
BinTyper :
Type Confusion Detection

for C++ Binaries

#BHEU @BLACKHATEVENTS 

Dongju Kim @ School of Cybersecurity, Korea University

Seungjoo Kim* @ School of Cybersecurity, Korea University

* Corresponding author



#BHEU @BLACKHATEVENTS 

About us

- Dongju Kim

- Graduate Student at SANE Lab., School of Cybersecurity, Korea University

- Research Interests: Static Binary Analysis and Software Vulnerability Analysis

2
* This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No.2018-0-00532,Development of High-!ǎǎǳǊŀƴŎŜόҗ9![сύ {ŜŎǳǊŜ aƛŎǊƻƪŜǊƴŜƭύ

- Seungjoo (Gabriel) Kim (Corresponding Author)

- Professor at School of Cybersecurity, Korea University

- Member of Presidential Committee on the 4th Industrial Revolution

- Black Hat Asia Review Board Member

- Research Interests: Security·Privacy by Design, Threat-Risk Modeling, 

Formal Verification , Security Assessment & Authorization (such as Common 

Criteria, CMVP, SSE-CMM, RMF A&A), Blockchain & Crypto Engineering



#BHEU @BLACKHATEVENTS 

Agenda

- Introduction & Motivation

- Source-level codes vs Binary-level codes

- Our goal

- Challenges & Ideas

- Our approach

- Demo

- Future work & Limitation

- Conclusion

3



#BHEU @BLACKHATEVENTS 

Introduction & Motivation

- What is the type confusion bug?

4

Class B Class C

Class A
Parent class 

Child(Derived) class Child(Derived) class 

Inheritance

Downcasting Upcasting



#BHEU @BLACKHATEVENTS 

Introduction & Motivation

- Type confusion bug is one of the powerful bug types that is used for exploit development

5

όLƳŀƎŜ ǊŜŦŜǊŜƴŎŜΥ Ψ¢ǊŜƴŘǎΣ ŎƘŀƭƭŜƴƎŜǎΣ ŀƴŘ ǎǘǊŀǘŜƎƛŎ ǎƘƛŦǘǎ ƛƴ ǘƘŜ ǎƻŦǘǿŀǊŜ ǾǳƭƴŜǊŀōƛƭƛǘȅ ƳƛǘƛƎŀǘƛƻƴ ƭŀƴŘǎŎŀǇŜΩ ƻŦ BlueHatIL 2019)



#BHEU @BLACKHATEVENTS 

Introduction & Motivation

- Sanitizer supports:

- Better detection of triggered software bug during runtime

- Information about detected bugs

- Two areas of sanitizer: source-level and binary-level

- However, current binary-level sanitizers have not focused on detecting type confusion bugs

6



#BHEU @BLACKHATEVENTS 

Source -level codes vs Binary -level codes

- Weôll talk about the difference between source-level codes and binary-level codes

- Weôll cover the source-level codes first

7



#BHEU @BLACKHATEVENTS 

Source -level codes vs Binary -level codes

- High-level information is available

- Class names, member variables, methods, hierarchy ...

- Variable names, size, position ...

- Easy to edit code reliably

8



#BHEU @BLACKHATEVENTS 

Source -level codes vs Binary -level codes

- Sanitizers óeditô the codes to add a bug-checking routine

- Also high-level information is available

- Bug-checking routine catches bugs more accurately and earlier

- Researches

- AddressSanitizer, ThreadSanitizer

- UBSan, CAVER, TypeSan, HexType

- ...

9



#BHEU @BLACKHATEVENTS 

Source -level codes vs Binary -level codes

- Sanitizers óeditô the codes to add a bug-checking routine

- Also high-level information is available

- Bug-checking routine catches bugs more accurately and earlier

- Researches

- AddressSanitizer, ThreadSanitizer

- UBSan, CAVER, TypeSan, HexType

- ...
Specially designed to detect

type confusion bugs

10



#BHEU @BLACKHATEVENTS 

Source -level codes vs Binary -level codes

- UBSan

- Detector for undefined behavior detector

- Supports many checks

- -fsanitize=implicit-conversion

- -fsanitize=integer

- -fsanitize=vptr

- é

- -fsanitize=vptr supports type confusion detection

- Cannot handle non-polymorphic class types

- Incompatible with -fno-rtti

11



#BHEU @BLACKHATEVENTS 

Source -level codes vs Binary -level codes

- CAVER, TypeSan, HexType

- Insert verification code around typecasting operation

- Type compatibility verification

- óActual object typeô <-> óDestination type of typecastingô 

12

(Image reference: presentation of HexType)



#BHEU @BLACKHATEVENTS 

Source -level codes vs Binary -level codes

- High-level information is heavily used in source-level approaches

- How about binary-level?

- There is no high-level information :(

- Hard to modify the code

- Therefore, almost binary-level sanitizers do not rely on high-level information

- It highly reduces the coverage/usability of sanitizers

- Recent research, RetroWrite, try to infer and use high-level information

13



#BHEU @BLACKHATEVENTS 

Source -level codes vs Binary -level codes

- Researches

- GFlags

- ApplicationVerifier

- Electric Fence

- RetroWrite

- é

- General idea: Catch heap allocation/deallocation

- Detects heap out-of-bounds access and use-after-free

14

MEM GUARD PAGE

return of
malloc() / new()



#BHEU @BLACKHATEVENTS 

Source -level codes vs Binary -level codes

- Researches

- GFlags

- ApplicationVerifier

- Electric Fence

- RetroWrite

- é

- RetroWrite supports binary-level asan

- Reassembleable Assembly + Instrumentation

15

(Image reference: presentation of RetroWrite)



#BHEU @BLACKHATEVENTS 

Our goal

- Binary-level approach for detecting type confusion bugs

- Detect type confusion bug at runtime

- Provide information about the triggered bug

- We target Itanium C++ ABI

- Generally used in Linux g++, clang++

- RTTI information may be helpful, but we do not use it

16



#BHEU @BLACKHATEVENTS 

Challenges

- Why we cannot easily detect type confusion bug at binary-level?

- Three major challenges

- Vanished Type Casting Operators

- Missing Class Information

- Unknown Runtime Type Information

17



#BHEU @BLACKHATEVENTS 

Challenge 1 - Vanished Type Casting Operators

- There is a typecasting operation in line 15

- But typecasting operation doesnôt exist at binary

- Except dynamic_cast<>

- Where should we perform type verification?

18

Compiled by x86-64 clang 10.0.0



#BHEU @BLACKHATEVENTS 

Challenge 2 - Missing Class Information

19

- Verification code checks the type compatibility

- óActual object typeô <-> óDestination type of typecastingô

- For this, class relationship information(class hierarchy) is needed

- it doesnôt exist on binary :(



#BHEU @BLACKHATEVENTS 

Challenge 3 - Unknown Runtime Type Information

20

- What assembly codes are generated from IncreaseCounter() and NextChar()?

- Are they the same or different?



#BHEU @BLACKHATEVENTS 

Challenge 3 - Unknown Runtime Type Information

21

- What assembly codes are generated from IncreaseCounter() and NextChar()

- => Both are same (Tested on clang++ x86-64 6 ~ 10, g++ 6 ~ 10)



#BHEU @BLACKHATEVENTS 

Challenge 3 - Unknown Runtime Type Information

22

- IncreaseCounter() and NextChar()

- Different type of arguments

- Different type of accessed member variable

- é but produce the same result

- It means that we donôt know which object will be handled by

specific assembly snippets in runtime for A? or for B?



#BHEU @BLACKHATEVENTS 

Ideas

23

- Here are some ideas to overcome challenges and detect type confusion bugs

- Class information is recoverable

- Assembly representation doesnôt be shared

- Class Object is composed of several areas

- Type confusion bug is triggered once an area does not exist



#BHEU @BLACKHATEVENTS 

Idea 1 - Class information is recoverable

24

- Compiled C++ binaries have no high-level information

- Class identifier(name), Class hierarchy ...

- But we can still infer class identifier and hierarchy

- From indirect information

- Constructor/Destructor chain, VFT é

- Previous researches

- DeClassifier

- MARX

- VCI

- OOAnalyzer

- ...



#BHEU @BLACKHATEVENTS 

Idea 2 -Assembly representation doesnõt be shared

25

- Different source codes donôt share the same 

assembly code

- ... even though both can be expressed in the 

same assembly code

- Certain assembly code will not operate on 

other types

- It is not shared for several types



#BHEU @BLACKHATEVENTS 

Idea 3 - Class Object is composed of several areas

26

- Derived(Child) class inherit member fields from their parents

- Parent classes inherit member fields from their parents too

- Weôll use the óareaôterm to indicate unique member fields of each class

- Parent class area

- Member fields which derived class inherits

- Own area 

- Member fields which derived class defines itself (doesnôt exist in parents)

- Own area is located after the Parent class area

- In Itanium ABI, but other ABIs may be the same



#BHEU @BLACKHATEVENTS 

Idea 3 - Class Object is composed of several areas

27

Low 
address

High 
address

Area for A

Object A

class A {

int a;

}

Parent class area

Own area



#BHEU @BLACKHATEVENTS 

Idea 3 - Class Object is composed of several areas

28

class A {

int a;

}

Class B: A {

int b;

}

Area for A Area for B

Object B

Area for A

Object A

Parent class area

Own area



#BHEU @BLACKHATEVENTS 

Idea 3 - Class Object is composed of several areas

29

class A {

int a;

}

class B: A {

int b;

}

class C: B {

int c;

}

Area for A Area for B

Object B

Area for A

Object A

Area for A Area for B Area for C

Object C

Low 
address

High 
address

Parent class area

Own area



#BHEU @BLACKHATEVENTS 

Idea 4 - Type confusion bug is triggered once an area does not exist

30

- Both func_a() and func_b() receive B* type argument

- But access different area



#BHEU @BLACKHATEVENTS 

Idea 4 - Type confusion bug is triggered once an area does not exist

31

- Line 30 and 34, Typecasting (A/C to B) occurred

- but it isnôt actually a problem
- access to existing area(A) Figure 1



#BHEU @BLACKHATEVENTS 

Idea 4 - Type confusion bug is triggered once an area does not exist

32

- Line 31 and 35, Typecasting (A/C to B) occurred

- It is a problem
- access to the non-existing area(B)



#BHEU @BLACKHATEVENTS 33

- Area-based approach

- Assembly codes require valid(matched) areas to operate properly

- Type confusion bug occurs once the required area doesnôt exist in the actual object

- weôre able to detect type confusion bug by checking the existence of the required area

- Why do we use the concept of the area?

- Area can tell the condition that an interacted object must have

- Compatibility: itself and its child types

- Area is accumulated during inheritance

Idea 4 - Type confusion bug is triggered once an area does not exist



#BHEU @BLACKHATEVENTS 34

- Area-based approach

- Assembly codes require valid(matched) areas to operate properly

- Type confusion bug occurs once the required area doesnôt exist in the actual object

- weôre able to detect type confusion bug by checking the existence of the required area

- Important things we have to know to detect bug:

- Which area does the assembly code needs(accesses)?

- Does the actual object have that area?

Idea 4 - Type confusion bug is triggered once an area does not exist

= required area



#BHEU @BLACKHATEVENTS 

Our approach

35

Identifying Class and 

Hierarchy

Area Layout Analysis Runtime Area Analysis

Optimization

Class Information Benign Input Corpus

C++ Binary

Verification



#BHEU @BLACKHATEVENTS 

Our approach

36

Identifying Class and 

Hierarchy

Area Layout Analysis Runtime Area Analysis

Optimization

Class Information Benign Input Corpus

C++ Binary

Verification



#BHEU @BLACKHATEVENTS 

Identifying Class and Hierarchy

- This step is to inference/recover class information from binary

- Class identifier

- Class hierarchy

- ...

- Itôs another huge research area itself

- There are many existing researches for restoring class information

- VCI, MARX, DeClassifier, OOAnalyzer...

- Best situation: Use published tools and BinTyper just uses recovered class information

37


