
Effective Vulnerability Discovery with 
Machine Learning

Asankhaya Sharma
Veracode

#BHEU @BLACKHATEVENTS 

Ang Ming Yi
Veracode



#BHEU @BLACKHATEVENTS @asankhaya @veracode

We’re going to talk about vulnerability discovery

• Finding vulnerabilities in your application goes beyond code you have written

• It even goes beyond the libraries directly required by your code

• More libraries means a wider surface of attack

• We will discuss a way to discover these vulnerabilities at scale



#BHEU @BLACKHATEVENTS @asankhaya @veracode

About us

Asankhaya Sharma

Director of Engineering

Veracode

Ang Ming Yi

Senior Research Engineer

Veracode



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Agenda

• Vulnerability Curation

• Machine Learning approach to Identify Vulnerabilities

• Effective Vulnerability Discovery



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Difficulty in tracking down vulnerabilities

Software Applications often depends on and are built with Open-source libraries

• Software vulnerabilities exists in these third-party libraries

• Need to be aware of issues on both first-party and third-party code

• Difficult to track every component and vulnerability

• Need to curate vulnerabilities found in open-source libraries



#BHEU @BLACKHATEVENTS @asankhaya @veracode

How we can curate vulnerabilities

• Process data from various internet sources: 

• National Vulnerability Database (NVD), 

JIRA tickets, Bugzilla issues, 

GitHub issues, GitHub pull requests, 

Git commits, Mailing lists, 

Vendor Release Notes



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Curating Vulnerabilities is difficult

• Curation process is manual

• Support for over 2.6 million open-source libraries

• Actively track >50,000 Git Repositories, and more…

• Inelastic resources – Security Researchers

• We needed a solution to scale the system



#BHEU @BLACKHATEVENTS @asankhaya @veracode

A naturally highly imbalanced dataset

• Highly Imbalanced Ratio per source: 

• As low as 5.88% labeled vulnerability, 

• As high as 41.42% labeled not a vulnerability

• Continue to expand on sources 

• Original data based on ~20k repositories << New data ~50k repositories

• Extended language and library coverage

• Labeled data is now a subset of the set of positively predicted data

• We needed a solution to balance, and scale, the system



#BHEU @BLACKHATEVENTS @asankhaya @veracode

The Machine Learning Approach

Goal: To automatically generate improved, and evaluated, models resilient to changes in requirements

• Incorporate more data sources, 

more language support

• Dataset has become highly imbalanced

(Before: 5.88%, Current: 3.29%)

• Unused unlabelled data has piled up

• New approach presented at Mining Software Repositories (MSR) 2020



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Solving data imbalance issue with Self-Training

• Issues

• Unlabelled data >>> Labelled data

• Imbalanced data

• Researchers only see data predicted as vulnerable, 

some of the data predicted as non-vulnerable can be informative

• Further, a portion of data which have never passed through the 

initial filter before the machine learning service, remains unlabelled.

• Utilise this unlabelled data using self-training [Nigam et al.]



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Evaluating the Machine Learning Approach

• Generally observed an increase in the

Area Under Curve (AUC) graph

(A higher AUC curve 

indicates higher performance)



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Efficient Vulnerability Discovery

• Machine Learning Approach is efficient, and only the first piece to the process

• What are we looking for?

• Why?

• Why don’t we just lookup Central Authorities/Vulnerability Databases?



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Motivation

• The Nature of Modern Software Composition

• The Devil’s in the Dependencies

• Inefficiency of Central Authorities



#BHEU @BLACKHATEVENTS @asankhaya @veracode

How to ensure our code is secure?

• Safe coding practices – type checking, data validation, input validation, etc

• Static Analysis – Locating unwanted behavior, fixing insecure code

• Dynamic Analysis – Black-box testing, fuzzing

• Penetration tests – Find other security flaws



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Potential Flaws gained by ignoring our dependencies

• Dependencies have code flaws too!

• Cross-site Scripting, Arbitrary Code Execution, Deserialization flaws, 

Directory Traversal, Denial of Service, Man-in-the-Middle, etc

• Dependencies can also introduce external threats

• Malicious Code Injection

• Malicious pre-install/post-install exfiltration scripts

• Malicious takeover of legit packages (eg. eslint-scope, purescript-installer)

• Numerous amounts of typosquatters (eg. atlas_client vs atlas-client; jellyfish vs jeIlyfish)



#BHEU @BLACKHATEVENTS @asankhaya @veracode

The Nature of Modern Software Composition

• Software built with third party libraries (eg. Spring Boot, requests, jquery, js-yaml)

• Number of third party libraries used in Real-world application varies

• Typically ranges from 10s to 100s, even 1000s of third party libraries used

• Top 10 used libraries in Javascript included in >80% of Javascript Applications

• ~70% of the applications tested has at least 1 external library flaw, and

• >46% of these libraries are only pulled in transitively

Your Code

Direct 
Dependencies

Transitive 
Dependencies



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Inefficiency of Central Authorities

• Time taken for vulnerabilities to be published from initial disclosure

• Incompleteness and/or Imprecision of data 

• “Affects all version before Version X”

• “Spring Boot” vs. “spring-boot-loader-tools” (CVE-2018-1196)

• There are flaws not found on Central Authorities 

• Varies per language

• Overall ~15%

Issue Discovered & Disclosed

Issue Reported to Central Authorities

Initially Published with Description

Published with Full Details



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Intuition of discovering vulnerabilities 

• Resources are limited – Inefficient and expensive to vet through every single line of code, depending on complexity,

• Teams may barely keep up with static scans of first party code

• Fuzzing may take weeks or months

• Penetration testing cannot be done frequent enough

• New libraries/dependencies releases can invalidate previous findings; Updates are usually many and frequent



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Where should we start looking from?

• Not static/dynamic scans

• As close as possible to where developers, contributors, would interact, eg:

• GitHub

• JIRA

• Bugzilla

• Mailing Lists

• Release notes

• Can result in a large dataset, >100,000s weekly data; Back to the same challenges with limited resources

• Machine Learning Approach reduces this amount to 1000s weekly



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Examples of data we found useful

• Denial of Service (DoS)

• axios

• ~13m weekly downloads

• >44k dependents



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Examples of data we found useful

• Regular Expression Denial of Service (ReDoS)

• trim

• >3.4m weekly downloads

• Used in >371k repositories



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Examples of data we found useful

• Persistent Cross-site Scripting (XSS)

• XSS is consistently on OWASP Top 10

• xxl-job

• >16k Stars

• Used by >2000 repositories

• 50 Contributors



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Examples of data we found useful

• Cross-site Request Forgery (CSRF)

• CVE-2015-9284 (High Severity)

• omniauth

• Issue is not directly addressable by itself

• Applications have to mitigate it manually

• >55m Total downloads

• 170 Contributors



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Examples of data we found useful

• Directory Traversal

• zenn-cli

• GitHub Description ”patch”

• Attempt at security by obscurity

• Regular Expression used was improper at sanitizing

file paths



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Examples of data we found useful

• Arbitrary Code Execution

• Unsafe use of eval during JSON parsing

• blazar_dashboard



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Examples of data we found useful

• Transitive Vulnerability

• Key Confusion

• Vulnerable xml-crypto is transitively found in kibana

• >15k stars



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Key observations from processing the data

• Developers Fixing Code flaws/Contributors reporting security issues

• Cross-site Scripting, Arbitrary Code Execution, Deserialization flaws, 

Directory Traversal, Denial of Service, Man-in-the-Middle, etc

• Developers Fixing Transitive issues

• Developers updating outdated and/or vulnerable libraries 

• Able to discover and act on issues faster



#BHEU @BLACKHATEVENTS @asankhaya @veracode

It really is worse than it looks

• So far we have talked about discovering known vulnerability

• New type(s) of vulnerabilities uncovered over time

• Deserialization vulnerabilities (eg. jackson-databind, Ruby’s YAML)

• Arbitrary File Overwrite/Directory Traversal through Zip/Unzip functions (eg. adm-zip, mholt/archiver, Apache Karaf, 

plexus-archiver)

• Prototype Pollution (eg. merge >2m weekly downloads; at least 1760 dependents)

• Number of libraries expected to increase over time

• Very probable to have at least a component that may be vulnerable in the future, even if they are safe today



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Discovering similar vulnerabilities

• Collected baseline information on existing vulnerabilities

• Zoom into the pattern of each vulnerability type

• Deserialization/Arbitrary Code Execution

• Directory Traversal through Zip/Unzip

• Prototype Pollution

• For each pattern, devise key signatures that can be used to automatically single out potential libraries

• Automatically create Proof-of-Concept and get results

• Akin to running a Dynamic Analysis

• May not be possible to achieve for all types of vulnerabilities



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Key Takeaways

• Increasingly challenging to keep up with the increase in the amount of open-source libraries, the 

usage that follows, and possibly its inherent vulnerabilities.

• Machine learning is efficient in narrowing down vulnerability related data, however the process 

is not self sufficient, and can still be improved upon.

• Vulnerabilities discussed are merely a subset of actual vulnerabilities, and we should at least be 

on par with what’s been found and disclosed, while trying to discover more vulnerabilities.



#BHEU @BLACKHATEVENTS @asankhaya @veracode

Questions?

• asharma@veracode.com

• mang@veracode.com

• www.veracode.com



#BHEU @BLACKHATEVENTS 

Thank You


