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Abstract

Type confusion bug (or bad casting) is a popular vul-
nerability class to attack C++ software like the web
browser, document reader. This bug occurs once a pro-
gram typecasts and uses an object as an incompatible
type. An attacker could exploit this vulnerability to exe-
cute malicious code in the target software.

Previous researches to detect type confusion bugs have
been performed at the source-level. It inserts codes that
verify type compatibility in the typecasting operator to
perform detection at runtime. These approaches cannot
be applied in binary-level, because high-level informa-
tion such as class hierarchy and the typecasting operator
does not exist in the compiled binary. However, many
popular softwares such as Adobe Reader, Microsoft of-
fice are provided with binary only.

In this paper, we propose BinTyper, a type confusion
detection tool that can be used in binary-level. BinTyper
splits the internal layout of classes into multiple areas
via static analysis. After that BinTyper recovers the min-
imum type information required for the binary to be ex-
ecuted without triggering the type confusion bug via dy-
namic analysis. Based on this information, the target bi-
nary can be executed with the verification to detect the
type confusion bug.

Keywords - Type confusion; Bad casting; Type safety;
Typecasting; Black-box testing; Binary analysis
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1 Introduction

Object-oriented programming is a paradigm for ex-
pressing a program through a set of objects and in-
teractions between objects. Object-oriented program-
ming is used for complex and large-scale software de-
velopment because it is easy to maintain and reusable.
Among the object-oriented programming languages such
as C++, JAVA, and Python, many of the performance-
critical software such as Chrome and Firefox use C++
for development.

One of the important features to support polymor-
phism of object-oriented languages is typecasting be-
tween objects. By typecasting, the same object can be
converted from the original type to the target type. This
allows developers to write code concisely and intuitively
by expressing various derived classes as a common par-
ent class. In this case, if type-specific work is needed for
a specific derived class, typecasting(downcasting) from
the parent class to the derived class can be performed.

Upcasting works safely because the derived class im-
plies the parent class. However, when downcasting a
parent class to a derived class, it is not known whether
the target object is actually typecastable to a derived
class(so-called typecasting compatibility). If an object
is typecasted to an incompatible class type, the program
treats the object as an incorrect type (so-called type con-
fusion bug or bad casting). The result is unintended be-
havior, and an attacker can abuse it to develop an exploit.

C++ provides dynamic_cast as a typecasting opera-
tor that verifies compatibility at runtime. However, dy-
namic_cast is slower than static_cast, a typecasting op-
erator that verifies compatibility only at compile time
(more than 10 times slower in our experiment). For this
reason, performance-critical software such as OS and
Web browser perform typecasting through static_cast.
Therefore it makes a type confusion bug may occur
since static_cast does not verify typecasting compatibil-
ity at runtime. The following examples show examples



of Type confusion bugs found in popular software such
as web browsers: ChakraCore (CVE-2020-1219 [6]),
Adobe Reader (CVE-2019-8221 [5]), Vbscript (CVE-
2017-8618 [4])

Previous researches for runtime type confusion bug
detection have been performed at the source code level.
These researches detect type confusion bugs occurring
at runtime by inserting code that verifies typecasting
compatibility at the point where the typecasting oper-
ator is used in the process of compiling C++ source
code. Google’s UBSan [18] replaced static_cast with
dynamic_cast to verify typecasting compatibility based
on RTTI. CaVer [31], TypeSan [26], and HexType [28]
verify typecasting compatibility based on the Custom
Type metadata structure. However, the utility of these
researches is limited to White-box testing. It is difficult
to apply the above researches[31][26][28] to Blackbox-
testing because Blackbox-testing is usually performed
without the source code and only the binary is given.

Previous researches focusing on Black-box testing
(GFlags [10], Application Verifier [1], Electric Fence [9],
RetroWrite [21], Valgrind [19], DrMemory [7]) are used
for memory corruption bug detection like object lifetime
issue(Use-after-free) and boundary issue (Buffer over-
flow, Out-of-bound access). Since these researches are
not designed to detect type confusion bugs, they have a
limitation that they can detect type confusion bugs in spe-
cific situations only (e.g. access beyond type-confused
object boundary).

In this paper, we present BinTyper, a runtime type con-
fusion tool that can be applied to C++ binaries. This tool
performs static analysis to analyze the class hierarchy
and the layout inside the class. And with dynamic anal-
ysis, it identifies the information of the target object to
correctly execute assembly instructions that interact with
the object without causing a type confusion bug. After
that, it executes the target binary based on the identified
information and detects the runtime type confusion bug.

In summary, we make the following contributions for
type confusion bug detection:

• We present BinTyper, a tool that detects runtime
type confusion bugs against C++ binaries. To the
best of our knowledge, BinTyper is the first study to
detect a type confusion bug at the binary-level.

• We organize key challenges on detection type con-
fusion bug binary-level.

• We propose Area-based Type confusion detection,
a method that can be applied for binary type confu-
sion bug detection.

• We present a method to analyze the condition of the
object required by the instruction for the correct ex-
ecution that interacts with that object.

2 Background

2.1 Type system of C++
This section provides background information on the

C++ language type system and the type confusion bug,
which is a bug caused by the characteristics of the type
system.

2.1.1 C++ class

C++ is an object-oriented language and has a class
concept. The class supports member variables and mem-
ber functions as user-defined types. Developers can cre-
ate objects based on the class, access member variables
of each created object, and call its methods. Classes can
be constructed by inheriting other classes. The inherited
class is called the child class or the derived class, and
the classes that are the target of inheritance are called the
parent classes. Child class has the characteristics of in-
herited parent class: It holds member variables of parent
class and methods of the parent class. The child class
can define additional member variables and methods of
its own, which do not exist in the parent class. Since the
child class includes the parent class, an object of the child
class can be stored in a variable of the parent class type.
In this case, when an operation on the parent class type
(member variable access, method call, etc.) occurs, ac-
cess is performed to the area of the parent class inside of
the child class. Also, C++ supports polymorphism using
the concept of virtual functions. Even if a method of the
same name is called, the method actually called depends
on the type of the object actually stored in the variable.

2.1.2 Typecast and Type confusion bug

The C++ language supports typecast operations to
convert the type of variables. There are four types
of typecast operations: reinterpret_cast, static_cast,
dynamic_cast, and C-style cast. reinterpret_cast is
used in the form of reinterpret_cast<destination_type>
(source_variable). This typecast operation does not
verify whether conversion between source_variable
type and destination_type is possible(typecasting
compatibility). static_cast is used in the form of
static_cast<destination_type> (source_variable).
static_cast verifies source_variable type and destina-
tion_type compatibility at compile time. The static_cast
checks whether the type of the source_variable type and
the destination_type are compatible with the inheritance
relationship through the class hierarchy. dynamic_cast
is used in the form of dynamic_cast<destination_type>
(source_variable). dynamic_cast is a typecast oper-
ation that verifies compatibility at runtime. At the
time of typecasting, the type conversion compatibility
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1 c l a s s A {
2 p u b l i c :
3 long a ;
4 } ;
5 c l a s s B : p u b l i c A {
6 p u b l i c :
7 long b ;
8 } ;
9 c l a s s C : p u b l i c B {

10 p u b l i c :
11 long c ;
12 } ;

(a)

(b)

1 t h i s −>c = 0 x1234 ;

(c)

1 mov qword p t r [ r d i +0x10 ] , 0 x1234

(d)

1 /∗
2 qword p t r [ rbp −24]
3 p o i n t s o b j e c t which
4 has v i r t u a l methods
5 ∗ /
6 mov rax , qword p t r [ rbp −24]
7 mov rdx , qword p t r [ rbp −24]
8 mov rdx , qword p t r [ rdx ]
9 mov rdx , qword p t r [ rdx +0x8 ]

10 mov r d i , r a x
11 c a l l rdx

(e)

Figure 1: Class layout and its assembly representation. (a) Sample of C++ classes. (b) Class layout. (c) C++ code
accessing member varaible. (d) Assembly representation of member variable access. (e) Assembly representation of
virtual function call.

between the actual type of the object stored in the
source_variable and the destination_type is verified. To
verify this type conversion compatibility, dynamic_cast
searches RTTI information of an actual object stored
in source_variable. reinterpret_cast and static_cast
typecast operations exist only in the source code and
these are used to verify type compatibility at compile
time, and the typecast operator information is not
left in the compiled binary. On the other hand, when
dynamic_cast typecast operation is used, additional code
for performing type verification at runtime is inserted
into the binary, so information about the typecast
operation remains in the compiled binary. C-style cast is
used in the form of (destination_type)source_variable.
When C-style cast is used, the compiler tries typecast
in the order of const_cast (typecast operation to remove
const of variables), static_cast, and reinterpret_cast and
uses the first successful typecast. That is, C-style cast is
the same as one of static_cast and reinterpret_cast.

The type confusion bug occurs when a variable is type-
casted to an incompatible destination type. Typecast op-
erations, except dynamic_cast, verify type compatibility
only at compile time. Therefore, if a source variable that
is not compatible with the destination type is provided at
runtime, the compatibility of the type for type conversion
cannot be verified. As a result, the program is executed
with the variable being considered as the wrong type,
leading to unintended behavior. Although it is possible to
prevent incorrect type conversion by using dynamic_cast

operation that verifies type compatibility at runtime, dy-
namic_cast searches for RTTI to verify type conversion
compatibility, which leads to a decrease in program per-
formance. Therefore, large-scale software [16][11] does
not use dynamic_cast for most type conversions. As a
result, the compatibility of typecasting can be verified
only at compile time and there is a possibility of a type
confusion bug.

2.2 Assembly representation of C++ codes

At the binary level, C++ source code is converted into
assembly instructions. This section describes how class-
related C++ source code is expressed in assembly in-
structions. This section is intended for compilers using
the Itanium C++ ABI [14].

2.2.1 Class Layout and Inheritance

Figure 1(a) and (b) show the C++ class source code
sample and the layout of the class. To create objects,
the compiler allocates memory. The size of the allocated
memory is determined by the size of member variables
defined in the class, and the object is placed in the al-
located memory. Figure 1(a) shows class definition and
memory layout of created object. The member variables
of the class are located in order from the object’s start-
ing point (this). If the class has a virtual method (vir-
tual function), the pointer to the VTable is located at
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the initial starting point of the object, and the member
variables are located immediately afterward (the pointer
to the VTable becomes the first member variable). The
VTable will be explained further later.

When a class inherits a parent class, the child class can
not only have the member variables and methods of the
parent class but also additionally have its own member
variables and methods. The class layout of child classes
is organized as shown in Figure 1(b). The class layout
of the child class consists of the member variables of
the child class located after the class layout of the par-
ent class.

2.2.2 Class member variables and methods

Class member variables are located consecutively
from the beginning of the object allocated in memory.
The access to the member variable of the object is made
by accessing the address of the object starting address
(this pointer) plus a specific offset (determined according
to the member variable). Figure 1(c) and (d) show C++
sample code and assembly expression to access member
variable of an object. The member variable c is located
at offset 0x10 and the rdi register points to this pointer.
Therefore, the code to assign 0x1234 to member variable
c is expressed as Figure 1(d).

2.2.3 Class constructor and destructor

Class constructors and destructors are special meth-
ods called when an object is created or destroyed. The
child classes that inherit the parent class has the follow-
ing characteristics: (1) Call the constructor of the parent
class before executing the code of its constructor; (2) Call
the destructor of the parent class after executing the code
of its destructor do. The constructor and destructor of the
child class call the constructor and destructor of the par-
ent class with their this pointer as the this pointer of the
method call. Since this pointer passed to the construc-
tor and destructor of the parent class is the same as this
pointer passed to the constructor and destructor of the
child class, the same object can be initialized or cleaned
up.

2.2.4 Virtual function table and Virtual function
call

C++ uses the concept of virtual functions to imple-
ment polymorphism. A class having virtual methods
(polymorphic class) has a data structure called VTable
for each class. VTable stores virtual method addresses.
VTable is stored in the read-only section of the binary
file. In the constructor of the polymorphic class, the ad-
dress of the VTable is stored as the first member variable
at the starting point of the object. The virtual method

call is made through the following process as shown in
Figure 1(e): (1) The first member variable of the object
is read and the address of the VTable is obtained; (2) In
VTable, the offset to the corresponding virtual method is
added to obtain the address of the actual virtual method
function; (3) The obtained virtual method function is
called. Therefore, the virtual method to be called may
differ depending on the object actually provided at run-
time.

3 Solution Overview

3.1 Threat model and Assumptions
BinTyper detects a type confusion bug at the point

where the target application accesses a member variable
of a polymorphic object. The target application has a
type confusion bug and it is triggered once a malformed
input is given.

We assume that no source code is given since the RTTI
information doesn’t exist in every binary. We target bi-
naries compiled based on Itanium C++ ABI [14]. Vari-
ous previous researches have been performed on Itanium
C++ ABI, which is used by major Linux C++ compilers
such as GCC and Clang/LLVM.

3.2 Key Challenges
we must solve key challenges in detecting type

confusion bugs in binaries since there is no high-level in-
formation such as source code. We listed the challenges
below and Figure 2 shows examples of the challenges.

C1: Vanished Type Casting Operators Figure 2(b)
shows an example of downcasting. The typecasting
on Line 4 is downcasting. Therefore, when the actual
object pointed to by variable a is not class B and
derived class of B, a type confusion bug will occur.
Previous source-level researches for detecting type
confusion bugs [31][26][28] attempted to detect type
confusion bugs by adding verification code to type-
casting operators. The inserted code checks whether
the actual type of the source object can be typecasted
to the destination type. However, the typecasting
operators except dynamic_cast exist only in the source
code. As a result, there is no typecasting operator in
compiled C++ binaries, which makes it difficult to deter-
mine when to perform detection of type confusion errors.

C2: Missing Class Information Figure 2(b) shows
typecasting from class A to class B on line 4. In order
to check the safety of this typecasting, inheritance
relationship information(class hierarchy) between the
actual object type and the destination type of typecasting
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1 c l a s s A {
2 p u b l i c :
3 long c o u n t e r ;
4 } ;
5 c l a s s B : p u b l i c A {
6 long y e a r ;
7 } ;
8 c l a s s C {
9 p u b l i c :

10 c h a r ∗ s t r ;
11 } ;

(a)

1 A∗ a = foo ( ) ;
2 B∗ b ;
3 / / t y p e c a s t i n g
4 b = s t a t i c _ c a s t <B∗>( a ) ;

(b)

1 vo id I n c r e a s e C o u n t e r (A∗ a ) {
2 a−>c o u n t e r ++;
3 }
4 vo id NextChar (C∗ c ) {
5 c−> s t r ++;
6 }

(c)

1 push rbp
2 mov rbp , r s p
3 mov qword p t r [ rbp −8] , r d i
4 mov rax , qword p t r [ rbp −8]
5 mov rcx , qword p t r [ r a x ]
6 add rcx , 1
7 mov qword p t r [ r a x ] , r c x
8 pop rbp
9 r e t

IncreaseCounter(A*)

1 push rbp
2 mov rbp , r s p
3 mov qword p t r [ rbp −8] , r d i
4 mov rax , qword p t r [ rbp −8]
5 mov rcx , qword p t r [ r a x ]
6 add rcx , 1
7 mov qword p t r [ r a x ] , r c x
8 pop rbp
9 r e t

NextChar(C*)

(d)

Figure 2: Examples of key challenges. (a) Sample of C++ classes. (b) Type casting example. (c) Source code of
sample functions. (d) Assembly code of sample functions, generated by x86-64 clang 9.0.0 compiler.

is needed. As described in the Background section, the
C++ compiler removes high-level information during
compilation. As a result, there is no class hierarchy
information in the compiled C++ binary.

C3: Unknown Runtime Type Information Fig-
ure 2(c) shows the source code of two functions,
IncreaseCounter and NextChar. Each function requires
a different type of argument and accesses the member
variable of each argument: (1) The IncreaseCounter
function receives a class A argument and increments the
value of the int type member variable named counter by
1; And (2) NextChar function receives class C argument
and increases the value of char* type member variable
named str by 1. Figure 2(d) shows the assembly code
generated from the source code of Figure 2(c) by the
C++ compiler. The high-level information in the source
code has been removed, resulting in IncreaseCounter
and NextChar functions having the same assembly code,
even though the function operates on different classes
and different member variables. Due to this, it is difficult
to determine the type of object required for benign
execution of assembly code which do not trigger type
confusion bug.

3.3 Our approach

Figure 3 shows an overview of our approach.
BinTyper solves the aforementioned challenges by
combining static and dynamic analysis. BinTyper
executes binaries with detection of type confusion bugs
targeting polymorphic classes. Key ideas of BinTyper is
as follows.

Class information is recoverable During compilation,
the high-level information existing in the source code
including the class inheritance structure is removed. As a
result, the compiled binary does not directly reveal class
information or inheritance (parent-child) information
written in the source code. Nevertheless, it is possible
to identify this information indirectly from assembly
expressions for implementing C++ class concepts such
as constructor/destructor calls and virtual function
tables. Previous researches [24][30][42][35][38][23]
show that indirect information can be used to recover
class information and class inheritance relationship
information from binaries.

Assembly representation doesn’t be shared Fig-
ure 2(c) and (d) show the source code of two functions
and the assembly code generated from the source code.
The same assembly representation is created although
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Figure 3: An overview of BinTyper

the two functions operate on different variable types.
Although both functions are expressed in the same
assembly code, the assembly expression corresponding
to each function is created separately and the functions
are called separately. That is, the variable type used by
the assembly code corresponding to a single function is
uniquely designated.

Class Object is composed of several areas Fig-
ure 1(b) shows the internal structure of the class object
in memory. The class object is composed of the parent
class area and the own class area, and the own class
area is consecutively located after the parent class area.
The parent class area means the space where member
variables defined in the parent class are located, and the
own class area means the space where member variables
defined in the corresponding class are located. This area
composition information (we will refer it as Area Layout
Information) inside these class objects is accumulated
when multiple inheritances are made. For example,
suppose there are child classes B of class A and child
class C of B as shown in Figure 1(a) and (b), and each
class has one member variable named a, b, c. In this
case, the area layout of class C is composed of class A
area, class B area, and class C area. Member variable a is
located in the class A area, member variable b is located
in the class B area, and member variable c is located in
the class C area. This Area Layout Information can be
inferred through class hierarchy, class constructor, and
member functions.

Type confusion bug is triggered once an area
does not exist In Figure 4, (a)-(f) convert the argument
type to B* and call functions func1 and func2. The
func1 function accesses the member variable a defined

in class B’s parent class A. The func2 function accesses
the member variable b defined in class B, a derived
class. The function calls in (c) and (d) do not cause
any problems because the object with actual class type
B is converted to class B type. In (a), the object of
actual class type A is downcasted to class B type, but
no problem actually occurs. This is because it accesses
only the class A area of the object area passed as the
func1 function argument. Therefore, if a class A area
exists in the object passed as an argument, it operates
correctly without type confusion bug. In this example,
the actual class type of the object passed as an argument
is A, so there is no error because class A area exists. The
function call in (e) also converts the object of actual
class type C to class B type. It works without problems
because class A area exists too. On the other hand, (b)
and (f) are problematic typecasting. This is because the
func2 function requires a class B area, but neither class
A nor class C, the actual class types of (b), and (f), have
a class B area. Previous researches [31][26][28] detect
type confusion bug based on the typecasting operator of
the source code. However, since the typecasting oper-
ators are removed during compilation, this approach is
difficult to apply at the binary-level. Instead, as another
example shows, we can detect the type confusion bug
regardless of C1 by checking whether the area which
is needed for proper execution exists in the actual class
type of the object. The existence of a specific area in
an object indicates that the class type of the object is a
class corresponding to the area or a child class of a class
corresponding to the area. Therefore, if the area which is
needed for proper execution does not exist in the actual
class type of the object, it means that a type confusion
bug has occurred. This is the key idea of BinTyper. In
this paper, we will refer to the method which performs

6



1 c l a s s A {
2 p u b l i c :
3 i n t v a r _ a ;
4 }
5
6 c l a s s B : p u b l i c A {
7 p u b l i c :
8 i n t va r_b ;
9 }

10
11 c l a s s C : p u b l i c A {
12 p u b l i c :
13 i n t v a r _ c ;
14 }
15
16 vo id func1 (B∗ b ) {
17 / / Access a r e a o f c l a s s A
18 b−>v a r _ a = 0 x a a a a a a a a ;
19 }
20
21 vo id func2 (B∗ b ) {
22 / / Access a r e a o f c l a s s B
23 b−>var_b = 0 xbbbbbbbb ;
24 }
25
26 i n t main ( ) {
27 A a ;
28 B b ;
29 C c ;
30 func1 ( ( B∗)&a ) ; / / ( a ) Non−p r o b l e m a t i c
31 func2 ( ( B∗)&a ) ; / / ( b ) P r o b l e m a t i c
32 func1 ( ( B∗)&b ) ; / / ( c ) Non−p r o b l e m a t i c
33 func2 ( ( B∗)&b ) ; / / ( d ) Non−p r o b l e m a t i c
34 func1 ( ( B∗)&c ) ; / / ( e ) Non−p r o b l e m a t i c
35 func2 ( ( B∗)&c ) ; / / ( f ) P r o b l e m a t i c
36 }

Figure 4: Examples of key challenges

type confusion bug detection by checking the existence
of the area as Area-based Type confusion bug detection.

BinTyper detects a type confusion bug at the time
of execution of an assembly instruction accessing an
object. Detection of the type confusion bug is performed
by area-based type confusion bug detection that checks
whether a specific area exists in the object accessed by
the assembly instruction. Since it can be performed
without a typecasting operator, it can be applied regard-
less of C1. Here, the ’Specific area’ means the area to be
accessed when the corresponding assembly instruction
is executed normally without triggering a type confusion
bug. This cannot be determined by analyzing single
assembly instruction snippets statically. This is because
the assembly code generated from each of the source

codes using different types may be the same because
the high-level information existing in the source code
is removed during the compilation process (C3). To
solve this, BinTyper applied both dynamic analysis and
static analysis. In dynamic analysis, Runtime Access
Information is logged while the target binary is normally
executed without the occurrence of a type confusion bug.
This includes the following information: the assembly
instruction executed, the type information of the object
accessed by the assembly instruction, and the offset
from the starting address of the accessed object. After
that, we analyze the Area Layout Information which is
the area structure inside the class object. For this, class
hierarchy information is required. Class inheritance and
class hierarchy information do not exist in the binary
(C2), but various researches to recover the inheritance
hierarchy through static analysis from the compiled
binary have been previously proposed and we can use
this to recover the class hierarchy information. The area
accessed by each instruction can be identified based
on the Runtime Access Information and Area Layout
information. After that, Area-based type confusion bug
detection can be performed based on this information.

4 Design and Implementation

We developed BinTyper, a tool for detecting type con-
fusion bugs in compiled C++ binaries. It consists of 5
steps as shown in Figure 3: Identifying Class and Hi-
erarchy, Area Layout Analysis, Runtime Area Analysis,
Optimization, and Verification.

Below we describe the details of each step.

4.1 Identifying Class and Hierarchy

The first step is to identify the Class and Class Hi-
erarchy through static analysis. There are previous re-
searches [24][30][42][35][38][23] for identifying a class
and recovering hierarchy from a compiled binary. We
can reconstruct the class hierarchy based on these re-
searches. BinTyper operates on the polymorphic class,
extracts the virtual function table, and uses it as a unique
representation for each polymorphic class. After that,
by performing static analysis, constructor-destructors are
identified, and Overwrite analysis [35] is applied. Fi-
nally, the class hierarchy is recovered by inferring the
inheritance relationship based on the results.

4.2 Area Layout Analysis

This step analyzes the area layout information of class
objects based on the recovered class hierarchy. Area
Layout Information is a set of position information of
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1 f u n c t i o n A n a l y z e A r e a I n f o ( t a r g e t _ c l s ) :
2 a r e a _ i n f o r m a t i o n = [ ]
3 p a r e n t _ s i z e , own_s ize = 0
4 p a r e n t _ c l s = G e t P a r e n t C l s ( t a r g e t _ c l s )
5 i f p a r e n t _ c l s i s n o t none :
6 p a r e n t _ s i z e = G e t C l s S i z e ( p a r e n t _ c l s )
7 a r e a _ i n f o r m a t i o n . append (
8 A n a l y z e A r e a I n f o ( p a r e n t _ c l s )
9 )

10 e n t i r e _ s i z e = G e t C l s S i z e ( t a r g e t _ c l s )
11 own_s ize = e n t i r e _ s i z e − p a r e n t _ s i z e
12 a r e a _ s t a r t _ a t = p a r e n t _ s i z e
13 a r e a _ e n d _ a t = a r e a _ s t a r t _ a t + own_s ize
14 a r e a _ i n f o r m a t i o n . append (
15 [ a r e a _ s t a r t _ a t , a r e a _ e n d _ a t ]
16 )
17 r e t u r n a r e a _ i n f o r m a t i o n

Figure 5: Algorithm to analyze area information

each area(start offset and end offset of the area) consti-
tuting a class object. We extended the Minimum Ob-
ject Size Analysis of Declassifier [23] to analyze the area
layout. Figure 5 shows the algorithm that analyzes Area
Layout Information. In assembly code, access to mem-
ber variables is represented by accessing the memory ad-
dress which is calculated by adding the offset value cor-
responding to the target member variable to the object
base address. Therefore, it is possible to infer the total
size of the member variable area by statically analyzing
accesses to the member variable memory of the object.
From the class hierarchy, the parent class can be identi-
fied and the size of the parent area is calculated by the
size of the member variable area of the parent class. The
size of the own class area can be calculated by subtract-
ing the size of the parent area from the total size of the
member variable area of the derived class. For example,
if we have a class of size 4 and a child class of this class
of size 12, the area layout information of the child class
is {parent: {offset: 0, size:}, Own: {offset:4 , size:8}}.

4.3 Runtime Area Analysis
To perform area-based type confusion bug detection, it

is necessary to specify which area is to be checked. Even
for the same assembly codes, the target area required for
the normal execution of each code may be different (C3).
Therefore, the target area can be correctly identified by
accurately analyze the object type that can be used to
the corresponding code. To analyze the object type to be
used, dynamic analysis is performed in the Runtime Area
Analysis step. It executes the target binary, and when
the assembly instruction accesses memory, it determines
whether it is accessing the object. If it is access to an ob-

ject, it calculates the offset by calculating the difference
between the accessed target address and the starting ad-
dress of the object and identifies the target area by iden-
tifying which area is accessed based on the Area Layout
Information. Codes in which the target area is identified
become points where area-based type confusion bug de-
tection will be performed in the later step.

4.4 Optimization

From the previous steps, We identified the points to
perform Area-based Type confusion bug detection and
the target area to check at each point. Before the corre-
sponding point is executed, the type confusion bug can
be detected by checking whether the required area exists
in the type of the actual object that the instruction will ac-
cess. When detection is applied, the execution speed of
the instruction is slower than the normal execution. As a
result, performing area-based type confusion bug detec-
tion at all points leads to a huge performance decrease
due to frequent verification. Therefore, we reduced the
point where detection is to be performed through the op-
timization step so that efficient verification work can be
performed. The idea is as follows: If we have already
confirmed the existence of a specific area for an object,
we do not need to re-validate the existence of the same
area for the same object. We identified the points where
the duplicate verification could occur through static anal-
ysis and did not perform Area-based Type confusion bug
detection at that point.

4.5 Verification

In the verification step, the target binary is executed
and Area-based Type confusion bug detection is per-
formed at the identified detection points. When the class
constructor is called, BinTyper records the memory ad-
dress and class type of the target object. When accessing
the recorded object, check if the required area exists in
the class type of the object where the access occurred,
and if not, inform the type confusion bug has been de-
tected.

4.6 Implementation

We implemented BinTyper for Linux x64 binary. We
implemented steps that perform static analysis of Bin-
Typer (Identifying Class and Hierarchy, Layout Analy-
sis) using IDAPython [13] and Miasm [15]. The step for
performing the dynamic analysis (Runtime Area Analy-
sis, Verification) was implemented using Intel Pin [17].

8



BinTyper Vanilla Overhead
Execution time 6.532s 0.071s 92x

Table 1: Runtime overhead in PDFium

RVA Actual accessed area Required area(s)
0x108be84 0x1337a38 0x1337468

Table 2: Detection result

5 Evaluation

We evaluated BinTyper with Google PDFium [12], the
PDF generation and rendering library which is used in
Google Chrome browser. BinTyper successfully detected
crbug-1043508 [3], the type confusion bug which exists
in PDFium library, without source code. We ran our eval-
uation on an Intel Core i7-6700k with 8GB RAM and
Ubuntu 18.04. Our prototype only tracks objects of re-
covered classes that are allocated in heap-area.

Figure 6: Performance

Runtime overhead Table [1] shows runtime over-
head of Verification step in PDFium.

Performance Figure 6 shows elapsed time ac-
cording to the number of instructions executed. It
includes both the overhead of verification and the
overhead of the DBI tool.

Count of tracked objects Figure 7 shows per-
formance according to the number of tracked objects.
Our prototype of BinTyper tracks objects allocated on
heap memory area.

Information of detected type confusion bug
BinTyper provides following information once type con-

Figure 7: Count of tracked objects

fusion bug is detected: Fault instruction address(RVA),
Fault area which actual object has, and required area to
execute instruction without type confusion bug. Table 2
shows the these information.

6 Discussion

Object coverage The method for detecting the type
confusion bug proposed by BinTyper can be performed
for all classes including non-polymorphic classes. but
our initial implementation limited the object to a poly-
morphic class because of the ease of static analysis.
Since the polymorphic class has a virtual function table
and a virtual method, it is easier to identify the class hier-
archy and area layout information through static analysis
than non-polymorphic classes. In future work, we will
expand BinTyper to work with non-polymorphic objects.

Verification coverage As mentioned in Challenge
C3, the compiled binary does not have the Runtime
Type Information required for the code to run correctly
without triggering a Type confusion bug. BinTyper
performs dynamic analysis by executing target binaries
with benign corpus to obtain Runtime Type Information
and performs Area-based Type confusion bug detection.
However, this has a coverage issue. Runtime type
information can be obtained for codes executed in the
dynamic analysis process only, so there is a limitation
that verification cannot be performed for codes that have
not been executed. Our future work will improve cover-
age by adding a Type propagation step that propagates
the identified Runtime Type Information to unexecuted
code.

Accuracy The accuracy of area-based type confusion
bug detection performed by BinTyper is determined by
the accuracy of class hierarchy and class information
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identified through static analysis. Researches to recover
class information from binaries is an area that is still
active [24][30][42][35][38][23]. The accuracy can be
improved by applying these researches to the BinTyper’s
static analysis step (Identifying Class and Hierarchy step
and Area Layout Analysis step).

Performance Our prototype of BinTyper uses
Intel Pin [17] for type confusion bug detection. It
instruments the target binary with Intel Pin to track the
assigned object and record the relevant information once
the type confusion bug is detected. However, the current
DBI-based implementation slows down the execution
speed of the program and affects performance. Perfor-
mance can be improved by performing a binary rewriting
[8][21] that statically adds verification code to the binary
or by performing verification in a low-overhead method
[2] without DBI.

7 Related work

In this section, we discuss the work related to Bin-
Typer.

Type confusion detection Previous researches
performed detection by inserting a verification code
that verifies the compatibility of the actual type of the
source object to the destination type of typecasting by
instrumenting the typecasting operator of the source
code for runtime type confusion detection [31][26][28].
UBSAN [18] obtained object type information based on
RTTI and performed verification. CaVer [31], TypeSan
[26], and HexType [28] improved the RTTI-based re-
search [18] by performing verification with the Custom
Type metadata structure instead of RTTI. However, all
of these researches have limitations that they cannot be
applied for Black-box testing, which is performed on the
binary-level.

Sanitizer Because C++ is not a memory-safe
language, various researches have been proposed to
detect memory safety violations in runtime. Dr.Memory
[7] and memcheck of Valgrind [19] can detect mem-
ory error at binary-level with DBI(Dynamic binary
instrumentation). ASan [39] and FuZZan [29] add
code to detect memory error based on customized
metadata structure in the process of compiling the
source code. RetroWrite [21] tried to apply ASan [39]
to binary through binary-rewriting. However, they are
not designed to detect type safety violations like type
confusion bug. These researches cannot detect a type
confusion bug that occurs without a memory safety
violation (e.g. size of the bad-casted target type can be
smaller than the size of the source object’s actual type).

Class hierarchy recovery High-level informa-
tion is removed from the compiled C++ binary, so
the information existing in the source code such as
class name, class hierarchy, and class inheritance rela-
tionship does not appear directly. Previous researches
[24][30][42][35][38][23] have been proposed to recover
class information based on the indirect information
remaining to implement the characteristics of OOP such
as virtual function table and constructor/destructor. The
Area Layout Analysis step of BinTyper is performed
based on the recovered class hierarchy. Therefore,
by combining these researches for BinTyper’s class
hierarchy recovery it is possible to increase the coverage
and accuracy of BinTyper.

Virtual call integrity Previous researches
to protect virtual function table hijacking at-
tacks by protecting virtual calls at source-level
and binary-level respectively have been proposed
[20][27][25][36][43][41][37][44][22]. However, these
researches are limited to protecting virtual calls, so only
some type confusion bugs can be detected.

Data type reconstruction REWARDS [33], Howard
[40], and TIE [32] infer and recover internal type
information of binary. They focus on recovering
primitive-level data types like int and char*. dynStruct
[34] and R. Rolles [2] recover structure-level data types
from dynamic analysis. These researches can be used
to improve the accuracy and coverage of class hierarchy
recovery.

8 Conclusion

C++ programming language is used to develop wide-
spread and performance-critical software such as web
browsers. However, C++ is not type safety language.
In C++, typecasting can be performed even though the
source object is not compatible with the destination type.
As a result, the object is treated as the wrong type, and
undefined actions are performed and the attacker can ex-
ploit it.

We present BinTyper. Previous researches attempt
to detect a type confusion bug at runtime based on the
source code. This has a limitation that it is difficult to
apply when Black-box testing, which only provides bi-
nary without source code. BinTyper performs static anal-
ysis and dynamic analysis on the target binary to analyze
the type information necessary for the execution and per-
forms type confusion detection at runtime. Our proto-
type results show that BinTyper can detect type confu-
sion bugs in wide-spread and large-scale software.
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