Chain of Fools

An Exploration of Certificate Chain Validation Mishaps

Olabode Anise,
James Barclay,
Nick Mooney

DUO LARS

Overview

X.509 Certificates and Certification Path Validation
Android SafetyNet Overview

JWS Overview and SafetyNet JWS Usage
pyOpenSSL and the X509Store

More Bad Advice

Misuse Resistance
Quantifying the Use of SafetyNet
Forging Android SafetyNet Attestations

DUO LARS

Why Johnny can’t
properly validate
certificate chains.

DUO LABS

IIIIIII

“verify certificate chain python”

@ verify certificate chain python X +

C @ google.com/search? fy+certificate+chain+python& erify+&a.. % Incognito (2) €@
GO g|e verify certificate chain python 4§ Q
QAI ®News < Shopping [Videos [Images i More Settings Tools

About 2,460,000 results (0.65 seconds)

stackoverflow.com » questions > how-to-validate-verify-an-x509-certi... ¥
How to validate / verify an X509 Certificate chain of trustin ...

2 answers

Jun 9, 2015 - While the response of Avi Das is valid for the trivial case of verifying a single trust
anchor with a single leaf certificate, it places trust in the ...

Verify SSL/X.509 certificate is signed by another certificate ... Jul 19,2016

Validate SSL certificates with Python Nov 8,2011
Retrieve and validate x509 certificate chain Apr1,2013
Getting certificate chain with Python 3.3 SSL module May 24,2017

More results from stackoverflow.com

[@] aviadas.com > blog > 2015/06/18 » verifying-x509-certificate-chain-o... ¥

Verifying X509 Certificate Chain of Trust in Python - Avi Das

The openss| module on the terminal has a verify method that can be used to verify the
certificate against a chain of trusted certificates, going all the way back to the root CA. The
builtin ssl module has create_default_context(), which can build a certificate chain while creating
anew SSLContext.

8 ww com> validate-x509-certificate-in-python ~

Validate x509 Certificate in Python - 38911 Basic Bytes Free
Mar 15,2016 - | need to validate a x509 certificate's chain of trust in python. TL;DR version is
that you can use PyOpenSSL. The code below gives an example.

©) gist.github.com > ilianries +
Validate x509 certificate using pyOpenSSL - GitHub

Verify the certificate, returns None if it can validate the certificate ... It would be awesome if
nvOnenSSI nravided a wav t verify intristed chains as the anenssl in this article

DUO LARS

[] @ verify certificate chain pythor

< C @ google.com, h? y+cert f Incognito (2) €
GO gle verify certificate chain python !, Q
Q Al ENews ¢ shopping [Videos [Images i More Settings Tools

About 2,460,000 results (0.65 seconds)

stackoverflow.com » questions > how-to-validate-verify-an-x509-certi... ¥
How to validate / verify an X509 Certificate chain of trustin ...

2 answers

Jun 9, 2015 - While the response of Avi Das is valid for the trivial case of verifying a single trust
anchor with a single leaf certificate, it places trust in the ...

Verify SSL/X.509 certificate is signed by another certificate ... Jul 19,2016

Validate SSL certificates with Python Nov 8,2011
Retrieve and validate x509 certificate chain Apr1,2013
Getting certificate chain with Python 3.3 SSL module May 24,2017

More results from stackoverflow.com

[@] aviadas.com > blog > 2015/06/18 » verifying-x509-certificate-chain-o... ¥

Verifying X509 Certificate Chain of Trust in Python - Avi Das

The openss| module on the terminal has a verify method that can be used to verify the
certificate against a chain of trusted certificates, going all the way back to the root CA. The
builtin ssl module has create_default_context(), which can build a certificate chain while creating
anew SSLContext.

B www com o

Validate x509 Certificate in Python - 38911 Basic Bytes Free
Mar 15,2016 - | need to validate a x509 certificate's chain of trust in python. TL;DR version is
that you can use PyOpenSSL. The code below gives an example.

©) gist.github.com > ilianries +
Validate x509 certificate using pyOpenSSL - GitHub

Verify the certificate, returns None if it can validate the certificate ... It would be awesome if
nvOnenSSI nravided a wav t verify intristed chains as the anenssl in this article

DUO LARS

root_cert = load_certificate(FILETYPE_PEM,
root_cert_pem)

intermediate_cert =
load_certificate(FILETYPE_PEM,
intermediate_cert_pem)
intermediate_server_cert =
load_certificate(FILETYPE_PEM,
intermediate_server_cert_pem)

store = X509Store()
store.add_cert(root_cert)
store.add_cert(intermediate_cert)
store_ctx = X509StoreContext(store,
intermediate_server_cert)
print(store_ctx.verify_certificate())

DUO LARS

Unfortunately, there’s a
security bug in Johnny’s
code. Johnny might never
kKnow, though, because
everything keeps working.

DUO LARS

X.509
Certificate
W EI

A refresher

DUO LARS

Certificate:
Data:
Version: 3 (0x2)
Serial Number:
04:00:00:00:00:01:15:4b:5a:c3:94
Signature Algorithm: shalWithRSAEncryption
Issuer: C=BE, 0O=GlobalSign nv-sa, OU=Root
CA, CN=GlobalSign Root CA
Validity
Not Before: Sep 1 12:00:00 1998 GMT
Not After : Jan 28 12:00:00 2028 GMT
Subject: C=BE, 0=GlobalSign nv-sa, OU=Root
CA, CN=GlobalSign Root CA
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (2048 bit)
Modulus:

Components of an X.509 Certificate

A public key
Fundamentally, a certificate is an identity associated with a key pair, where other parties can
make claims about that identity

Metadata such as subject name, SANs (valid domain names in the TLS context),
organization info

Issuer info (when not self-signed)

DUS LARZ A

The Chain of Trust

Root CAs

Shipped with the operating system, sometimes the browser
Explicitly trusted
Used to sign other certificates, usually intermediate CA certificates

Intermediate CAs
Not globally trusted, but part of a chain leading to a root CA

Leaf certificates (end-entity)
The end of the chain, (cannot be used to sign other certificates)
|dentifying a particular key pair
Ex (SafetyNet): a key pair that is used to sign a SafetyNet attestation

DUO LARS

Validating a Certificate Chain

The root CA must be self-signed and explicitly trusted

The root CA must have signed the next intermediate in the chain, if one exists
That intermediate must have signed the next...

The last intermediate must have signed the client leaf

We also have to worry about:

Making sure the leaf certificate legitimately describes the service
CN, SAN validation

Making sure the intermediates are allowed to issue chains of n length
Expiration and validity

DUO LARS

Validating a Certificate Chain

(a) for all x in {1, ..., n-1}, the subject of certificate
X i1s the issuer of certificate x+1;

(b) certificate 1 is issued by the trust anchor;

(c) certificate n is the certificate to be validated (i.e.,
the target certificate); and

(d) for all x in {1, ..., n}, the certificate was valid at
the time 1in question.

DUO LARS

When should
developers have to
worry about validating
certificate chains”

DUO LARS

Probably never.

IIIIIII

When might
developers actually
have to worry about
validating certificate
chains?

SafetyNet, Android Protected
Confirmation, WebAuthn

DUO LARS

SafetyNet Overview

P. .

DUO LARS

“SafetyNet provides a set of services and APIs
that help protect your [Android] app against
security threats, including device tampering, bad
URLSs, potentially harmful apps, and fake users.”

DUO LABS

https://developer.android.com/training/safetynet

SafetyNet APIs

SafetyNet Attestation API
SafetyNet Safe Browsing AP
SafetyNet reCAPTCHA API
SafetyNet Verify Apps AP

>~ W=

DUO LARS

https://developer.android.com/training/safetynet/attestation.html
https://developer.android.com/training/safetynet/safebrowsing.html
https://developer.android.com/training/safetynet/recaptcha.html
https://developer.android.com/training/safetynet/verify-apps.html

SafetyNet APIs

1. SafetyNet Attestation API

- SatebNetrSatfe Browsina AR
- SafetyNetreGAPFSHAAR
- SatehNeYertyArps AR

DUO LARS

https://developer.android.com/training/safetynet/attestation.html
https://developer.android.com/training/safetynet/safebrowsing.html
https://developer.android.com/training/safetynet/recaptcha.html
https://developer.android.com/training/safetynet/verify-apps.html

SafetyNet Attestation API

“The SafetyNet Attestation APl is an API that allows app developers to
assess the Android device their app is running on. The APl should be used as a part
of your abuse detection system to help determine whether your servers are
interacting with running on a

The SafetyNet Attestation API provides a :
assessing the device's integrity...”

SafetyNet Attestation API

DUO LARS

https://developer.android.com/training/safetynet/attestation

How the SafetyNet Attestation APl Works

Server requests attestation from mobile device
Mobile device does some health checks, produces a signed blob

Mobile device provides signed (JWS) blob along with intermediate certificates
Server checks payload and validates signature and certificate chain

Android Device Client Server

Client App ° Client Backend
-
0 o
Google Play servicesTl‘ Google

2
3

DUO LABS

[Docs] [txt|pdf] [draft-ietf-jose...] [Tracker] [Diffl] [Diff2] [IPR]

PROPOSED STANDARD

Internet Engineering Task Force (IETF) M. Jones
Request for Comments: 7515 Microsoft

Category: Standards Track J. Bradley
ISSN: 2070-1721 Ping Identity
N. Sakimura
NRI
May 2015
u
I n atu res e Semine (79
Abstract

JSON Web Signature (JWS) represents content secured with digital

signatures or Message Authentication Codes (MACs) using JSON-based
data structures. Cryptographic algorithms and identifiers for use
with this specification are described in the separate JSON Web
Algorithms (JWA) specification and an IANA registry defined by that

specification. Related encryption capabilities are described in the
separate JSON Web Encryption (JWE) specification.

Status of This Memo

A refreSher This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc7515.

DUO LABS

JSON Web Signatures (JWS)

Part of the JavaScript Object Signing and Encryption (JOSE) framework.

“JSON Web Signature (JWS) represents content secured with
or Message Authentication Codes (MACs) using JSON-based data
structures.”

JSON Web Signature (JWS) — BFC 7515

DUO LARS

https://jose.readthedocs.io/en/latest/
https://tools.ietf.org/html/rfc7515

JSON Web Signatures (JWS)

A JWS is a named tuple consisting of three logical values
JOSE Header
JWS Payload
JWS Signature

Two serialization formats are supported
JWS JSON Serialization

DUO LARS

JWS Compact Serialization

UTF8(JWS Protected Header)) || '.' ||
JWS Payload) || '.' ||
JWS Signature

DUO LABS

DUO LARS

eyJ0eXAi0iIJKV1QiLCIhbGciO0iJIUZI1NiJ9
eyJwYX1lsb2FkIjoiVGhpcyBpcyBteSBtZXNzYWd1L1i3J9

bqHXSzhjW6Gcp_CkONR7qLVvIy-D42mfo3NHsC7hiI0

"typ" - "JWT" ’
"alg": "HS256"

eyJ0eXAi0iJKV1QiLCIhbGciO0iJIUZI1NiJ9
eyJwYX1lsb2FkIjoiVGhpcyBpcyBteSBtZXNzYWd1L1i3J9

bqHXSzhjW6Gcp_CkONR7qLVvIy-D42mfo3NHsC7hiI0

"payload": "This is my message."

DUO LARS

eyJ0eXAi0iJKV1QiLCIhbGciO0iJIUZI1NiJ9
eyJwYX1lsb2FkIjoiVGhpcyBpcyBteSBtZXNzYWd1L1i3J9

bqHXSzhjW6Gcp_CkONR7qLVvIy-D42mfo3NHsC7hiI0

signature

DUO LARS

SEICWA NS
Usage

How Android SafetyNet uses
JSON Web Signatures.

DUO LABS

SafetyNet JWS Payload

"nonce": "Yv4fvzUuGIZXJ4LBOK1dJvT568=",

"timestampMs": 1557869580251,

"apkPackageName": "com.mooney.safetynetexploration”,

"apkDigestSha256": "OdOsbsUpV9ipmUoOaRCSsWXjKIQYeAgqzMUC9g9dXdEk=",
"ctsProfileMatch": true,

"apkCertificateDigestSha256": ["18P5sFPk81RAKOfL++mIXI2 sAmZ+xRu/cgglzvdmx0A="],

"basiclntegrity": true

DUO LARS

Checklist items

Last updated in March 2019.

* Your service uses other signals, in addition to the SafetyNet Attestation API, to detect abuse.

» You've applied for an API key, requested quota for your project, and used the correct associated API key(s) in your
app.

e Your app uses the SafetyNetClient, and not the deprecated SafetyNetApi .

e Your app verifies that the latest version of Google Play services is installed.

* Note: A minApkVersion of 13600000 must be verified when using app-restricted API keys.

e Your app creates and uses large nonces—16 bytes or longer—that are either generated on your server or better yet,
a part of your nonce is derived from the data you're sending to your server.

* Your app handles transient errors by retrying the request with an increasing amount of time between retries
(exponential backoff).

(. You're verifying the results of the API on a server that you control.)

* You've implemented a JWS signature validator in your own server, such as the one in the code samples [/ that we
offer.

» At a minimum, your server verifies the timestamp, nonce, APK name, and APK signing certificate hash(es) included
__in the attestation response.)

4.1.6. "x5c" (X.509 Certificate Chain) Header Parameter

The "x5c¢" (X.509 certificate chain) Header Parameter contains the
X.509 public key certificate or certificate chain [REC5280]
corresponding to the key used to digitally sign the JWS. The
certificate or certificate chain is represented as a JSON array of

Jones, et al. Standards Track [Page 11]

RFC 7515 JSON Web Signature (JWS) May 2015

certificate value strings. Each string in the array is a
base64-encoded (Section 4 of [RFC4648] -- not base64url-encoded) DER
[ITU.X690.2008] PKIX certificate value. The certificate containing
the public key corresponding to the key used to digitally sign the
JWS MUST be the first certificate. This MAY be followed by
additional certificates, with each subsequent certificate being the
one used to certify the previous one. The recipient MUST validate
the certificate chain according to RFC 5280 [RFC5280] and consider
the certificate or certificate chain to be invalid if any validation
failure occurs. Use of this Header Parameter is OPTIONAL.

See Appendix B for an example "x5c¢" value.

DUO LARS

SafetyNet attestations
iINnclude the X.509
certificate chain in the
JWS header.

DUO LARS

pyOpenSSL
and the
X509Store

An observation, and the genesis
of our research.

DUO LABS

pyOpenSSL

Part of the Python Cryptographic Authority, along with other great projects like

cryptography.
Thin wrapper around a subset of the OpenSSL library.
Note: The Python Cryptographic Authority recommends not using pyOpenSSL

for anything other than making TLS connections, favoring
pyca/cryptography

OpenSSL

DUO LARS

https://github.com/pyca/cryptography
https://github.com/pyca

pyOpenSSL and the X509Store Class

X509Store
“An X.509 store is used to describe a context in which to verify a
certificate. A description of a context may include a set of certificates to
trust, a set of certificate revocation lists, verification flags and more.”

X509StoreContext
“An X.509 store context is used to carry out the actual verification
process of a certificate in a described context.”

DUO LARS

Verifying Certificate Chains With Python

A cursory glance for how to verify certificate chains with Python will likely result
in something like this:

root_cert = load_certificate(FILETYPE_PEM, root_cert_pem)
intermediate_cert = load_certificate(FILETYPE_PEM, +intermediate_cert_pem)
leaf_cert = load_certificate(FILETYPE_PEM, leaf_cert_pem)

store = X509Store()

store_ctx = X509StoreContext(store, leaf_cert)

print(store_ctx.verify_certificate())

DUO LARS

This pattern treats any
iINntermeagiate certs as
trusted roots.

DUO LARS

Assumptions About Certificate Chain Validation

E signs signs
L &= A &= L

Root Intermediate(s) Leaf

DUO LARS

But What If?

signs signs

@ ® -
A &= A &= A

Root Intermediate(s) Leaf

If controlled by adversary

DUO LARS

How Developers Think It’s Working

E signs signs
& @
L &= &= L

Root Intermediate(s) Leaf

X509Store

DUO LARS

Success!

How Developers Think It’s Working

-5 X

Root Rogue Rogue leaf Failure
self-signed CA

X509Store

DUO LARS

How It Will Actually Work

l Slgns . Slgns .

Root Intermediate(s Leaf Success!

X509Store

DUO LARS

How It Will Actually Work

Controllable by adversary

signs
&) o ®
A N L
Root Rogue root CA Rogue leaf

X509Store

DUO LARS

Success!

There Is still No

good way to do
this.

IIIIIII

We also made this same mistake.
Fortunately, we caught it in
development. Not everyone is so lucky.

DUO LARS

pyOpenSSL PR #473

Our colleague Adam Goodman ran into this same limitation in the pyOpenSSL

API
Adam opened a PR on the pyOpenSSL GitHub repository to add untrusted

certificate chain support to X509StoreContext.

This was in June of 2016.

This is not for lack of caring by the project maintainers, it’s just a sensitive change in a
cryptographic library, and not many people are qualified to review it.

This is a good reason.

We ended up just using his fork in our code.

DUO LARS

https://twitter.com/akgood
https://github.com/pyca/pyopenssl/pull/473

def test_issuer():
Issue a certificate, fetch its chain, and verify the chain and
certificate against test/test-root.pem. Note: This test only handles chains
of length exactly 1.

certr, authzs = auth_and_issue([random_domain()])

|
cert = urllib2.urlopen(certr.uri).read()
In the future the chain URI will use HTTPS so include the root certificate

for the WFE's PKI. Note: We use the requests library here so we honor the
REQUESTS_CA_BUNDLE passed by test.sh.

- chain = requests.get(certr.cert_chain_uri).content
o O I n S parsed_chain = OpenSSL.crypto.load_certificate(OpenSSL.crypto.FILETYPE_ASN1, chain)
parsed_cert = OpenSSL.crypto.load_certificate(OpenSSL.crypto.FILETYPE_ASN1, cert)

parsed_root = OpenSSL.crypto.load_certificate(OpenSSL.crypto.FILETYPE_PEM,
open("test/test-root.pem").read())

. .With a non—ObViOUS AP' . store = OpenSSL.crypto.X509Store()

store.add_cert(parsed_root)

Check the chain certificate before adding it to the store.
store_ctx = OpenSSL.crypto.X509StoreContext(store, parsed_chain)
store_ctx.verify_certificate()

store.add_cert(parsed_chain)

Now check the end-entity certificate.
store_ctx = OpenSSL.crypto.X509StoreContext(store, parsed_cert)
store_ctx.verify_certificate()

DUO LABS

Doing the Right Thing With a Non-obvious API

Adam also pointed out to us that he’s seen an example of how to use
pyOpenSSL to correctly validate a certificate chain.

This was in a test in the letsencrypt/boulder project.

The way they accomplished this is not obvious, and would require an understanding of the
limitations of this API.

Also, this is the only place we’ve seen the API being used correctly, (so far).

DUO LARS

https://github.com/letsencrypt/boulder/blob/0c9ca050ab9673cd555b6d3361500c6442cf3202/test/v1_integration.py#L355

Doing the Right Thing With a Non-obvious API

store = OpenSSL.crypto.X509Store()
store.add_cert(parsed_root)

store_ctx = OpenSSL.crypto.X509StoreContext(store, parsed_chain)
store_ctx.verify_certificate()
store.add_cert(parsed_chain)

store_ctx = OpenSSL.crypto.X509StoreContext(store, parsed_cert)
store_ctx.verify_certificate()

DUO LABS

Avoid making
developers do this
themselves.

IIIIIII

What do we need to take into consideration?

Correct path building

Name validation (CN matching, etc.)
Null byte vulnerability

Basic Constraints
IsCA, path length

Usage Flags
Revocation
Permitted hash, signature algorithms

DUO LARS

Some purpose-built software

Web browsers are great at this!
Mostly calling into OS-provided libraries

Your OS has a battle-tested way to do this

Mostly used for establishing TLS connections
For Python: certvalidator

For more specific tasks (JWS validation), use libraries like Google’s jws

DUO LARS

https://github.com/wbond/certvalidator
https://github.com/google/jws

More bad
advice on the
iInternet

DUO LABS

verify certificate chain python

All News Shopping Videos Images More Settings Tools
About 1,480,000 results (0.64 onds)

ertificate chain of trustin ...
-verify-an-x509-certificate-chain-of-trust... v

, 2017
Python Requests - How to use system rtificates (debian/ubuntu ... Mar 23,2017
Verify SSL/X.509 certificate is signed by another certificate ... Jul1 6
Validate SSL certificates with Python
More results from stackoverflow.com

loaded certificate is trustworthy before using it to
verify the authenticity of a message. The openssf@hodule on the terminal has a verify method that can
be used to verify the certificate against a chain @trusted certificates, going all the way back to the

ate-in-python/ v
te's chain of trust in python. TL;DR version is that you

i uili 04PAf5 63e49b1b8ef03b30d421 v
ateib09 sl L. GitHub Gist: ... Raw. cert-check.py ... can you
ificat®chain?about the chain info.

Add x509 Certificate Validation™iSsue #2381 - pyca/cryptograph; ..
https://github.com/pyca/cryptography/issues/2381 v

Verify a certificate with chain with golang crypto library

verify_certificate.go

package main

import (
""crypto/x509"
"encoding/pem"
"io/ioutil"
"log"

OS"

func main() {
log.Printf("Usage: verify_certificate SERVER_NAME CERT.pem CHAIN.pem")
serverName := o0s.Args[1]
certPEM, err := ioutil.ReadFile(os.Args[2])

if err != nil {
log.Fatal(err)

rootPEM, err := ioutil.ReadFile(os.Args[3])
if err != nil {

DUO LARS

E dimalinux commented on May 27

This example is not solving what people are searching for when they find it. The so-called "chain" in this example is trusted and all of its certs are
put into the root store. While it is common to place some intermediate certs into a root store for faster verification, certs in the root store do not
form a chain. Any certificate in the root store is trusted absolutely without having traverse further up a chain. Hence the word "root".

Can you modify the example to do what the title says? Start with a root certificate and verify a certificate that has one or more intermediate
certificates attached to it as a chain.

DUO LARS

| looked into pyopenssl library and found this for certificate chain validation. The following example is
from their tests and seem to do what you want, which is validating chain of trust to a trusted root
2 certificate. Here are the relevant docs for X509Store and X509StoreContext

from OpenSSL.crypto import load_certificate, load_privatekey
from OpenSSL.crypto import X509Store, X509StoreContext

from six import u, b, binary_type, PY3

root_cert_pem = b("""————— BEGIN CERTIFICATE-———-

DUO LARS

share improve this answer answered Jun 8 '15 at 22:07
! Avi Das
1,437 11 @18

So, | can't get this example to work -- am | missing something? the verify_cert call is always returning None

(for the certificate provided in your example and my own certificate that | tested with). | had to add the
FILETYPE_PEM import at the top along with your other imports from OpenSSL.crypto. | also tried remove the

extraneous newlines (after the "END CERTIFICATE" lines) in your cert strings but it is still returning none. Thank

you very much for your thoughts and time on this! — speznot Jun 8 '15 at 22:28

Ah! | had missed the comment staring me directly in the face in that documentation saying that None is a valid
response -- my apologies. | have been trying to test with my own certificates and am getting "unable to get
[local] issuer certificate" errors. On the command line | am using something like this to verify successfully:
openssl verify —untrusted intermediate_cert.pem -CAfile rootcert.pem
tovalidate.pem (without the -untrusted switch it fails with similar errors | am seeing) -- is it correct that in
your example intermediate_server_cert is the cert that | am validating? — speznot Jun 8 '15 at 23:02
/

Correct, intermediate_server_cert is the cert that is getting validated in this example. | think that error generally
means that a particular certificate is missing somewhere in the chain. That is strange though, | have tried with a
different example and it did manage to resolve for me. — Avi Das Jun 9 "15 at 0:50

Thank you very much for your help @Avi. | am still working on this, trying to get past that error. | have pasted the
certificate that | am attempting to validate here pastebin.com/z9TbDPVi if you'd like to attempt it I'd be very
grateful. — speznot Jun 9'15 at 1:24

1 You are right, this is a completely wrong answer. Putting trust in an intermediate certificate is a very, very
bad idea. | have added an answer that is correct, or at least less incorrect. — ralphje Mar 14 18 at 16:15

show 3 more comments

DUO LARS

DUO LARS

if cert.IsCA {
roots.AddCert(cert)
} else {

intermediates.AddCert(cert)

}

opts := x509.VerifyOptions{
Intermediates: intermediates,
Roots: roots,

Part of the Intel “Security
Libraries for Data Center”

if cert.IsCA {
roots.AddCert(cert)

} else {
intermediates.AddCert(cert)

}

opts := x509.VerifyOptions{
Intermediates: intermediates,
Roots: roots,

DUO LARS

M isuse Misuse resistant primitives
Res i Sta nce Misuse resistant APIs

Well-supported libraries and

Primitives and APls good documentation

DUO LABS

Primitives and Techniques

Deterministic signature schemes
EdDSA’s choice to avoid ECDSA’s “PS3 problem”

AES-GCM-SIV

“Occasional nonce duplication tolerant” per Adam [angley

Certain representations of data
For example, compressed curve points avoiding invalid curve attacks

In most cases, “misuse resistance” is reducing the impact of bad randomness or
reducing the impact of a developer making a mistake implementing schemes on top

of primitives.

DUO LARS

https://twitter.com/agl__?lang=en

APIls / Libraries

libsodium
Important to note that the primitives can still fail spectacularly with nonce reuse

Tony Arcieri’s Miscreant
Implementation of primitives where the primitives themselves are designed with misuse resistance
in mind
Tink
“Using crypto in your application shouldn't have to feel like juggling chainsaws in the dark”
Noise framework
Provable building blocks for crypto protocols
General high level OS libraries
If your goal is “make a TLS connection,” it is likely that most questions related to certificate chains
will be automatically answered for you

DUO LARS

Quantifying the
Use of
SafetyNet

Analyzing Thousands of Apps

DUO LARS

Amassing a list of Android Apps

There are a lot of freemium sites that perform app store analytics, but

unfortunately those sources don’t allow for easy reproducibility or scale

We opted to use AndroidRank, which provides similar data for free

Their website provided us the most popular apps for 32 general application

categories and 17 gaming categories

Our entire list was composed of 24,296 applications

DUO LARS

https://www.androidrank.org/

Building a Corpus of Applications

Downloading ~24k apps from the Google

, | apkmonk
Play Store directly wasn’t feasible R

One stop for all android apps

We opted to use two Play Store mirroring
sites: apkmonk and Apkpure

Using these sources, we were able to Lo pl'\ p U re

download APKs for 98% of the apps we
found on AndroidRank

DUO LARS

https://www.apkmonk.com/
https://apkpure.com/

Analyzing Apps - Overview
Android Package (APK) is the package
format for Android apps
APKs = Zip files

These files contain the resources, assets
and compiled versions of the source code
and libraries

DUO LARS

AndroidManifest.xml

META-INF/ lib/
res/ assets/
classes.dex resources.arc

*.properties

Diagram of APK file structure

Analyzing APKs - Properties files

Properties file contain configuration
information for apps

In the case of the SafetyNet AP, it details
the version that the app is using

DUO LARS

AndroidManifest.xml

META-INF/ lib/
res/ assets/
classes.dex resources.arc
*.properties

Analyzing APKs - Manifest file

Required in every Android app

AndroidManifest.xml

Provides a lot of the crucial information
concerning apps: META-INF/ lib/

Activities, content providers, permissions the app
requests, hardware/software the app requires, etc. res/ assets/

It also may include SafetyNet API keys

com.google.android.safetynet.ATTEST_API_KEY classes.dex msoniTeRmY

com.google.android.safetynet.API_KEY

* properties

DUO LARS

Analyzing APKs - classes.dex

c lasses.dex is a Dalvik Executable file
that contains the compiled application

AndroidManifest.xml

code META-INF/ lib/

This includes both original source code and
other libraries

res/ assets/
By analyzing the string IDs, method IDs,
and class definitions, we can find use of
classes.dex resources.arc
the SafetyNet APIs
*.properties

DUO LARS

4% of apps are
using SafetyNet.

IIIIIII

Results from Initial Approach

Application Category Percent using a SafetyNet API
Finance 18.52

Comics 12.63

Dating 11.00

Shopping 9.85

Gaming 5.23

DUO LARS

Limitations with Initial Approach
Any type of regex is going to be brittle and will potentially bring about a lot
of false negatives

Searching for strings just doesn’t work when code is obfuscated, as some
source code is

All results are biased towards files that store APl authentication and
configuration information in manifest files or property files

DUO LARS

From String to Static Analysis

Because of the limitations of string analysis, we decided to use a
third-party library analysis tool: LibScout

LibScout works by extracting profiles from an original library and applying
a matching algorithm to check how much the two match

The resulting output is a similarity score that is between O and 1

DUO LARS

Results from LibScout

Using LibScout, we found that 7.1% of apps were using at least one of
the SafetyNet APIs

Applications in the Gaming category used SafetyNet the most at 11.3%

The majority (87%) of Android Apps that we analyzed were using an older
version of the SafetyNet AP

DUO LARS

General Limitations

The corpus of Android apps that we collected is different from the study run in
2017

Our list of apps is not a random sample of Android applications, so it’s difficult to
generalize our results

DUO LARS

https://www.nowsecure.com/blog/2017/08/03/android-apps-google-safetynet-attestation-api/
https://www.nowsecure.com/blog/2017/08/03/android-apps-google-safetynet-attestation-api/

SafetyNet Android example
Flask SafetyNet server

Some tooling MITM tools

qithub.com/duo-labs/chain-of-fools

DUO LABS

https://github.com/duo-labs/chain-of-fools

Forging SafetyNet
Attestations

DUO LABS

Forging SafetyNet Attestations
We can do this by

Modifying in-flight JWS to inject our own rogue CA certificate and leaf into the JOSE Header
X5c¢ parameter

Transform JWS payload to set basicIntegrity and ctsProfileMatch to true
Or false, if we want to make SafetyNet checks fail when they shouldn’t!

Re-sign the payload with our rogue certificate private key, then swap out the JWS signature

DUO LARS

MITM Tools

rogue_ca.py
Helper utilities for generating self-signed certificates and signing payloads, generating cert chains

jwsmodify.py
Modify in-flight JWS requests
Apply a transformation function to JWS payload contents
Automatically re-sign and modify X.509 chain

jwsmodify_mitmproxy_addon.py
mitmproxy Addon for jwsmodi fy

DUO LARS

Demo

DUO LARS

https://docs.google.com/file/d/1hyUI4pYpd7uOXe9W16RjVFHt9kCcNfGW/preview

Conclusion

DUO LABS

Conclusion

|deally, developers shouldn’t have to worry about cryptographic implementation
details like validating certificate chains. Frameworks and vendor tooling should
abstract as much of this away as possible.

If you do, choose misuse-resistant primitives and/or APIs.

It’s relatively easy to take advantage of incorrect certificate chain validation logic.
Forging SafetyNet Attestations is just one example. Other examples include Android Protected
Confirmation and WebAuthn attestation.

Android SafetyNet usage is steadlly increasing, with Gaming and Finance being

the biggest adopters.

Certificate chain validation is hard to get right!
Try not to assign blame if someone gets this wrong. Let’s work together to make things better!

DUO LARS

https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation
https://www.w3.org/TR/webauthn/#sctn-attestation

Thank you!

DUO LABS

