
Hands Off and Putting
SLAB/SLUB Feng Shui

in Blackbox

Yueqi (Lewis) Chen

Who We Are

Yueqi Chen @Lewis_Chen_
- Ph.D. Student,

Pennsylvania State
University

- Looking for 2020
Summer internship

Xinyu Xing
- Assistant Professor,

Pennsylvania State
University

- Visiting Scholar, JD.com

Jimmy Su
- Senior Director, JD

Security Research
Center in Silicon
Valley

2

Linux Kernel is Security-critical But Buggy

“Civilization runs on Linux”[1][2]

- Android (2e9 users)
- cloud servers, desktops
- cars, transportation
- power generation
- nuclear submarines, etc.

Linux kernel is buggy
- 631 CVEs in two years (2017, 2018)
- 4100+ official bug fixes in 2017

[1] SLTS project, https://lwn.net/Articles/749530/
[2] “Syzbot and the Tale of Thousand Kernel Bugs” - Dmitry Vyukov, Google

3

https://lwn.net/Articles/749530/

Harsh Reality: Cannot Patch All Bugs Immediately

Google Syzbot[3] , on Nov 24th
- 459 not fixed, 92 fix pending, 55 in moderation
- # of bug reports increases 200 bugs/month

4

Practical solution to minimize the damage: prioritize

patching of security bugs based on exploitability

[3] syzbot https://syzkaller.appspot.com/upstream

https://syzkaller.appspot.com/upstream

Workflow of Determine Exploitability

Vul Obj Vic Obj

Allocate a victim object next to the
vulnerable object

benign addr fptr

Vul Obj Vic Obj

Trigger the security bug to tamper
“fptr”

malicious addrfptr

Vul Obj Vic Obj

Dereference “fptr” to hijack control flow

malicious addrfptr

Vul Obj

PoC: Slab-out-of-bound write

slab (kernel heap)
Step 1

Step 2

Step 3

Example: Exploit A Slab Out-of-bound Write in Three Steps
5

Challenges of Developing Exploits

6

Vul Obj Vic Obj

Allocate a victim object next to
the vulnerable object

benign addr fptr
1. Which kernel object is useful for

exploitation
- similar size/same type to be

allocated to the same cache as the
vulnerable object

- e.g, enclose ptr whose offset is
within corruption range

Challenges of Developing Exploits

7

Vul Obj Vic Obj

Allocate a victim object next to
the vulnerable object

benign addr fptr

Vul Obj Vic Obj

Dereference “fptr” to hijack control
flow

malicious addrfptr

1. Which kernel object is useful for
exploitation
- similar size/same type to be

allocated to the same cache as the
vulnerable object

- e.g, enclose ptr whose offset is
within corruption range

2. How to (de)allocate and
dereference useful objects
- System call sequence, arguments

Challenges of Developing Exploits

8

Vul Obj Vic Obj

Desired Slab Layout

malicious addr fptr

TargetVul Obj Vic Obj

Situation 1: Target slot is unoccupied

benign addrfptr

Vul Obj Vic Obj

Situation 2: Target slot is occupied

benign addrfptr

Side-effect

1. Which kernel object is useful for
exploitation
- similar size/same type to be

allocated to the same cache as the
vulnerable object

- e.g, enclose ptr whose offset is
within corruption range

2. How to (de)allocate and
dereference useful objects
- System call sequence, arguments

3. How to manipulate slab to reach
desired layout
- unexpected (de)allocation along with

vulnerable/victim object makes
side-effect to slab layout

Roadmap

9

Part I: Build A Kernel Object Database

- Include the kernel objects useful for exploitation and system calls and
arguments that (de)allocate and dereference them (Challenge 1&2)

Part II: Adjust Slab Layout Systematically

- Deal with unoccupied/occupied situations respectively (Challenge 3)

Part III: Tricks

- Create an initial slab cache
- Calculate side-effect layout
- Shorten exploitation window

A Straightforward Solution to Challenges 1&2

10

Run kernel regression test

Monitor (de)allocation,
dereference of objects in kernel

Correlate the object’s operations
to the system calls Monitor

Allocation

Deallocation

Dereference

Kernel

Syscall

Regression
test

Correlation

This solution can’t be directly applied to kernel.

Problems With the Straightforward Solution

11
[4] Back to the Whiteboard: a Principled Approach for the Assessment and Design of Memory Forensic Techniques, USENIX Security ’19

Huge codebase
- # of objects is large while not all of them are useful

e.g., in a running kernel, 109, 000 objects and 846, 000 pointers[4]
- Over 300 system calls with various combinations of arguments
- Complex runtime context and dependency between system calls

Asynchronous mechanism
- e.g, Read-Copy-Update (RCU) callback, dereference is registered first and triggered

after a grace period

Multitask system
- Noise: other user-space processes, kernel threads, and hardware interrupts can also

(de)allocate and dereference objects

Overview - Our Solution to Challenge 1&2

12

● Static Analysis to identify useful
objects, sites of interest
(allocation, deallocation,
dereference), potential system
calls

● Fuzzing Kernel to confirm system
calls and complete arguments

 Syscall 1 Syscall 2 ... Syscall n

Allocation

Dereference

Deallocation

User Space

Kernel Space

Kernel Call Graph

Static Analysis - Useful Objects and Sites of Interest

13

struct file_operations {
...
int (*llseek)(struct file*, loff_t, int);
...

}

struct file {
…
const struct file_operations *f_op;
...

}

file->f_op->llseek(...);

kfree_rcu(...);

Victim Object
- enclose a function pointer or a

data object pointer
- once written, the adversaries

can hijack control flow

Dereference Site
- indirect call
- asynchronous callback

Static Analysis - Useful Objects and Sites of Interest

14

SYSCALL_DEFINE5(add_key, …, const void __user*,
_payload, ...)

{
…
void* payload = kmalloc(plen, GFP_KERNEL);
copy_from_user(payload, _payload, plen);
...

}

Spray Object
- most content can be controlled
- copy_from_user() migrates data

from user space to kernel space

Static Analysis - Potential System Calls

15

__ip_mc_join_group

ip_mc_join_group_ssmip_mc_join_group

enable_mcast
other kernel functions

SyS_setsockopt SyS_writeSyS_brk ...Reachable analysis over a customized
type-matching kernel call graph
- delete function nodes in .init.text

section
- delete call edges between

independent modules according to
KConfig

- add asynchronous callbacks to the
graph Allocation Site

Kernel Call Graph

Kernel Fuzzing - Eliminate Noise

16

Kernel

Hardware

... compiz

rcu_sched kthreadd

net_rx_softirq

sock1,
sock2

Instrument checking at sites of interest
to eliminate following noises:

Source 1:
Objects of the same type from fuzzing
executor sock2

Source 2:
1. Other processes’ syscalls
2. Kernel threads
3. Hardware interrupt

rcu_sched kthreadd

net_rx_softirq

read, write

read,
write

fuzzing
exec

Evaluation

17

Static Analysis Kernel Fuzzing

Victim/Spray Object Victim Object
(alloc/dealloc/deref)

Spray
Object

Avg. time
(min)

Total 124/4 75/20/29 4 2

of identified objects/syscalls (v4.15, defnoconfig + 32 other modules)

Roadmap

18

Part I: Build A Kernel Object Database

- Include the kernel objects useful for exploitation and system calls and
arguments that (de)allocate and dereference them (Challenge 1&2)

Part II: Adjust Slab Layout Systematically

- Deal with unoccupied/occupied situations respectively (Challenge 3)

Part III: Tricks

- Create an initial slab cache
- Calculate side-effect layout
- Shorten exploitation window

Working Fashion of SLAB/SLUB Allocator

19

Free SlotFree Slot Free Slot

freelist

Allocation
retrieve from the freelist head Free SlotObj Free Slot

freelist

Free SlotFree Slot Free Slot

freelistDeallocation
recycle to the freelist head

 A single list organizes free slots

Both allocation and deallocation are at the freelist head

Situation 1 - Target Slot is Unoccupied

20

TargetFree Slot Free Slot

freelist
Initial State

1 2 3

1. Allocate the Vul Obj TargetVul Obj Free Slot

freelist

2 3

1

Reason: too few allocations

2. Allocate the Vic Obj TargetVul Obj Vic Obj

freelist

3

2

2

Situation 1 - Our Solution

21

TargetFree Slot Free Slot

freelist
Initial State

1 2 3

1. Allocate the Vul Obj TargetVul Obj Free Slot

freelist

2 3

1

2

TargetVul Obj Dummy

freelist

3

2. Allocate a dummy object
from the database

3. Allocate the Vic Obj Vic ObjVul Obj Dummy

3

3

Situation 2 - Target Slot is Occupied

22

Free SlotFree Slot Target

freelist
Initial State

1 2 3

1. Allocate the Vul Obj and the S-E Obj Free SlotVul Obj S-E Obj

freelist

3

1 2

Vic ObjVul Obj S-E Obj 2. Allocate the Vic Obj
3

3

Reason: too many allocations

Situation 2 - Straightforward But Wrong Solution

23

Free SlotFree Slot Target

freelist
Initial State

1 2 3

1. Allocate the Vul Obj and the S-E Obj Free SlotVul Obj S-E Obj

freelist

3

1 2

Vul Obj Target2. Deallocate the S-E Obj Free Slot

freelist

2 3

-1

Problems with straightforward solution
- No general syscalls and arguments for deallocation
- can also be freed along with the Vul Obj S-E Obj

Vic ObjVul Obj3. Allocate the Vic Obj Free Slot

freelist

3

3-1 = 2

2

Situation 2 - Our Solution

24

Free SlotFree Slot Target

freelist

1. Allocate three dummy objects Dummy 3Dummy 1 Dummy 2

Initial State
1 2 3

Our solution is to reorganize the freelist, switching
the target slot’s order from 2nd to 3rd

2. Deallocate the dummy object
in the order 2nd, 3rd, 1st Free SlotFree Slot Target

freelist

1 23

Situation 2 - Our Solution (cont.)

25

New Initial State Free SlotFree Slot Target

freelist

1 23

1. Allocate the Vul Obj and the S-E Obj S-E ObjVul Obj Target

freelist1 2

3

S-E ObjVul Obj Vic Obj2. Allocate the Vic Obj
3

3

Evaluation Set

26

27 vulnerabilities (the largest evaluation set so far)

- 26 CVEs, 1 Wild

- 13 UAF, 4 Double Free, 10 Slab Out-of-bound Write

- 18 with public exploits, 9 with NO public exploits

Evaluation Results

27

18 cases with public exploits
- 15 successful cases
- 8 additional unique exploits on avg.

Diversify the ways to exploitation

Potentially escalate exploitability

9 cases with NO public exploits
- 3 successful cases
- 25 unique exploits in total

Evaluation Results (cont.)

28

9 failure cases
- 6 cases, PoC manifests limited capability

Future work: continue exploring more capability of security bugs

- 3 cases, vulnerability is in special caches
Future work: include more modules for analysis

29

Part I: Build A Kernel Object Database

- Include the kernel objects useful for exploitation and system calls and
arguments that (de)allocate and dereference them (Challenge 1&2)

Part II: Adjust Slab Layout Systematically

- Deal with unoccupied/occupied situations respectively (Challenge 3)

Part III: Tricks

- Create an initial slab cache
- Calculate side-effect layout
- Shorten exploitation window

Roadmap

Tricks

● Create an initial slab cache
○ so that slots are chained sequentially
○ defragmentation

● Calculate side-effect layout
○ ftrace logs calling to allocation/deallocation
○ analyze log to calculate layout before manipulation

● Shorten exploit window
○ to minimize influence of other kernel activities on layout
○ put critical operation after defragmentation

30

Summary & Conclusion

31

Summary:

1. Identifies objects useful for kernel exploitation
2. Reorganizes slab and obtains the desired layout

Conclusion:

1. Empower the capability of developing working exploits
2. Potentially escalate exploitability and benefit its assessment for Linux kernel bugs

DEMO

32

Thank You !

Yueqi Chen
Twitter: @Lewis_Chen_
Email: ychen@ist.psu.edu

Personal Page: http://www.personal.psu.edu/yxc431
Looking for 2020 summer internship

33

mailto:ychen@ist.psu.edu
http://www.personal.psu.edu/yxc431

