
My Ticks Don’t Lie:
New Timing Attacks for Hypervisor Detection

Daniele Cono D’Elia

#BHEU @BLACKHATEVENTS

@dcdelia

#BHEU @BLACKHATEVENTS

WHO AM I
Post-doc @ Sapienza University of Rome

Software and systems security
(malware, code reuse attacks, obfuscation, testing)

BHEU’19: BluePill system for evasive malware
(Neutralizing Anti-Analysis Behavior in Malware Dissection)

Turning sides

this year:

red pills J

#BHEU @BLACKHATEVENTS

OUTLINE

• Discrepancies of virtualization
• Building a covert time source
• Retrofitting and testing red pills
• LLC prime+probe evasion
• Outlook

#BHEU @BLACKHATEVENTS

MALWARE ANALYSIS TODAY

• Hypervisors cannot be avoided
• sandboxes run VMs on servers
• VM introspection to implement sandbox components
• analysts use VMs as well

• Truly bare-metal proposals are expensive

#BHEU @BLACKHATEVENTS

VIRTUALIZATION 101
VMX operation enables CPU support for virtualization
• Virtual Machine Monitor (VMM) acts as host: retains selective control of hw

resources and offers virtual processors to guests
• VMM runs in VMX root mode, guest in non-root mode

VMCS (VM Control Structure) regulates
VMX transitions and non-root operation

(from: Intel 64 and IA-32 Architectures SDM)

#BHEU @BLACKHATEVENTS

VIRTUALIZATION IS IMPERFECT

• Goals: compatibility, performance
• Garfinkel [HotOs’07]: «building a transparent VMM is fundamentally

infeasible from a performance and engineering standpoint»
• Many enhancements since first VT-x generation

• fewer page faults, no TLB flush on VM entry
• smaller latencies

• Transitions to VMM are inevitable though

#BHEU @BLACKHATEVENTS

THE CPUID CASE

• cpuid instruction causes a VM exit event
• Upon it VMM can control exposed properties of the virtual CPU

size_t ecx;
__asm__ volatile ("cpuid" : "=c"(ecx) : "a"(1) : ...);
printf("%d\n", (int)(ecx >> 31));

31st bit of Extended Feature Information is the «hypervisor» bit

#BHEU @BLACKHATEVENTS

TIMING VM EXIT EVENTS

movl $1, %eax
mfence
rdtsc
movl %eax, %esi
cpuid
rdtsc
subl %eax, %esi
negl %esi

An old detection: compare execution
time of cpuid to bare-metal baseline

CPU: Intel i7-4980HQ
Native: ~300 cycles
VirtualBox 5.2: ~3000 cycles

#BHEU @BLACKHATEVENTS

REMEDIATIONS FOR SANDBOXES

• Track instructions causing VM exit (detection only)
• Optimize VMM code to reduce VM exit overhead
• Fake values returned by time sources

• rewrite output of time APIs
• make rdtsc cause a VM exit too, then alter its returned

values (e.g. keep track of time spent in VMM)
• simple faking schemes are easily broken

#BHEU @BLACKHATEVENTS

THE JAVASCRIPT LESSON

• Microarchitectural attacks from browsers!

• «The Spy in the Sandbox» (CCS’05) with performance.now()
• Browser vendors reduced its resolution to 5 !s

• «Fantastic timers and where to find them» (FC’17)

• recover resolution from coarse-grained clock

• build alternative covert time source

#BHEU @BLACKHATEVENTS

BUILDING A COVERT TIME SOURCE
volatile uint64_t counterClock;

// spawn a cthread
while (1) {

counterClock++;
}

// main code
uint64_t start, end;
start = counterClock;
__asm__ volatile ("cpuid" ...);
end = counterClock;

Issues:
- fast enough?
- reliable?
- serialization?

#BHEU @BLACKHATEVENTS

APPROXIMATE RESOLUTION

GET_TIME() is rdtsc or counterClock

In recent Intel CPUs TSC ticks at nominal
frequency (check with cpuid for TSC
bits CONSTANT and NONSTOP)

QPF’s freq := counts per second

#BHEU @BLACKHATEVENTS

APPROXIMATE RESOLUTION

Example: Intel(R) Core(TM) i7-4980HQ CPU @ 2.80GHz

QPF’s freq := 10 millions updates per second
Tried 100 repetitions with sleep of 1000 ms

rdtsc: ~2793.5 Mhz
cthread: ~540 Mhz (~400 without TurboBoost)

#BHEU @BLACKHATEVENTS

A CLEVER IMPLEMENTATION

From: «Malware Guard Extension: abusing Intel SGX
to conceal cache attacks» by Schwarz, Weiser, Gruss,
Maurice, Mangard. Springer Cybersecurity, 2020.

Trick: avoid reading counter value
from memory to update it!

Why: cost of L1 access time impacts
update frequency; inc and mov
have good latency and throughput

volatile uint64_t counterClock;

// spawn a thread
__asm__ volatile(

"xorq %%rax, %%rax ;"
"movq %0, %%rcx ;"
"1: incq %%rax ;"
" movq %%rax, (%%rcx) ;"
"jmp 1b ; "

:
: "r"(&counterClock)
: "rax", "rcx");

#BHEU @BLACKHATEVENTS

A CLEVER IMPLEMENTATION
volatile uint64_t counterClock;

// spawn a thread
__asm__ volatile(

"xorq %%rax, %%rax ;"
"movq %0, %%rcx ;"
"1: incq %%rax ;"
" movq %%rax, (%%rcx) ;"
"jmp 1b ; "

:
: "r"(&counterClock)
: "rax", "rcx");

i7-4980HQ (Haswell)
rdtsc: ~2793.5 Mhz
cthread: ~540 Mhz (~400 no TB)

cthread+: ~3500 Mhz (~2230 no TB)

[Schwarz20] (Skylake)
0.87 updates/cycle thanks to ILP

#BHEU @BLACKHATEVENTS

CORES AVAILABLE

Idea: schedule two threads on mutually exclusive CPU sets, each runs a
loop that checks if the other is running. Detects single-core machine

Adapted from «Detecting hardware-assisted virtualization» [DIMVA’16]

SYSTEM_PROCESS_INFORMATION spi;
SYSTEM_THREAD_INFORMATION sti*;
NtQuerySystemInformation(SystemProcessInformation, &spi, ...)
sti = spi[current_pid][other_tid]
if (sti->ThreadState == Ready) ... // not running

#BHEU @BLACKHATEVENTS

CORES AVAILABLE

The sandbox may fake query results? We can avoid OS APIs

Race two threads, check sum of two
count variables < LOOP_COUNT/2

(why: count increases when counter
from other thread was not updated)

#BHEU @BLACKHATEVENTS

COUNTER THREAD SCHEDULING

Counter threads may be descheduled, especially with few cores

Monotonicity preserved, but stale values are a problem
• set a high priority for the thread... !
• what if we poke the counter?!? "

#BHEU @BLACKHATEVENTS

COUNTER THREAD SCHEDULING

uinptr_t last, start;
last = counterClock;
do {

start = counterClock;
} while (start == last);

Check for a heartbeat

We read the current counter
value, then read again until it
changes: that’s our start time...

Use fences to serialize start and end measurements

#BHEU @BLACKHATEVENTS

RETROFITTING RED PILLS

We studied several time-based VM detections
• wrote rdtsc-based, serialized red pills

• ignored EDX
• did not rely on RDTSCP availability

• plugged CT primitives in the code
• compared results of two schemes

#BHEU @BLACKHATEVENTS

DETECTION 1: CPUID LATENCY

Time to execute cpuid > threshold
• A bad sign for a sandbox... J
• Initialize EAX=1
• Common settings

• compute avg time from N=10 observations
• 1000 threshold

#BHEU @BLACKHATEVENTS

DETECTION 2: LOCKY

Locky trick with GetProcessHeap/CloseHandle ratio
• GetProcessHeap() very fast on bare-metal
• ...but so is on hw-assisted virtualization!
• Compare execution time to slower CloseHandle()
Detects emulators or traps on PEB/TEB accesses

#BHEU @BLACKHATEVENTS

DETECTION 3: CPUID/NOP RATIO

Execution time ratio between cpuid and another instruction
• Absolute values: CPU-dependent, forgeable
• Idea: different instructions execute similarly slower or faster under

different CPUs and conditions
• Use a low-latency instruction as reference (e.g. nop)

Reproduction of «Detecting hardware-assisted virtualization» [DIMVA’16]

#BHEU @BLACKHATEVENTS

DETECTION 4: TLB EVICTION

Look for TLB entries evicted by VMM execution
• Fill TLB and cause a VM exit. Then analyze memory access latencies
• Pros: not fooled by subtracting VMM time
• Cons: universal TLB filling strategy?

#BHEU @BLACKHATEVENTS

DETECTION 4: TLB EVICTION

Linear filling [DIMVA’16]
• Guess TLBsize

• Try common values by increasing order
• Correct value is usually the one right before self-eviction starts

• Allocate TLBsize pages. Use clflush for L* effects
• Measure max access time among all pages

Reproduction of «Detecting hardware-assisted virtualization» [DIMVA’16]

#BHEU @BLACKHATEVENTS

POKING SANDBOXES

• We submitted a harmless poking program to many sandboxes
• Public services, subscriptions
• Many people downloaded it from feeds!

• Preliminary study
• 272 execution instances
• 81 not immediately interrupted
• 76 completed at least 3/4 of our tests

#BHEU @BLACKHATEVENTS

COUNTERS IN SANDBOXES?
Timing primitives
Ø CT vs TSC frequency

• >= TSC 44% of machines
• >= 0.5 TSC 62.5%
• >= 0.4 TSC 84.4%

(and in many cases TSC frequency was significantly different than
what you’d expect for the CPU model exposed by the system...)

#BHEU @BLACKHATEVENTS

RESULTS FOR CPUID

• Detection 1 fast but not very reliable. When lower, we considered
also the the cpuid latencies recorded for Detection 3. Overall:
• 23/76 < 1000 TSC delta
• 33/76 [1000, 10000]
• 10/76 > 10000

• CT values also high when TSC>1000. As for the 23 below it:
• 14 tested as single-core !
• 6 fake TSC values (CT high)
• 1 QEMU case, 1 timed out too fast, 1 borderline

#BHEU @BLACKHATEVENTS

RESULTS FOR LOCKY AND DIMVA16
• Locky test gave surprising results

• 23/76 were running in an emulator or trapping
• 13 of them also tested as single-core

• cpuid/nop ratio detected 55/76 machines. Then:
• 2 failed Locky, 7 had fake TSC values
• 12 with high noise for nop, same with CT

• TLB eviction completed by 52 machines
• high/unstable latencies for 23
• 24/29 detected, no discrepancies

#BHEU @BLACKHATEVENTS

NEW DETECTION: LLC PRIME+PROBE

Look for effects on caches quite reliable to measure

Idea: search for LLC lines evicted by VMM execution

Why LLC?
• high resolution
• shared between cores
• (usually) inclusive

#BHEU @BLACKHATEVENTS

LLC FUNCTIONING

program
address space

MMU
virtual

address physical
address

physical
memory

sets

last level
cache

ways

Slice 1

Slice 2

#BHEU @BLACKHATEVENTS

PRIME+PROBE ATTACK

i-th cache set
(16-way associative)

fill each cache set entry

VMM may evict one
or more lines

Some attacker-controlled lines will see higher latency from LLC miss!

#BHEU @BLACKHATEVENTS

FILLING LLC SETS?
• An eviction set contains virtual addresses that map to one cache set
• Cache associativity determines optimal size
• We need to build a minimal eviction set for all available colors

#BHEU @BLACKHATEVENTS

LLC ADDRESSING

virtual
address

MMU

physical
address

011

cache tag set index line offset

color
5 0

#BHEU @BLACKHATEVENTS

EVICTION SETS IN A VM?

virtual
address (VA)

gPT

guest physical
address (GPA)

011

guest page
table

hPT

host physical
address (HPA)

host page
table

In a sandbox we have
no knowledge of the
mapping VA-HPA

#BHEU @BLACKHATEVENTS

FINDING EVICTION SETS

Theory and Practice of Finding Eviction Sets [S&P’19]
• no assumptions on the mapping between VAs and cache sets
• choose a buffer large enough (≈ cache size) to evict a target
• prune it to build an eviction set
• O(n*w2) makes it rather practical

#BHEU @BLACKHATEVENTS

LLC P+P FOR VM DETECTION

pick eviction set(s)

preload stage + prime

compute max access time
among lines in set

cpuid
VMM executes

#BHEU @BLACKHATEVENTS

EXPERIMENTS

Implementation
• OS-agnostic, can use rdtsc or counter threads
• tested on Intel CPUs from Ivy Bridge to Whiskey Lake
• different combinations of VirtualBox, VMware, KVM, Xen

#BHEU @BLACKHATEVENTS

SELECTED RESULTS

For other CPU/hypervisor/host configs we observed very similar trends

i7-8665U (8MB, 16w, 128 colors)

VirtualBox 6.1, Win host: 20/128

VirtualBox 6.1, Linux host: 18/128

VMware W. Pro 15, Win host: 10/90 found

QEMU-KVM 4.2.50: 13/128

Typical running time: 2-3’

More VirtualBox configurations:

5.2.44, Linux host, i7-3437U: 7/64

5.2.18, Mac host, i7-4980HQ: 9/128

6.1.16, Win host, i7-4770HQ: 17/128

5.2.38, Win host, i9-8950HK: 10/192

A custom VMM may pollute even more cache sets during analysis

#BHEU @BLACKHATEVENTS

LIMITATIONS

• Execution time may be long (> timeout) for big caches
• Eviction set construction may fail (e.g. non-inclusive LLC)

Next directions
• «Attack Directories, Not Caches» [S&P’19] non-inclusive
• «Dynamically Finding Minimal Eviction Sets Can Be Quicker Than You Think for

Side-Channel Attacks against the LLC» [RAID’19] speed

#BHEU @BLACKHATEVENTS

OUTLOOK

@dcdelia
Stay tuned :)

«μarch
!

malware» could be a promising research area

DEFENSES

• static & dynamic code analyses

• performance counters

THREATS
• look for specific VMM features

• try other µarch «vectors»

#BHEU @BLACKHATEVENTS

CREDITS
For their help in different stages !
• Cristian Assaiante
• Pietro Borrello
• Federico Palmaro

...and to FlatIcon.com for making this presentation just a bit more entertaining!

#BHEU @BLACKHATEVENTS

Thank You!

