
Bring Your Own Token (BYOT) to Replace the Traditional Smartcards

A case study on implementing BYOT solution with support for self-provisioning & management

options to enable users to provision digital identities used for strong authentication and signing

Eric Hampshire

Cisco Systems

Karthik Ramasamy

Cisco Systems

Abstract

Smartcards are a good way to enable strong authentication to enterprise network and applications

as they provide identification, authentication, and ability to store cryptographic key information

on the card using the embedded microchip and memory. The enterprises can provision the

smartcards with a digital identity, in the form of a X509 certificate uniquely associated with a user,

to enable smartcard login to servers and Mutual TLS Authentication to services. Traditionally,

hybrid cards that provides both the proximity card and smartcard functionalities are used for this

purpose, so that the users can have a single card for both facility access as well as strong

authentication to IT servers/applications.

There are some limitations and challenges with using the single card as both proximity and

smartcard. The proximity cards can generally pre-provisioned in bulk as the association of the user

identity to the proximity id can be done after the card is assigned to a user. But for the smartcard,

the X509 certificates provisioned to the smartcards contain the user information that must be

known at provisioning time. This slows down the provisioning process. There are also other

challenges related to issuing replacement/temporary cards for lost or misplaced cards.

This whitepaper describes the solution implemented at Cisco, to replace the traditional hybrid

smartcards with Bring Your Own Token (BYOT) model, to overcome the limitations and

challenges with the traditional smartcard solutions. The solution enables users to bring their own

USB tokens that are compatible with Personal Identity Verification (PIV) and Chip Card

Interface Device (CCID) standards, to self-provision the digital identities needed to enable strong

authentication, signing and other cryptographic functions.

Bring Your Own Token to Replace the Traditional Smartcards Page 2 of 25

Introduction

The idea of incorporating an integrated circuit chip onto a plastic card was first introduced by two

German engineers in the late 1960s, Helmut Gröttrup and Jürgen Dethloff. Smartcards1 are

essentially a plastic card with an embedded integrated circuit chip. They come in many different

types and dimensions, contact and contactless forms. Their physical characteristics, electrical

interface, transmission protocols, crypto mechanisms, etc., are defined in the ISO/IEC 7810 and

ISO/IEC 7816 standards. At their core they provide a tamper-resistant secure crypto processor and

secure file system which communicates with external services using a card-reader. The

cryptographic key material and digital certificates are securely generated/imported to the chip.

Figure 1: Smartcard Dimensions

Figure 2: Smartcard pinout diagram

Smartcard Use Cases

One of the most widely adopted and successful use cases for smartcards is for mobile

communications with the Global System for Mobile Communications (GSM)2 network and the

Subscriber Identity Module (SIM)3. Another use case is in banking and retail with EMV Chip

cards4 that implement the Chip & PIN or Chip & Signature schemes for securing credit

transactions. Finally, we get to the focus of this whitepaper, the use case of smartcards for IT

applications to enable strong authentication, signing, and encryption.

1 https://en.wikipedia.org/wiki/Smart_card

2 https://en.wikipedia.org/wiki/GSM

3 https://en.wikipedia.org/wiki/SIM_card

4 https://en.wikipedia.org/wiki/EMV

https://en.wikipedia.org/wiki/Smart_card
https://en.wikipedia.org/wiki/GSM
https://en.wikipedia.org/wiki/SIM_card
https://en.wikipedia.org/wiki/EMV

Bring Your Own Token to Replace the Traditional Smartcards Page 3 of 25

The traditional use of smartcards at large enterprises involved the use of hybrid cards that provide

both the physical access proximity card and the logical smartcard functionality. This combined the

two functions onto a single card for both the enterprise facility access and strong authentication to

information systems. The digital identity certificates for strong authentication are either

provisioned on premise in the badging office using kiosks or using 3rd party provisioning partners.

CCID and PIV Standards

The Chip Card Interface Device (CCID5) standard, defined by the USB standards work group in

March 2001, specifies the protocol and requirements for a smartcard to be connected to a computer

via a card reader using a standard USB interface, without the need for each smartcard manufacturer

to provide its own reader or protocol. The latest revision of CCID (1.1) was released in April 2005.

The Personal Identity Verification (PIV) standard was published by National Institute of Standards

and Technology (NIST) in February 2005 with FIPS 201 document. This specifies the architecture

and technical requirements for a common identification standard to improve the identification and

authentication of Federal employees and contractors for access to Federal facilities and

information systems. The latest revision of PIV (FIPS 201-2)6 was published in August 2013.

The PIV standard specifies the requirements for standard slots/data objects in smartcards as listed

in the table below. The commonly used slots are 9A and 9D.

Slot Key Type PIN Requirement

04 PIV Secure Messaging Never

9A PIV Authentication Once per session

9B PIV Card Application Administration Never

9C Digital Signature Every use

9D Key Management Once per session

9E Card Authentication Never

82, 83, 84, 85, 86, 87, 88, 89, 8A, 8B,

8C, 8D, 8E, 8F, 90, 91, 92, 93, 94, 95

Retired Key Management Key Once per session

Table 1: List of Standard Slots

These two standards have played a significate role in standardizing and simplifying the use of

smartcards on computers for various use cases.

5 https://www.usb.org/sites/default/files/DWG_Smart-Card_CCID_Rev110.pdf

6 https://doi.org/10.6028/NIST.FIPS.201-2

https://www.usb.org/sites/default/files/DWG_Smart-Card_CCID_Rev110.pdf
https://doi.org/10.6028/NIST.FIPS.201-2

Bring Your Own Token to Replace the Traditional Smartcards Page 4 of 25

Limitations with Traditional Smartcards

Most of the limitations with traditional smartcards revolve around the physicality of the smartcard.

Programming the physical and logical portions of the card requires setting up kiosks in badging

offices or using a 3rd party provisioning service provider. The 3rd party solution introduces a delay

between requesting a badge and actual receiving a working, usable badge. It does, however, work

pretty well for full-time remote workers. Conversely, a kiosk in a badging office on a company’s

campus does not work very well for full-time remote workers.

Another challenge is dealing with lost/misplaced smartcards. The same challenges in initial

provisioning of a smartcard are in play here, with a user having to visit a badging office or wait

for their new badge to be shipped. Tangentially related, if a strong identity for authentication is

provisioned to the smartcard that the employee relies on for logical access to their workstation,

forgetting the badge at home and arriving at the workplace can leave the employee without many

good options. Most companies have some means to provision temporary badges for physical

access, but what about the logical access?

Yet another challenge with the traditional smartcard program is the need for the card reader and

the support for necessary driver/middleware on the host operating system to interact with the

smartcard. The support for smartcard is not consistent across different operating systems. While

the native support for smartcards is good on the Microsoft Windows, a middleware driver such as

OpenSC7 and/or additional vendor specific software is required to be installed on the MacOS and

Linux to interact with smartcards.

Evolution of Strong Authentication at Cisco

Cisco has been using some form of strong authentication since 1997 and evolved over the years as

show in the timeline chart below.

Figure 3: Timeline of Strong Authentication Solutions at Cisco

7 https://github.com/OpenSC/OpenSC

https://github.com/OpenSC/OpenSC

Bring Your Own Token to Replace the Traditional Smartcards Page 5 of 25

Safeword Premier Access

In 1997, Cisco deployed the Safeword Premier Access (SPA) product to enable users One Time

Password (OTP) based authentication to protect sensitive and privileged access operations. This

was used to protect the VPN Access to Cisco Networks, SSH access to remote servers and enabling

root access (sudo).

The first couple iterations of this service offering were not self-service and required Cisco users to

call into Cisco’s internal helpdesk, Global Technical Resource Center (GTRC) for help with their

tokens. SPA’s OTP system was an Event-based OTP system (HOTP)8 and therefore the counter

between the clients and servers could get out of sync. Another problem was the counter for a

particular user’s token was required to be kept in sync between all the backend SPA servers, which

was problematic when load was high and due to network latency.

GGSG Smartcard Program

In ~2003, the Infosec team at Cisco, who was responsible for the operation of the SPA servers at

that time, began to evangelize a new combined physical and logical access token to replace the

aging infrastructure and close some vulnerabilities. No executive was willing to pay the estimated

~$1m USD to replace all employee’s badges, but a smaller group within Cisco, the Global

Government Support Group (GGSG) was identified as a potential candidate for rollout of such a

program in 2007. A Card Management System (CMS) was purchased from ActivIdentity9 and

~300 users’ badges were replaced with the new HID-sourced PIV-C smartcards.

Unfortunately, mistakes were made and the complexity, knowledge, and effort to maintain the

CMS system was vastly underestimated. Proper resourcing was not assigned and ultimately the

program failed with the configuration breaking and the limited resources being overwhelmed with

user support requests.

Corporate Smartcard Program

In ~2012 approval was granted to stand up a Cisco corporate smartcard program that was labeled

SmartBadge. The program relied on outsourcing the CMS and printing of the badges to a third

party, IDonDemand (IDOD) which was later acquired by Identiv10, as a managed service. Cisco

still maintained and operated the PKI, requiring the use of an IDOD product called Bouncer to

bridge the communication between IDOD and the Microsoft CA.

8 https://www.microcosm.com/blog/hotp-totp-what-is-the-difference

9 https://www.hidglobal.com/products/software/activid/activid-credential-management-system

10 https://www.identiv.com/services/

https://www.microcosm.com/blog/hotp-totp-what-is-the-difference
https://www.hidglobal.com/products/software/activid/activid-credential-management-system
https://www.identiv.com/services/

Bring Your Own Token to Replace the Traditional Smartcards Page 6 of 25

Due to the cost of the managed service, a portal was developed to handle enrollment of users and

cross-charging of departments for the replacement badge. $85/year was the barrier for entry and,

at the behest of the Cisco PKI team, was a prerequisite for also receiving an S/MIME certificate.

This was meant to drive adoption of the SmartBadge as S/MIME certs had been requested by

clients throughout the company for many years prior.

Ultimately, one thousand, eight hundred and fifteen (1,815) Cisco users participated in the badge

replacement program at the $85/year cost. Many users did not finish the activation step of enrolling

their new SmartBadge with the Physical Access System (PAC), Lenel, and simply spent the money

to get a S/MIME cert so they could sign/encrypt their emails.

During this same period, the Yubikey NEO was evaluated as another option for a logical access

token by the Cisco PKI team as a proof of concept. The PIV applet was provisioned with some

test certs and authentication to various service was secured using them to prove out the concept.

AdminToken Program

A policy change made in the year 2015, by the Information Security group at Cisco, requiring a

hardware token for Cisco administrative accounts on Microsoft Windows machines necessitated

the development of a method to request and manage the new tokens. This was a natural second

step following in the footsteps of the SmartBadge program. For this program, the SafeNet eToken

was picked as the supported hardware token.

The provisioning and shipping of the tokens was still handled by the IDonDemand managed

service with the same Cisco-run PKI on the backend. A separate portal was developed to manage

the AdminToken requests, handling cross charges, approvals, and termination.

Need for a new solution

Several years after rolling out the SmartBadge and AdminToken programs, the adoption rate was

still very small. This was mainly due to the expense and usability issues associated with both

programs. In February 2018, IDonDemand informed Cisco that the managed service would be

terminated in January 2019.

Thus, in early 2018, Cisco embarked on a new program, called CryptoID. The program, dubbed

Bring Your Own Token (BYOT) was designed from the onset to enable Cisco employees,

contractors or third parties to acquire their own token and provision a digital identity certificate.

Cisco wanted this solution to be entirely self-service, avoiding the management overhead of cross-

charging for hardware, and ultimately reducing support cases by empowering users to fix their

own issues. The CryptoID program would replace the previously supported solution(s) into a

single consolidated platform with support for different certificate types, such as UserToken,

AdminToken and S/MIME.

Bring Your Own Token to Replace the Traditional Smartcards Page 7 of 25

Solution Description

The CryptoID solution is designed to be compatible with any USB Hardware Tokens that supports

the Personal Identity Verification (PIV) and Chip Card Interface Device (CCID) standards.

However, in order to ensure the security and usability, we will only onboard different token

models after a thorough evaluation.

Functional Requirements

The following are the requirements for the proposed system.

● Ability to associate the token to a unique user

● Ability to control what token models, firmware versions are allowed to be registered

● Ability to control and manage the user and admin PIN policies such as retry count, length

requirements, lock-out settings, etc.

● Ability to control the allowed cryptographic algorithms and mechanisms for the creation

of key material and certificates

● Ability to ensure and attest that the cryptographic key materials are created on the hardware

token and are not exportable

● Ability for users to create an authenticated and attested provisioning request and self-

provision the token with the digital identities

● Ability for the users to be able to revoke or replace the certificates

High Level Design

The core components of this system are the CryptoID portal and the CryptoID client. These are

the components that enables the BYOT and Self-provisioning aspects of this solution. These

components interact with other existing IT systems such as Directory Services, Single Sign-On

and Certificate Authority servers for the provisioning of the digital identities. The following

diagram depicts the high-level system architecture of the CryptoID solution.

Figure 4: CryptoID System Design

Bring Your Own Token to Replace the Traditional Smartcards Page 8 of 25

Token Selection Criteria

One important aspect in the Bring Your Own Token approach is the decision process around which

token vendors and models should be supported. The CryptoID solution is designed to be generic

and extendible to work with any of the tokens that meet some of the basic requirements for the

program. Cisco established a process and checklist to evaluate the hardware tokens against the

core requirements for CryptoID program. Appendix F11 provides an example evaluation form.

Based on our evaluation results, the Yubico YubiKey tokens proved to be reliable, low cost, and

relatively easy to use. The YubiKey tokens meets all our core requirements for the PIV

functionality and also provide other applets such as OTP and FIDO2. The OTP and FIDO2 can be

configured with Cisco's Duo Single Sign On (SSO) system for second factor authentication. Cisco

employees no longer have to chain together several different solutions to fit many use cases.

Instead, they can entitle, enable and use ONE token for many security controls.

Advantages

The following are some of the advantages of the CryptoID solution.

● No external vendors involved in the provisioning process

● No vendor lock-in for the Hardware Tokens. The solution is generic and extensible.

● Flexibility to let users to bring their own tokens to provision the digital identities

● No need to revoke or replace the identities when the badge is misplaced or lost

● Quick turnaround thanks to self-provisioning

● Reduced cost and overhead

CryptoID Use Cases

The CryptoID solution currently supports provisioning of three different digital identities

associated with a user. Support for additional identity types can easily be added.

• AdminToken

o Issued to: Cisco Admins (CN=admin_userid@cisco.com)

o Purpose: Administrative access to remote servers (smartcard login)

• UserToken

o Issued to: Cisco Employees/Contractors (CN=userid@cisco.com)

o Purpose: Strong Authentication (Smartcard Login or TLS Web Authentication)

• SMIME

o Issued to: Cisco Employees/Contractors (CN=userid@cisco.com)

o Purpose: Sending signed/encrypted emails

11 Appendix F: Sample Token Selection Criteria Checklist Form

Bring Your Own Token to Replace the Traditional Smartcards Page 9 of 25

The users have complete control to request and manage their CryptoID certificates. They can

request new certificates and manage their life-cycle; such as download, install and revocation. The

CryptoID portal automatically publishes the issued certificates to Active Directory. It will also

automatically revoke the certificates of any inactive Cisco employees.

Admin/User Token Use Cases

Both the AdminToken and UserToken identities are installed on the same slot (9a) in the token.

So, the users who need both AdminToken and UserToken would require 2 different hardware

tokens to work natively and comply with the PIV standards. The AdminToken and UserToken

CryptoID certificates, installed on the token slot 9a, can be used for different strong authentication

use cases such as:

• Smartcard Logon

o The CryptoID certificate on slot 9a can be used to logon to Windows Servers

o Windows natively supports smartcards complying with the PIV standards

• SSH Authentication

o The CryptoID certificate on slot 9a can be used to strongly authenticate via SSH to a

server running OpenSSH

o Outside the scope of this whitepaper, there are many considerations and best practices

for using the certificates and/or keys stored on a token in slot 9a12

• TLS Client Authentication

o The CryptoID certificate on slot 9a can be used to strongly authenticate to a web server

properly configured to accept certificates as an authentication option

o Guides for configuring the TLS Client Certificate Authentication on the popular web

servers such as Apache and Nginx web servers are readily available on the internet

o For the client setup very little is needed on Windows/Mac OS with Chrome, IE, Edge,

and Safari browsers, however Firefox requires some additional configurations on any

platform as detailed in Appendix D13

S/MIME Use Case

The Secure/Multipurpose Internet Mail Extensions (S/MIME)14 has been around since ~1997 and

is widely supported in mail clients for sending signed and encrypted email. The CryptoID S/MIME

certificate can be downloaded as PKCS#1215 file that contains the private key, associated

certificate, and certificate chain (Subordinate CA and Root CA certificates). It can either be

imported to the token slot 9d or directly on the computer/mobile device’s key store. This certificate

can be used for signing and encrypting emails.

12 https://smallstep.com/blog/use-ssh-certificates/

13 Appendix D: Firefox Configuration for TLS Client Authentication

14 https://en.wikipedia.org/wiki/S/MIME

15 https://en.wikipedia.org/wiki/PKCS_12

https://smallstep.com/blog/use-ssh-certificates/
https://en.wikipedia.org/wiki/S/MIME
https://en.wikipedia.org/wiki/PKCS_12

Bring Your Own Token to Replace the Traditional Smartcards Page 10 of 25

Implementation Details

Overview

The CryptoID Portal and Client Tool were developed to give Cisco employees complete control

in provisioning and managing their digital identities. The user simply procures any approved token

(currently, YubiKey Series 4 or 5 with firmware v4.3.5 or greater), logs into the CryptoID Portal

and follows the instructions to provision the required CryptoID certificate.

If a user needs both AdminToken and UserToken certificates, they would need to buy two tokens

as both of those certificates are installed on the slot 9a to work natively and comply with the PIV

standards.

AdminToken and UserToken Provisioning

The CryptoID Client provides a generic interface for the users to interact with the hardware tokens.

It abstracts the token vendor specific middleware tools with the help of a standard client interface

that is extensible to implement wrappers around the different supported token types. Currently it

provides extensions for both yubico-piv-tool and ykman, provided by Yubico, to interact with the

YubiKey tokens, through a simple command-line interface.

To provision a new YubiKey, the user downloads the client, runs the client tool, and chooses option

#1 to generate a new CryptoID client request. The resulting Base64-encoded CryptoID Client

Request16 is displayed to the user for pasting back into the CryptoID Portal. The CryptoID design

takes two steps to ensure the integrity and confidentiality of the request. We use the Attestation

feature17 of the YubiKey (firmware v4.3.5 or higher) to ensure the keypair that creates the

Certificate Signing Request (CSR) was generated on the YubiKey. And, we authenticate the user

to our Active Directory (AD).

The YubiKey PIV Attestation feature shows that a certain asymmetric key has been generated on

device and not imported. This is accomplished by signing a specially-crafted Certificate Signing

Request (CSR). The CSR is created from the newly-generated asymmetric key and includes

specific extensions to capture the token details and then signed by the attestation certificate in slot

f9. The attestation certificate comes pre-installed on the Yubikey and is issued by Yubico PIV CA.

The CryptoID client includes this signature in the Base64-encoded CryptoID Client Request data.

As the CryptoID Client Tool is entirely separate from the CryptoID Portal and is run

asynchronously, we authenticate the user to our Active Directory (AD) and include the username

in the Base64-encoded CryptoID Client Request and on the attested Certificate Signing Request

16 Appendix B: CryptoID Provisioning Request Data

17 https://developers.yubico.com/PIV/Introduction/PIV_attestation.html

https://developers.yubico.com/PIV/Introduction/PIV_attestation.html

Bring Your Own Token to Replace the Traditional Smartcards Page 11 of 25

(CSR). The username in the request is verified against the username in the CSR and the user who

logged in to the portal, to prevent any forgery.

Another precaution the CryptoID Portal takes is verifying the YubiKey token model and firmware

through a whitelist. As the Attestation feature is only available on YubiKey firmware greater than

4.3.5 that is checked. Also, Yubico released a security advisory on 2017-10-16 about firmware

versions lower than 4.3.5 producing weak RSA keys18. The PIN policy is also checked to ensure

it is set to “Never:01”, which disables the YubiKey requiring a PIN except on first use and allowing

the application to cache it.

The provisioning process is broken into 3 high level tasks.

1. User downloads the CryptoID Client and runs the “Generate CryptoID Provisioning

Request” Command. The client performs the following steps in the background to generate

an attested CryptoID Provisioning Request.

a. Verify YubiKey token connected

b. Verify PUK requirements

c. Verify Management Key requirements

d. Verify PIN requirements

e. Authenticate User to Active Directory (AD)

f. Generate Keypair on Token

g. Generate CSR from keypair on token

h. Attest keypair on token

i. Build Base64-encoded CryptoID Provisioning Request and display to user

2. User submits the attested CryptoID Provisioning Request data to CryptoID Portal. The

portal performs the following steps to validate and issue the CryptoID.

a. Verifies userID for logged-in user and userName in request match

b. Verifies Certificate Signing Request (CSR)

c. Verifies Attestation in request

d. Submits CSR to Certificate Authority (CA) over REST

e. Receives X509 Certificate from CA

f. Provisions X509 Certificate to User’s Active Directory (AD) account

3. User installs the X509 Certificate into the token’s PIV authentication slot (9a)

a. User downloads X509 Certificate

b. User installs X509 Certificate using CryptoID Client

18 https://www.yubico.com/support/security-advisories/ysa-2017-01/

https://www.yubico.com/support/security-advisories/ysa-2017-01/

Bring Your Own Token to Replace the Traditional Smartcards Page 12 of 25

S/MIME Provisioning

The S/MIME certificates can be provisioned directly on the CryptoID Portal. The process does not

require any request data to be generated using the CryptoID client. Cisco escrows the private key

associated with the user’s S/MIME certificates for legal purposes. So, the private key and CSR for

the S/MIME certificate is generated securely on the CryptoID server using a Hardware Security

Module (HSM) and its underlying True Random Number Generator (TRNG)19. The CSR is then

submitted to the CA to issue the cert and finally a P12 file is created. The P12 is protected using a

secure random password. Both P12 and the P12 password are encrypted using an AES-256 key

before storing in the database. The AES-256 key used for the encryption is securely generated on

an HSM and marked non-exportable, non-extractable.

The user can download the P12 file, and the associated password from the CryptoID portal, and

import it either to their computer/mobile key store, or to their YubiKey slot 9d.

All the S/MIME certificates provided through the CryptoID portal have a 2-year validity period.

This short validity period was chosen because the certificates are provided in a portable format

(P12) purely in software. The user is emailed through an automated process to be notified their

certificate is expiring in 90 days, 60 days, 30 days, 7 days, and 1 day.

De-Provisioning

Users have control to revoke their own certificates and there is a background task that revokes

certificates for inactive Cisco employees, querying Cisco’s Active Directory (AD) nightly. If a

user loses their token, we are relying on them to notice, return to the CryptoID Portal and revoke

the credential. They must revoke the current credential in order to procure a new one - i.e. users

cannot have more than one active AdminToken, UserToken, or S/MIME.

One Time Password (OTP) Seed Provisioning

YubiKeys come with a One Time Password (OTP) applet20 and the seed pre-provisioned to the

YubiCloud21 for authentication. Cisco uses Duo22 for our Single Sign On (SSO) infrastructure.

Duo supports YubiKey OTP as second factor authentication mechanism but it does not use the

YubiCloud as a backend authentication service. Instead it requires the YubiKey OTP tokens to be

individually registered with the OTP seed. Duo provides an API for enabling this provisioning.

19 https://en.wikipedia.org/wiki/Hardware_random_number_generator

20 https://developers.yubico.com/OTP/OTPs_Explained.html

21 https://www.yubico.com/products/services-software/yubicloud/

22 https://duo.com/

https://en.wikipedia.org/wiki/Hardware_random_number_generator
https://developers.yubico.com/OTP/OTPs_Explained.html
https://www.yubico.com/products/services-software/yubicloud/
https://duo.com/

Bring Your Own Token to Replace the Traditional Smartcards Page 13 of 25

The CryptoID Client Tool was enhanced to generate this OTP seed and provide a Base64-encoded

request23 as output to be copied by the user into the self-service Duo registration portal24.

Similar to the AdminToken and UserToken provisioning process, the user initializing their OTP

seed is authenticated to Cisco’s Active Directory (AD) and their username is included in the

Base64-encoded request data. As the Yubico tools provided no way to protect the OTP seed, an

additional step to encrypt the seed value to the CryptoID Portal’s RSA Public key was taken as a

security measure.

Libraries, Tools, IDEs

The CryptoID Portal was developed entirely using Java, targeting the Java v8 JRE. The team

makes extensive use of the IAIK JCA/JCE Toolkit25 as a crypto utility. The IAIK Toolkit is very

similar to the more popular, open-source BouncyCastle26, just with better documentation. The IDE

used was the excellent Eclipse Foundation27 or a variation of.

The CryptoID Client bundled the yubico-piv-tool28 compiled for Windows, Linux, and MacOS

target client platforms. See Appendix A for detailed commands used.

Development Time

Two people from the Cisco PKI team developed CryptoID over 4 months to get to the v1.0 release.

A test version was ready in ~2 months for a limited release scope (10-15 users) and much positive

feedback was received. This timeline was greatly compressed because of the various lessons

learned from the previous years with the various strong authentication programs and the team’s

familiarity with operating a PKI. CryptoID is now at v1.4 and has had very little in terms of upkeep

and maintenance for the developers. Future enhancements have been thought through and are

covered in the next section.

23 Appendix C: OTP Registration Request Data

24 https://disco.cisco.com/

25 https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/JCA_JCE

26 https://www.bouncycastle.org/

27 https://www.eclipse.org/

28 https://developers.yubico.com/yubico-piv-tool/

https://disco.cisco.com/
https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/JCA_JCE
https://www.bouncycastle.org/
https://www.eclipse.org/
https://developers.yubico.com/yubico-piv-tool/

Bring Your Own Token to Replace the Traditional Smartcards Page 14 of 25

Future Enhancements

Other Token Types

Hardware security keys like those from Feitian29, PIVKey30, and SafeNet eToken31 would be nice

to support in addition to YubiKeys, giving Cisco users many form factor choices for what they

would like to use. The primary roadblock to supporting more token types is the development and

support of the CryptoID Client. Also, the attestation feature is something unique to the YubiKeys

Cisco would miss out on implementing support for other token types. This limitation could be

partially overcome by the CryptoID Client implementing a similar feature in software.

Platform Native CryptoID Tools

For the One Time Password (OTP) seed provisioning, a standalone utility was developed in Python

to utilize the ykman Python libraries32 and then compiled to target the client platforms using

pyinstaller33. This stand-alone utility was then signed with the platform appropriate code sign

utility for distribution. A future enhancement to the CryptoID Client Tool would be to re-write it

in Python and compile a platform-specific version as well.

Alternatively, a GUI version developed using Electron34 would be nice for those employees not

comfortable with command-line utilities. Advantages of the thick client or platform-specific

binaries would include the elimination of a copy/paste step from the Client to the Portal, the clients

could speak directly to the Portal via APIs.

S/MIME Certificates for Vanity Email Aliases

With the development of CryptoID, Cisco added the option of a free S/MIME cert to any Cisco

employee using their username@cisco.com email address in both the Email (E) relative

distinguished name35 field of the SubjectDN36 and the rfc822 subject alternative name37 field.

Almost immediately, we had requests to support vanity email aliases that the Cisco users had

procured over the years. Supporting these vanity email aliases would be a good feature to include

in the future.

29 https://www.ftsafe.com/Products

30 https://pivkey.com/

31 https://safenet.gemalto.com/multi-factor-authentication/authenticators/pki-usb-authentication/

32 https://github.com/Yubico/YubiKey-manager/tree/master/ykman

33 https://www.pyinstaller.org/

34 https://electronjs.org/

35 https://ldapwiki.com/wiki/Relative%20Distinguished%20Name

36 https://ldapwiki.com/wiki/Distinguished%20Names

37 http://www.pkiglobe.org/subject_alt_name.html

mailto:username@cisco.com
https://www.ftsafe.com/Products
https://pivkey.com/
https://safenet.gemalto.com/multi-factor-authentication/authenticators/pki-usb-authentication/
https://github.com/Yubico/yubikey-manager/tree/master/ykman
https://www.pyinstaller.org/
https://electronjs.org/
https://ldapwiki.com/wiki/Relative%20Distinguished%20Name
https://ldapwiki.com/wiki/Distinguished%20Names
http://www.pkiglobe.org/subject_alt_name.html

Bring Your Own Token to Replace the Traditional Smartcards Page 15 of 25

S/MIME Certificates for Mailers

There are many email messages sent to Cisco employees from mailing lists so that replies to the

email go to a group of people. We have received a few requests for these mailers to be assigned

S/MIME certs so the emails can be signed and look even more “official”. So far, we have been

able to support these requests in a very manual way by going directly to the CA to issue the certs

but would like to enhance the CryptoID Portal to allow owners of mailers to “enroll” on behalf of

their various mailers. This would let us keep track of these certificates, owners could get expiry

notifications, and certs would be revoked if mailers were deleted or owners left Cisco.

UserToken for Generic Accounts

Active Directory (AD) generic accounts are generally used by automated scripts/processes to

authenticate with remote resources. It would be nice to strongly authenticate these accounts with

an X509 certificate much like we can strongly authenticate regular Cisco users. Cisco has a web

application for owners to easily manage these accounts owners, members, and passwords. The

CryptoID Portal could tie into this API to ensure UserTokens were being requested only by generic

account owners. Also, this would let us keep track of these certificates, owners could get expiry

notifications, and certs would be revoked if generic accounts were deleted or owners left Cisco.

Lessons Learned / Key Considerations

Token use in VMware

Requiring Windows administrators to login with their PIV-enabled YubiKey quickly uncovered

the fact that many of Cisco’s Windows admins are using a different OS than Windows on their

workstations (MacOS, Linux, etc.). When attaching the YubiKey to a VM in VMware the default

behavior is for that USB device to show as “shared”. Yubico had a solution involving modification

of the VMware VMX file for the VM38, marking the YubiKey as dedicated to the VM and allowing

Windows to access the PIV authentication slot (9a) on that YubiKey for authentication to the user’s

privileged administrator account.

MacOS Catalina Issues

A very recent problem has been Apple’s release of MacOS Catalina and the disabling of 32-bit

applications. Both the CryptoID Client Tool and the standalone platform-specific compiled binary

for the OTP seed provisioning have encountered problems with various client installs of the new

MacOS. More investigation is needed and possibly new releases of these tools.

38 Appendix E: VMware Configuration for dedicated YubiKey

Bring Your Own Token to Replace the Traditional Smartcards Page 16 of 25

Involvement of Infrastructure Teams

When considering standing up a similar program at your company to offer hardware-based, strong

identity certificates, it is wise to involve your Active Directory (AD) and Public Key Infrastructure

(PKI) technical points of contact early. Cisco was lucky in that the developers on CryptoID were

the PKI guys, so integrations was easy. Having a good working relationship with the AD guys

certainly helped the integrations there, along with a generic account that had elevated privileges to

publish certificates to all user and administrator accounts in AD.

Return on Investment (ROI)

Token Reliability

The YubiKeys have proven to be much more resilient and harder to break. Designed to be added

to keyrings, they are built for quite a bit of abuse and we are not getting very many reports of

damaged tokens. We have only received reports of couple of faulty YubiKey tokens in the last

year, compared to more than 50 token replacement requests per year with the old AdminToken

program.

Token Consolidation

The multi-protocol support provided by YubiKey is very helpful to enable the same hardware

token to be used for different use cases. Apart from the PIV protocol that’s used for the CryptoID

solution, YubiKey supports OTP and FIDO2 protocols, which is integrated with Cisco’s Single

Sign On (SSO) service as an optional second factor authenticator.

Licensing/Maintenance Costs

Setting up the dedicated environment (CMS, hardware, etc.) for Cisco cost ~$250k, which covered

the first year of maintenance. On top of that Cisco paid ~$20/user/year for the “subscription” to

the managed service. That worked out to be ~$50k/year just for the SmartBadge program.

The old managed service for AdminTokens was quite a bit more expensive, costing Cisco

~$300k/year in licenses and maintenance. All of this and the SmartBadge cost were avoided by

moving to our in-house, home-grown solution.

Support Cases

The comparison of number of support cases for the old AdminToken and SmartBadge system

versus the new CryptoID solution with YubiKeys is shown in Table 2: Comparison of Support Case

Metrics. While difference in number of cases is not very significant, the number of cases reduced

significantly over time, especially in the recent months, as shown in Figure 5: Breakdown of CryptoID

cases by Cisco Fiscal Quarter.

Bring Your Own Token to Replace the Traditional Smartcards Page 17 of 25

The CryptoID has been more reliable and easier to adapt for the users and it saved Cisco some

dollars/time.

 Cases/Quarter

Admin Token +

Smart Badge 80-85

CryptoID 60-65

Table 2: Comparison of Support Case Metrics

Figure 5: Breakdown of CryptoID cases by Cisco

Fiscal Quarter

Conclusion

In this whitepaper we have presented the CryptoID solution that Cisco implemented to replace the

traditional smartcards with the Bring Your Own Token support. The rollout of the CryptoID

program has resulted in reduced overhead and increased efficiency to manage the tokens and the

digital identities. The best practices and lessons learned from this implementation can help other

organizations that plan to implement a similar solution.

Bring Your Own Token to Replace the Traditional Smartcards Page 18 of 25

Appendix A: yubico-piv-tool and ykman Commands

The CryptoID Client provides a menu-driven interface for the users to interact with the tokens.

The CryptoID CLI menu is shown in the image below. The initial version of CryptoID Client used

the yubico-piv-tool to interact with the YubiKey tokens. Since Yubico decided to consolidate their

client development on the newer ykman39 tool, a version of the CryptoID Client has been

developed to add support for ykman.

Figure 6: CryptoID Client – Menu List

This section provides detailed steps and the yubico-piv-tool / ykman commands implemented

behind the scenes for each of the menu options in the CryptoID client.

1. Create New CryptoID Request

1.1. Verify Token Connection

yubico-piv-tool -a list-readers

ykman list

1.2. Verify PUK Requirements

NOTE: The yubico-piv-tool doesn’t provide a verify PUK function, so as a workaround, we use the

change-puk method to verify

yubico-piv-tool -a change-puk -P <PUK> -N <PUK>

ykman piv change-puk -p <PUK> -n <PUK>

39 https://github.com/Yubico/YubiKey-manager

https://github.com/Yubico/yubikey-manager

Bring Your Own Token to Replace the Traditional Smartcards Page 19 of 25

1.3. Verify Management Key Requirements

NOTE: The yubico-piv-tool doesn’t provide a verify PUK function, so as a workaround, we use the

change-puk method to verify

yubico-piv-tool -a set-mgm-key -k <Mgmt_Key> -n < Mgmt_Key>

ykman piv change-management-key -m < Mgmt_Key> -n < Mgmt_Key>

1.4. Verify PIN Requirements

yubico-piv-tool -a verify-pin -P <PIN>

ykman piv change-pin -P <PIN> -n <PIN>

1.5. Generate Keypair

yubico-piv-tool -a generate -k <Mgmt_Key> -s 9a --pin-policy=once --

touch_policy=never -A RSA2048 -o <publicKey_output_file>

ykman piv generate-key --pin-policy=once --touch-policy=never -a RSA2048 9a

<publicKey_output_file>

1.6. Generate CSR

yubico-piv-tool -a verify -a request-certificate -k <Mgmt_Key> -P <PIN> -s 9a --hash

SHA512 -I <publicKey_output_file> -o <csr_output_file> -S <subjectDN>

ykman piv generate-csr -P <PIN> -S <subjectDN> 9a <publicKey_output_file>

<csr_output_file>

1.7. (Attest Request)

yubico-piv-tool -a attest -k <Mgmt_Key> -s 9a -o <keyAttestion_output_file>

ykman piv attest 9a <keyAttestion_output_file>

2. Import CryptoID AdminToken/UserToken Certificate File

2.1. Import Certificate File

yubico-piv-tool -a import-certificate -k <Mgmt_Key> -s 9a -i <file_location>

ykman piv import-certificate -v -m <Mgmt_Key> 9a <file_location>

2.2. Change CHUID

yubico-piv-tool -a set-chuid -k <Mgmt_Key>

ykman piv set-chuid -m <Mgmt_Key>

3. Import CryptoID SMIME P12 File

3.1. Import SMIME Certificate File

yubico-piv-tool -a import-key -a import-cert -k <Mgmt_Key> -s 9d -i <p12_file_location>

-K PKCS12 -p <p12_password>

ykman piv import-certificate -v -m <Mgmt_Key> -p <p12_password> 9d

<p12_file_location>

Bring Your Own Token to Replace the Traditional Smartcards Page 20 of 25

3.2. Change CHUID)

yubico-piv-tool -a set-chuid -k <Mgmt_Key>

ykman piv set-chuid -m <Mgmt_Key>

4. Verify Token Certificates (Perform Test Sign/Verify and Encrypt/Decrypt operations)

4.1. Test Sign and Verify

NOTE: The ykman tool doesn’t provide a verify and sign function

yubico-piv-tool -a verify-pin -a test-signature -s 9a -i <slotCert_output_file> -P <PIN>

4.2. Test Encrypt and Decrypt

NOTE: The ykman tool doesn’t provide an encrypt and decrypt function

yubico-piv-tool -a verify-pin -a test-decipher -s 9a -i <slotCert_output_file> -P <PIN>

5. Display Token Status

yubico-piv-tool -a status

ykman piv info

6. Change PUK (Requires the current PUK)

yubico-piv-tool -a change-puk -P <current_PUK> -N <new_PUK>

ykman piv change-puk -p <current_PUK> -n <new_PUK>

7. Change PIN (Requires the current PIN)

yubico-piv-tool -a change-pin -P <current_PIN> -N <new_PIN>

ykman piv change-pin -P <current_PIN> -n <new_PIN>

8. Unblock PIN (If you forgot and blocked the PIN. Requires the current PUK)

yubico-piv-tool -a unblock-pin -P <current_PUK> -N <new_PIN>

ykman piv unblock-pin -P <current_PUK> -n <new_PIN>

9. Reset Token (If you forgot and blocked both the PIN and PUK)

yubico-piv-tool -a reset

ykman piv reset -f

10. One Time Password (OTP) Status

NOTE: The yubico-piv-tool doesn’t provide OTP functions

ykman otp info

11. One Time Password (OTP) Init

NOTE: The yubico-piv-tool doesn’t provide OTP functions

ykman otp yubitop -G -g -S -f <slot>

Bring Your Own Token to Replace the Traditional Smartcards Page 21 of 25

Appendix B: CryptoID Provisioning Request Data

The CryptoID Provisioning Request Data is organized as a simple JSON structure with the

following elements:

• userName:

o Cisco userID that was authenticated against AD to create the request

• tokenType:

o Token Type

• csr:

o Certificate Signing Request generated from keypair on token

• attestionData:

o output from “attest” command given to YubiKey

• attestionSigner:

o read from slot f9 of the YubiKey

• clientHeuristics:

o userName, hostName, and hostAddress of the machine used to run the client

Given below is a sample CryptoID Provisioning Request Data.

{

 "username": " userid",

 "tokenType": " Yubico YubiKey",

 "csr":"-----BEGIN NEW CERTIFICATE REQUEST-----

 <csr data>

 -----END NEW CERTIFICATE REQUEST-----",

 "attestationData":"-----BEGIN CERTIFICATE-----

 <attestation data>

 -----END CERTIFICATE-----",

 "attestationSigner":" ---BEGIN CERTIFICATE-----

 <attestation signer data>

 -----END CERTIFICATE-----",

 "clientHueristics": {"hostName":"host1", "hostAddress":"192.168.1.193", "userName":"userid"}

}

Bring Your Own Token to Replace the Traditional Smartcards Page 22 of 25

Appendix C: OTP Registration Request Data

The OTP Registration Request Data is organized as a simple JSON structure with the following

elements:

• userName:

o Cisco userID that was authenticated against AD to create the request

• serialNumber:

o YubiKey serial number

• firmwareVersion:

o YubiKey firmware version

• deviceType:

o Token Type

• publicId:

o First 12 characters of the string output by a YubiKey when pressing it

• privateId:

o Can be accessed when an OTP is decrypted in a Yubico OTP validation server

• secretKey:

o The actual OTP seed value

The entire structure is then encrypted using RSA/ECB/OAEPWithSHA1AndMGF1Padding

to an RSA public key held by the registration portal. Given below is a sample OTP Registration.

Request Data.

{

 "deviceType": "YubiKey 4",

 "firmwareVersion": "4.3.7",

 "privateId": "9e14c1c2850e",

 "publicId": "fetchchnkglk",

 "secretKey": "3eb089934ee7c27091cb89b39942e1a9",

 "serialNumber": "7050665",

 "userName": "userid"

}

Bring Your Own Token to Replace the Traditional Smartcards Page 23 of 25

Appendix D: Firefox Configuration for TLS Client Authentication

Appendix E: VMware Configuration for dedicated YubiKey

In order for the PIV protocol functions to work correctly with the YubiKey tokens on a Virtual

Machine running on VMWare Fusion or VMWare Workstation, the YubiKey must be connected

to the guest VM in dedicated mode. If it gets connected on “Shared” mode, the VM will not detect

the PIV slots. On some versions of VMware Fusion and VMware workstation, it is required to

make some configuration changes to enable connecting the YubiKey in dedicated mode.

To verify if you need these changes or not, check if you are getting an option to connect the

YubiKey in dedicated mode to the VM as shown in the picture below (highlighted menu option).

If you only see the option to connect in “Shared” mode, then try following the instructions in this

section.

Bring Your Own Token to Replace the Traditional Smartcards Page 24 of 25

Figure 7: Connecting YubiKey in “dedicated” mode

Follow these steps to make configuration changes needed to connect the YubiKey in dedicated

mode to a Virtual Machine running on VMware Fusion or VMware Workstation

1. Ensure the VMware Tools are installed on the VM and power down the VM

2. Check the Virtual Machine Details section in VMware Workstation / VMware Fusion and note

where the Configuration file (.vmx) is located, as shown in the image below.

Figure 8: Location of the VM Configuration File

3. Open the VM configuration [virtualmachinename].vmx file in a text editor.

4. Paste the below lines at the very end of this file and save the file.

machine. usb.generic.autoconnect = "FALSE"

usb.generic.allowHID = "TRUE"

usb.generic.allowLastHID = "TRUE"

usb.generic.allowCCID = "TRUE"

Note: The first line (usb.generic.autoconnect) is optional, but helps to prevent a VM from

automatically grabbing the YubiKey from another VM, or the host itself, when the YubiKey is

inserted. The remaining lines enable direct passthrough of the YubiKey to the guest VM.

5. Power on the VM and once it boots up check if you are getting the option to connect the

YubiKey in dedicated mode. If the changes are done correctly, you should now see an option

to connect the YubiKey in dedicated mode (non-shared).

Bring Your Own Token to Replace the Traditional Smartcards Page 25 of 25

Appendix F: Sample Token Selection Criteria Checklist Form

A sample token selection criteria checklist form is provided here for reference. It includes excerpts

from Cisco’s evaluation of YubiKey NEO and YubiKey 4 Series tokens. Note that this evaluation

was conducted in early 2018 and the results are based on the features available at that time.

Self-Provisioning Related Requirements

Requirement Finding

Support for PIV/Smartcard slots. Supported

Ability to generate the private keys securely and directly on the hardware token. Supported

Support for RSA 2048 or better. Supported

Private keys generated on the hardware token should be NOT exportable. Supported

Slot PIN policies should be NOT updatable once the key is generated. Supported

Ability to attest and verify that the private key was generated on the hardware

token.

Supported in YubiKey 4.3 and

newer.

Ability to attest and verify that the PIN policies for the slot where the private

key is generated.

Supported in YubiKey 4.3 and

newer.

Ability to attest and verify the device SN, model/firmware version of the token

on which the key/CSR is generated.

Supported

Ability to create a CSR using the private keys created in the hardware token. Supported

Ability to import externally signed certificates to the slot that has the associated

private key.

Supported

Support for multiple slots Supported

Smartcard Logon Related Requirements

Requirement Finding

Smartcard Logon to Remote Windows Servers using

Remote Desktop Client

Works only in Windows. The Remote Desktop Client for

Mac doesn’t support Smartcard logon.

Smartcard pairing to local user account on Mac Supported

Smartcard pairing to local user account on Windows Supported

TLS Certificate Based Authentication Related Requirements

Requirement Finding

Certificate Based Authentication

to Websites on MacOS

Works in Safari, Chrome and Firefox with OpenSC installed. In Firefox

OpenSC PKCS11 module should be loaded for this to work.

Certificate Based Authentication

to Websites on Windows

Supported

SMIME Email Signing using the Certificate in YubiKey

Requirement Finding

Email Signing on MacOS Works in Microsoft Outlook with OpenSC installed.

Email Signing on Windows Works in Microsoft Outlook

	Abstract
	Introduction
	Smartcard Use Cases
	CCID and PIV Standards
	Limitations with Traditional Smartcards

	Evolution of Strong Authentication at Cisco
	Safeword Premier Access
	GGSG Smartcard Program
	Corporate Smartcard Program
	AdminToken Program
	Need for a new solution

	Solution Description
	Functional Requirements
	High Level Design
	Token Selection Criteria
	Advantages

	CryptoID Use Cases
	Admin/User Token Use Cases
	S/MIME Use Case

	Implementation Details
	Overview
	AdminToken and UserToken Provisioning
	S/MIME Provisioning
	De-Provisioning
	One Time Password (OTP) Seed Provisioning
	Libraries, Tools, IDEs
	Development Time

	Future Enhancements
	Other Token Types
	Platform Native CryptoID Tools
	S/MIME Certificates for Vanity Email Aliases
	S/MIME Certificates for Mailers
	UserToken for Generic Accounts

	Lessons Learned / Key Considerations
	Token use in VMware
	MacOS Catalina Issues
	Involvement of Infrastructure Teams

	Return on Investment (ROI)
	Token Reliability
	Token Consolidation
	Licensing/Maintenance Costs
	Support Cases

	Conclusion
	Appendix A: yubico-piv-tool and ykman Commands
	Appendix B: CryptoID Provisioning Request Data
	Appendix C: OTP Registration Request Data
	Appendix D: Firefox Configuration for TLS Client Authentication
	Appendix E: VMware Configuration for dedicated YubiKey
	Appendix F: Sample Token Selection Criteria Checklist Form
	Self-Provisioning Related Requirements
	Smartcard Logon Related Requirements
	TLS Certificate Based Authentication Related Requirements
	SMIME Email Signing using the Certificate in YubiKey

