
BinTyper:
Type Confusion Detection

for C++ Binaries

#BHEU @BLACKHATEVENTS 

Dongju Kim @ School of Cybersecurity, Korea University

Seungjoo Kim* @ School of Cybersecurity, Korea University

* Corresponding author



#BHEU @BLACKHATEVENTS 

About us

- Dongju Kim

- Graduate Student at SANE Lab., School of Cybersecurity, Korea University

- Research Interests: Static Binary Analysis and Software Vulnerability Analysis

2
* This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No.2018-0-00532,Development of High-Assurance(≥EAL6) Secure Microkernel)

- Seungjoo (Gabriel) Kim (Corresponding Author)

- Professor at School of Cybersecurity, Korea University

- Member of Presidential Committee on the 4th Industrial Revolution

- Black Hat Asia Review Board Member

- Research Interests: Security·Privacy by Design, Threat-Risk Modeling, 

Formal Verification, Security Assessment & Authorization (such as Common 

Criteria, CMVP, SSE-CMM, RMF A&A), Blockchain & Crypto Engineering



#BHEU @BLACKHATEVENTS 

Agenda

- Introduction & Motivation

- Source-level codes vs Binary-level codes

- Our goal

- Challenges & Ideas

- Our approach

- Demo

- Future work & Limitation

- Conclusion

3



#BHEU @BLACKHATEVENTS 

Introduction & Motivation

- What is the type confusion bug?

4

Class B Class C

Class A
Parent class 

Child(Derived) class Child(Derived) class 

Inheritance

Downcasting Upcasting



#BHEU @BLACKHATEVENTS 

Introduction & Motivation

- Type confusion bug is one of the powerful bug types that is used for exploit development

5

(Image reference: ‘Trends, challenges, and strategic shifts in the software vulnerability mitigation landscape’ of BlueHat IL 2019)



#BHEU @BLACKHATEVENTS 

Introduction & Motivation

- Sanitizer supports:

- Better detection of triggered software bug during runtime

- Information about detected bugs

- Two areas of sanitizer: source-level and binary-level

- However, current binary-level sanitizers have not focused on detecting type confusion bugs

6



#BHEU @BLACKHATEVENTS 

Source-level codes vs Binary-level codes

- We’ll talk about the difference between source-level codes and binary-level codes

- We’ll cover the source-level codes first

7



#BHEU @BLACKHATEVENTS 

Source-level codes vs Binary-level codes

- High-level information is available

- Class names, member variables, methods, hierarchy ...

- Variable names, size, position ...

- Easy to edit code reliably

8



#BHEU @BLACKHATEVENTS 

Source-level codes vs Binary-level codes

- Sanitizers ‘edit’ the codes to add a bug-checking routine

- Also high-level information is available

- Bug-checking routine catches bugs more accurately and earlier

- Researches

- AddressSanitizer, ThreadSanitizer

- UBSan, CAVER, TypeSan, HexType

- ...

9



#BHEU @BLACKHATEVENTS 

Source-level codes vs Binary-level codes

- Sanitizers ‘edit’ the codes to add a bug-checking routine

- Also high-level information is available

- Bug-checking routine catches bugs more accurately and earlier

- Researches

- AddressSanitizer, ThreadSanitizer

- UBSan, CAVER, TypeSan, HexType

- ...
Specially designed to detect

type confusion bugs

10



#BHEU @BLACKHATEVENTS 

Source-level codes vs Binary-level codes

- UBSan

- Detector for undefined behavior detector

- Supports many checks

- -fsanitize=implicit-conversion

- -fsanitize=integer

- -fsanitize=vptr

- …

- -fsanitize=vptr supports type confusion detection

- Cannot handle non-polymorphic class types

- Incompatible with -fno-rtti

11



#BHEU @BLACKHATEVENTS 

Source-level codes vs Binary-level codes

- CAVER, TypeSan, HexType

- Insert verification code around typecasting operation

- Type compatibility verification

- ‘Actual object type’ <-> ‘Destination type of typecasting’ 

12

(Image reference: presentation of HexType)



#BHEU @BLACKHATEVENTS 

Source-level codes vs Binary-level codes

- High-level information is heavily used in source-level approaches

- How about binary-level?

- There is no high-level information :(

- Hard to modify the code

- Therefore, almost binary-level sanitizers do not rely on high-level information

- It highly reduces the coverage/usability of sanitizers

- Recent research, RetroWrite, try to infer and use high-level information

13



#BHEU @BLACKHATEVENTS 

Source-level codes vs Binary-level codes

- Researches

- GFlags

- ApplicationVerifier

- Electric Fence

- RetroWrite

- …

- General idea: Catch heap allocation/deallocation

- Detects heap out-of-bounds access and use-after-free

14

MEM GUARD PAGE

return of
malloc() / new()



#BHEU @BLACKHATEVENTS 

Source-level codes vs Binary-level codes

- Researches

- GFlags

- ApplicationVerifier

- Electric Fence

- RetroWrite

- …

- RetroWrite supports binary-level asan

- Reassembleable Assembly + Instrumentation

15

(Image reference: presentation of RetroWrite)



#BHEU @BLACKHATEVENTS 

Our goal

- Binary-level approach for detecting type confusion bugs

- Detect type confusion bug at runtime

- Provide information about the triggered bug

- We target Itanium C++ ABI

- Generally used in Linux g++, clang++

- RTTI information may be helpful, but we do not use it

16



#BHEU @BLACKHATEVENTS 

Challenges

- Why we cannot easily detect type confusion bug at binary-level?

- Three major challenges

- Vanished Type Casting Operators

- Missing Class Information

- Unknown Runtime Type Information

17



#BHEU @BLACKHATEVENTS 

Challenge 1 - Vanished Type Casting Operators

- There is a typecasting operation in line 15

- But typecasting operation doesn’t exist at binary

- Except dynamic_cast<>

- Where should we perform type verification?

18

Compiled by x86-64 clang 10.0.0



#BHEU @BLACKHATEVENTS 

Challenge 2 - Missing Class Information

19

- Verification code checks the type compatibility

- ‘Actual object type’ <-> ‘Destination type of typecasting’

- For this, class relationship information(class hierarchy) is needed

- it doesn’t exist on binary :(



#BHEU @BLACKHATEVENTS 

Challenge 3 - Unknown Runtime Type Information

20

- What assembly codes are generated from IncreaseCounter() and NextChar()?

- Are they the same or different?



#BHEU @BLACKHATEVENTS 

Challenge 3 - Unknown Runtime Type Information

21

- What assembly codes are generated from IncreaseCounter() and NextChar()

- => Both are same (Tested on clang++ x86-64 6 ~ 10, g++ 6 ~ 10)



#BHEU @BLACKHATEVENTS 

Challenge 3 - Unknown Runtime Type Information

22

- IncreaseCounter() and NextChar()

- Different type of arguments

- Different type of accessed member variable

- … but produce the same result

- It means that we don’t know which object will be handled by

specific assembly snippets in runtime for A? or for B?



#BHEU @BLACKHATEVENTS 

Ideas

23

- Here are some ideas to overcome challenges and detect type confusion bugs

- Class information is recoverable

- Assembly representation doesn’t be shared

- Class Object is composed of several areas

- Type confusion bug is triggered once an area does not exist



#BHEU @BLACKHATEVENTS 

Idea 1 - Class information is recoverable

24

- Compiled C++ binaries have no high-level information

- Class identifier(name), Class hierarchy ...

- But we can still infer class identifier and hierarchy

- From indirect information

- Constructor/Destructor chain, VFT …

- Previous researches

- DeClassifier

- MARX

- VCI

- OOAnalyzer

- ...



#BHEU @BLACKHATEVENTS 

Idea 2 - Assembly representation doesn’t be shared

25

- Different source codes don’t share the same 

assembly code

- ... even though both can be expressed in the 

same assembly code

- Certain assembly code will not operate on 

other types

- It is not shared for several types



#BHEU @BLACKHATEVENTS 

Idea 3 - Class Object is composed of several areas

26

- Derived(Child) class inherit member fields from their parents

- Parent classes inherit member fields from their parents too

- We’ll use the ‘area’ term to indicate unique member fields of each class

- Parent class area

- Member fields which derived class inherits

- Own area 

- Member fields which derived class defines itself (doesn’t exist in parents)

- Own area is located after the Parent class area

- In Itanium ABI, but other ABIs may be the same



#BHEU @BLACKHATEVENTS 

Idea 3 - Class Object is composed of several areas

27

Low 
address

High 
address

Area for A

Object A

class A {

int a;

}

Parent class area

Own area



#BHEU @BLACKHATEVENTS 

Idea 3 - Class Object is composed of several areas

28

class A {

int a;

}

Class B: A {

int b;

}

Area for A Area for B

Object B

Area for A

Object A

Parent class area

Own area



#BHEU @BLACKHATEVENTS 

Idea 3 - Class Object is composed of several areas

29

class A {

int a;

}

class B: A {

int b;

}

class C: B {

int c;

}

Area for A Area for B

Object B

Area for A

Object A

Area for A Area for B Area for C

Object C

Low 
address

High 
address

Parent class area

Own area



#BHEU @BLACKHATEVENTS 

Idea 4 - Type confusion bug is triggered once an area does not exist

30

- Both func_a() and func_b() receive B* type argument

- But access different area



#BHEU @BLACKHATEVENTS 

Idea 4 - Type confusion bug is triggered once an area does not exist

31

- Line 30 and 34, Typecasting (A/C to B) occurred

- but it isn’t actually a problem
- access to existing area(A) Figure 1



#BHEU @BLACKHATEVENTS 

Idea 4 - Type confusion bug is triggered once an area does not exist

32

- Line 31 and 35, Typecasting (A/C to B) occurred

- It is a problem
- access to the non-existing area(B)



#BHEU @BLACKHATEVENTS 33

- Area-based approach

- Assembly codes require valid(matched) areas to operate properly

- Type confusion bug occurs once the required area doesn’t exist in the actual object

- we’re able to detect type confusion bug by checking the existence of the required area

- Why do we use the concept of the area?

- Area can tell the condition that an interacted object must have

- Compatibility: itself and its child types

- Area is accumulated during inheritance

Idea 4 - Type confusion bug is triggered once an area does not exist



#BHEU @BLACKHATEVENTS 34

- Area-based approach

- Assembly codes require valid(matched) areas to operate properly

- Type confusion bug occurs once the required area doesn’t exist in the actual object

- we’re able to detect type confusion bug by checking the existence of the required area

- Important things we have to know to detect bug:

- Which area does the assembly code needs(accesses)?

- Does the actual object have that area?

Idea 4 - Type confusion bug is triggered once an area does not exist

= required area



#BHEU @BLACKHATEVENTS 

Our approach

35

Identifying Class and 

Hierarchy

Area Layout Analysis Runtime Area Analysis

Optimization

Class Information Benign Input Corpus

C++ Binary

Verification



#BHEU @BLACKHATEVENTS 

Our approach

36

Identifying Class and 

Hierarchy

Area Layout Analysis Runtime Area Analysis

Optimization

Class Information Benign Input Corpus

C++ Binary

Verification



#BHEU @BLACKHATEVENTS 

Identifying Class and Hierarchy

- This step is to inference/recover class information from binary

- Class identifier

- Class hierarchy

- ...

- It’s another huge research area itself

- There are many existing researches for restoring class information

- VCI, MARX, DeClassifier, OOAnalyzer...

- Best situation: Use published tools and BinTyper just uses recovered class information

37



#BHEU @BLACKHATEVENTS 

Identifying Class and Hierarchy

- Oops

38

MARX

OOAnalyzer



#BHEU @BLACKHATEVENTS 

Identifying Class and Hierarchy

- Manually implements some of its ideas

- Use VFT as a unique class identifier

- VFT detection 

- Constructor/Destructor analysis

- VFT Overwrite analysis

- Not a perfect implementation but it works

- It’s enough to prove our ideas

39

(Image reference: presentation of MARX)

* VFT: Virtual function table



#BHEU @BLACKHATEVENTS 

Identifying Class and Hierarchy

40

- Sample of recovered class identifiers and hierarchies

Figure 1 Figure 2



#BHEU @BLACKHATEVENTS 

Our approach

41

Identifying Class and 

Hierarchy

Area Layout Analysis Runtime Area Analysis

Optimization

Class Information Benign Input Corpus

C++ Binary

Verification



#BHEU @BLACKHATEVENTS 

Area Layout Analysis

- ‘area’ : unique member fields of each class

- The Area Layout provides internal area structure

- Where each area of the object starts/ends

- BinTyper performs static analysis to obtain Area Layout of classes

- Based on recovered information about the class identifier and hierarchy

42



#BHEU @BLACKHATEVENTS 

Area Layout Analysis

- Example of Area Layout 

43

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a b c0 24Class C

class A area class B area class C area

Figure 1 Figure 2 Figure 3



#BHEU @BLACKHATEVENTS 

Area Layout Analysis

- The Area Layout is the list of the following pairs: [identifier, (own) area starts, area ends]

- area ends = area starts + area size

- The size of class gradually increases through inheritance

- [Derived class size] = [Parent area size] + [Own area size]

- Area size: calculating the difference

- [Own area size] = [Derived class size] - [Parent area size]

- Area starts:

- Own area(area of derived class) is located behind the parent area

- Area starts := [Parent area size]

44



#BHEU @BLACKHATEVENTS 

Area Layout Analysis

- The next question is: How to get the (derived) class size by static analysis?

- In the case of an object located in the heap:

- The new() operator directly indicates the size of the object

- In the case of an object located in the stack/global:

- There is no direct clue indicating the size of the object

45



#BHEU @BLACKHATEVENTS 

Area Layout Analysis

- Assembly representation of code accessing class member variable

- QWORD / DWORD / WORD / BYTE PTR [class-ptr + offset-to-member]

- class-ptr indicates start address of an object

- offset-to-member indicates offset that mapped for target member variable

- Analyze the maximum possible offset-to-member value for each class identifier

- From the virtual-methods and constructor/destructors of identifier

- BinTyper uses that value as object size

- Maximum offset-to-member + Access unit size

46



#BHEU @BLACKHATEVENTS 

Area Layout Analysis

- A similar approach was performed previously in DeClassifier

- They analyze object size to infer class hierarchy

- Limitation: The analyzed object size may be incorrect

- It may be smaller than the actual object size

- This can lead to false positives in analysis

47

a b

class A area class B area

0 32

a b

class A area class B area

0 32

Actual area layout

Misinfered area layout

a b

class A area class B area

0 32False-

positive



#BHEU @BLACKHATEVENTS 

Our approach

48

Identifying Class and 

Hierarchy

Area Layout Analysis Runtime Area Analysis

Optimization

Class Information Benign Input Corpus

C++ Binary

Verification



#BHEU @BLACKHATEVENTS 

Runtime Area Analysis

- The Runtime type information is unknown

- Challenge 3 - Unknown Runtime Type Information

- It’s hard to statically determine whether type(area) will be passed

- Approach – Applying the dynamic analysis to obtain area information

- Obtained(Recorded) type information is used for verification later

49



#BHEU @BLACKHATEVENTS 

Runtime Area Analysis

50

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a b c0 24Class C

class A area class B area class C area

Area Layout Information



#BHEU @BLACKHATEVENTS 

Runtime Area Analysis

51

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a b c0 24Class C

class A area class B area class C area

RDI := Object of class CArea Layout Information



#BHEU @BLACKHATEVENTS 

Runtime Area Analysis

52

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a b c0 24Class C

class A area class B area class C area

RDI := Object of class CArea Layout Information



#BHEU @BLACKHATEVENTS 

Runtime Area Analysis

53

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a b c0 24Class C

class A area class B area class C area

RDI := Object of class CArea Layout Information



#BHEU @BLACKHATEVENTS 

Runtime Area Analysis

54

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a b c0 24Class C

class A area class B area class C area

RDI := Object of class CArea Layout Information



#BHEU @BLACKHATEVENTS 

Runtime Area Analysis

55

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a b c0 24Class C

class A area class B area class C area

RDI := Object of class C

Class A area is accessed

Area Layout Information



#BHEU @BLACKHATEVENTS 

Runtime Area Analysis

56

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a b c0 24Class C

class A area class B area class C area

RDI := Object of class C

Runtime information:
Area A

Class A area is accessed

Area Layout Information



#BHEU @BLACKHATEVENTS 

Runtime Area Analysis

57

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a b c0 24Class C

class A area class B area class C area

RDI := Object of class C

Runtime information:
Area A

Area Layout Information



#BHEU @BLACKHATEVENTS 

Runtime Area Analysis

58

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a b c0 24Class C

class A area class B area class C area

RDI := Object of class C

Runtime information:
Area A

Class A area is accessed

Area Layout Information



#BHEU @BLACKHATEVENTS 

Runtime Area Analysis

59

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a b c0 24Class C

class A area class B area class C area

RDI := Object of class C

Runtime information:
Area A

Class A area is accessed

Runtime information:
Area A

Area Layout Information



#BHEU @BLACKHATEVENTS 

Runtime Area Analysis

60

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a b c0 24Class C

class A area class B area class C area

RDI := Object of class C

Runtime information:
Area A

Runtime information:
Area A

Area Layout Information



#BHEU @BLACKHATEVENTS 

Runtime Area Analysis

61

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a b c0 24Class C

class A area class B area class C area

RDI := Object of class C

Runtime information:
Area A

Runtime information:
Area A

Area Layout Information



#BHEU @BLACKHATEVENTS 

Runtime Area Analysis

62

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a b c0 24Class C

class A area class B area class C area

RDI := Object of class C

Runtime information:
Area A

Runtime information:
Area A

Area Layout Information

Idea 2 - Assembly representation doesn’t be shared



#BHEU @BLACKHATEVENTS 

Runtime Area Analysis

63

- The coverage is a challenge

- This step is performed by dynamic analysis

- Only covered(executed) instruction is analyzed

- Benign seed corpus

- A set of input files which the binary processes

- Which doesn’t trigger any type confusion bugs

- Used to increase the coverage of Runtime Area Analysis

- User should maintain benign seed corpus and re-use it

Runtime Area Analysis

C++

Binary
Benign Input 

Corpus

Runtime

Area Information



#BHEU @BLACKHATEVENTS 

Our approach

64

Identifying Class and 

Hierarchy

Area Layout Analysis Runtime Area Analysis

Optimization

Class Information Benign Input Corpus

C++ Binary

Verification



#BHEU @BLACKHATEVENTS 

Optimization

65

- Recorded information contains many duplicates

- ... for verification usage

- Example

OptimizationRuntime

Area Information

Optimized Runtime

Area Information

Runtime information:
Area A

Runtime information:
Area A



#BHEU @BLACKHATEVENTS 

Optimization

66

Runtime information:
Area A

Runtime information:
Area A



#BHEU @BLACKHATEVENTS 

Optimization

67

Runtime information:
Area A

Duplicated checks



#BHEU @BLACKHATEVENTS 

Optimization

68

Runtime information:
Area A

It is enough for verification



#BHEU @BLACKHATEVENTS 

Optimization

69

- Simple optimization rules:

- Same basic block

- Same area

- Same register

- ... reduce 30% of duplicates in our test

- More advanced optimization may be possible

- Symbolic execution

- (Post)-dominator analysis

- ...

Runtime information:
Area A

Runtime information:
Area A



#BHEU @BLACKHATEVENTS 

Our approach

70

Identifying Class and 

Hierarchy

Area Layout Analysis Runtime Area Analysis

Optimization

Class Information Benign Input Corpus

C++ Binary

Verification



#BHEU @BLACKHATEVENTS 

Verification

- Execute the binary with verification

- Compare accessed area information with recorded runtime area information

71

Verification

C++

Binary

Input

file

Runtime

Area Information
Result



#BHEU @BLACKHATEVENTS 

Verification

72

Recorded Runtime information:
Area B

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a c0Class C

class A area class C area

Area Layout Information

16



#BHEU @BLACKHATEVENTS 

Verification

73

Recorded Runtime information:
Area B

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a c0Class C

class A area class C area

Area Layout Information

16

RDI := Object of class C



#BHEU @BLACKHATEVENTS 

Verification

74

Recorded Runtime information:
Area B

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a c0Class C

class A area class C area

Area Layout Information

16

RDI := Object of class C



#BHEU @BLACKHATEVENTS 

Verification

75

Recorded Runtime information:
Area B

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a c0Class C

class A area class C area

Area Layout Information

16

RDI := Object of class C



#BHEU @BLACKHATEVENTS 

Verification

76

Recorded Runtime information:
Area B

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a c0Class C

class A area class C area

Area Layout Information

16

RDI := Object of class C



#BHEU @BLACKHATEVENTS 

Verification

77

Recorded Runtime information:
Area B

Class A a0 8

class A area

a b0 16Class B

class A area class B area

a c0Class C

class A area class C area

Area Layout Information

16

RDI := Object of class C

Actual Area Information:
Area C

Area Information Mismatched (B vs C)
= Type confusion bug has occurred



#BHEU @BLACKHATEVENTS 

Verification

- Once a type confusion bug detected, the following information is logged

- RVA of fault instruction

- Actual area information

- Recorded(Required) area information

- Analyst can use this information to perform further analysis

78



#BHEU @BLACKHATEVENTS 

About the implementation

- Static analysis

- IDA + IDAPython

- Miasm

- Dynamic analysis

- Intel Pin

79



#BHEU @BLACKHATEVENTS 

Demo

80

- Detection demo for Chromium bug 1043508

- Type confusion bug in PDFium, the PDF rendering library of Chrome



#BHEU @BLACKHATEVENTS 

Demo

81



#BHEU @BLACKHATEVENTS 

Demo

82



#BHEU @BLACKHATEVENTS 

Future work & Limitation

- Our current implementation is based on DBI (Intel Pin)

- For proof-of-concept: Easy to implement but low performance

- 10x~. It’s impractical for the fuzzing purpose

- Performs binary-rewriting for performance and usability

- Retrowrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization" (in IEEE S&P’20)

- Advanced static analysis for class information recovery / area layout analysis

- Propagating Runtime Type Information

- Highly-optimized binaries

- Optimization make static analysis inaccurate for the inference of class information

- e.g. Function inlining

83



#BHEU @BLACKHATEVENTS 

Conclusion

- The compiled binaries lack high-level information. It makes sanitization difficult

- Especially for type confusion bug detection

- Class information can be recovered

- Based on OOP-related characteristic

- By combining static analysis and dynamic analysis, Runtime type confusion detection is possible

84



#BHEU @BLACKHATEVENTS 

Thanks

- Q&A

85
* This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No.2018-0-00532,Development of High-Assurance(≥EAL6) Secure Microkernel)


