applying
a matching algorithm to check how much the two match

● The resulting output is a similarity score that is between 0 and 1

Results from LibScout

● Using LibScout, we found that 7.1% of apps were using at least one of
the SafetyNet APIs

● Applications in the Gaming category used SafetyNet the most at 11.3%

● The majority (87%) of Android Apps that we analyzed were using an older
version of the SafetyNet API

General Limitations

● The corpus of Android apps that we collected is different from the study run in
2017

● Our list of apps is not a random sample of Android applications, so it’s difficult to
generalize our results

https://www.nowsecure.com/blog/2017/08/03/android-apps-google-safetynet-attestation-api/
https://www.nowsecure.com/blog/2017/08/03/android-apps-google-safetynet-attestation-api/

Some tooling
● SafetyNet Android example
● Flask SafetyNet server
● MITM tools

github.com/duo-labs/chain-of-fools

https://github.com/duo-labs/chain-of-fools

Forging SafetyNet
Attestations

Forging SafetyNet Attestations

● We can do this by

○ Modifying in-flight JWS to inject our own rogue CA certificate and leaf into the JOSE Header
■ x5c parameter

○ Transform JWS payload to set basicIntegrity and ctsProfileMatch to true
■ Or false, if we want to make SafetyNet checks fail when they shouldn’t!

○ Re-sign the payload with our rogue certificate private key, then swap out the JWS signature

MITM Tools

● rogue_ca.py
○ Helper utilities for generating self-signed certificates and signing payloads, generating cert chains

● jwsmodify.py
○ Modify in-flight JWS requests
○ Apply a transformation function to JWS payload contents
○ Automatically re-sign and modify X.509 chain

● jwsmodify_mitmproxy_addon.py
○ mitmproxy Addon for jwsmodify

Demo

https://docs.google.com/file/d/1hyUI4pYpd7uOXe9W16RjVFHt9kCcNfGW/preview

Conclusion

Conclusion

● Ideally, developers shouldn’t have to worry about cryptographic implementation
details like validating certificate chains. Frameworks and vendor tooling should
abstract as much of this away as possible.

○ If you do, choose misuse-resistant primitives and/or APIs.

● It’s relatively easy to take advantage of incorrect certificate chain validation logic.
○ Forging SafetyNet Attestations is just one example. Other examples include Android Protected

Confirmation and WebAuthn attestation.

● Android SafetyNet usage is steadily increasing, with Gaming and Finance being
the biggest adopters.

● Certificate chain validation is hard to get right!
○ Try not to assign blame if someone gets this wrong. Let’s work together to make things better!

https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation
https://www.w3.org/TR/webauthn/#sctn-attestation

Thank you!
@JustSayO
@futureimperfect
@wellhydrated

