
efiXplorer
Hunting for UEFI Firmware Vulnerabilities at

Scale with Automated Static Analysis

Alex Matrosov, Andrey Labunets,
Yegor Vasilenko, Philip Lebedev

#BHEU @BLACKHATEVENTS

#BHEU @BLACKHATEVENTS
https://www.blackhat.com/docs/us-15/materials/us-15-Branco-Distributing-The-Reconstruction-Of-High-Level-Intermediate-Representation-For-Large-Scale-Malware-Analysis.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Branco-Distributing-The-Reconstruction-Of-High-Level-Intermediate-Representation-For-Large-Scale-Malware-Analysis.pdf

#BHEU @BLACKHATEVENTS

Outline

ü Why have we created efiXplorer?
ü Motivation
ü Automated vulnerability search

- Methodology
- SMM Callout vuln pattern
- GetVariable/SmmGetVariable vuln pattern
- PPI GetVariable vuln pattern

ü Final statistics
ü Future Plans

#BHEU @BLACKHATEVENTS

efiXplorer
https://github.com/binarly-io/efiXplorer

https://github.com/binarly-io/efiXplorer

#BHEU @BLACKHATEVENTS

The UEFI firmware code REconstruction
limitations

#BHEU @BLACKHATEVENTS

#BHEU @BLACKHATEVENTS

Why we work on efiXplorer?
ü Simplifying Reconstruction of UEFI-specific types and protocols

- efiXplorer->efiAnalyzer

ü Creating a unified loader for whole UEFI firmware image with rebuilt
dependencies and cross-references between different DXE and PEI
modules
- efiXplorer->efiLoader

ü Finding common types of vulnerabilities with UEFI specifics and
power of static analysis
- efiXplorer->efiAnalyzer->efiVulnHunt

#BHEU @BLACKHATEVENTS

Hex-Rays + efiXplorer

#BHEU @BLACKHATEVENTS

efiXloader: SMI handlers identification

#BHEU @BLACKHATEVENTS

How it started, and how it’s going?

#BHEU @BLACKHATEVENTS https://www.hex-rays.com/contests_details/contest2020/

https://www.hex-rays.com/contests_details/contest2020/

#BHEU @BLACKHATEVENTS

Motivation of this
REsearch

#BHEU @BLACKHATEVENTS

#BHEU @BLACKHATEVENTS

NVRAM Variables access during Boot Flow
ExitBootServices()

PEI phase DXE phase OS

BootServices()
RuntimeServices()

SmmGetVariable()PeiGetVariable()

SetVariable()

NVRAM
persistent
storage

NVRAM
runtime
storage

GetFirmwareEnvironmentVariable()

SetFirmwareEnvironmentVariable()

GetVariable()

SmmSetVariable()

SMM (Trusted Boundary)

PeiGetVariable()

PEI (Trusted Boundary) Ring-0 (Trusted Boundary)

direct memory
access (MMIO)

#BHEU @BLACKHATEVENTS

NVRAM persistence on SPI flash

ü NVRAM region is not protected by Intel Boot Guard and can be abused
by attacker with physical access (supply chain vector).

ü Arbitrary code execution via GetVariable() is common, attacker can
modify persistent NVRAM storage and install fileless DXE/SMM/PEI
implant (shellcode).

Most security solutions inspect only UEFI drivers!

#BHEU @BLACKHATEVENTS

NVRAM persistence on SPI flash

#BHEU @BLACKHATEVENTS

NVRAM persistence: previous work
ü Linux NVRAM runtime persistence (not SPI storage)
https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027%20presentations/DEFCON-27-Michael-Leibowitz-
and-Topher-Timzen-EDR-Is-Coming-Hide-Yo-Sht.pdf

https://github.com/perturbed-platypus/LinooxMalware

ü MS Win NVRAM runtime persistence (not SPI storage)
https://slaeryan.github.io/posts/midnighttrain.html

https://github.com/slaeryan/MIDNIGHTTRAIN

* NVRAM persistent storage (with physical access to the target machine) also mentioned in CIA Vault7 leak

https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027%20presentations/DEFCON-27-Michael-Leibowitz-and-Topher-Timzen-EDR-Is-Coming-Hide-Yo-Sht.pdf
https://github.com/perturbed-platypus/LinooxMalware
https://slaeryan.github.io/posts/midnighttrain.html
https://github.com/slaeryan/MIDNIGHTTRAIN

#BHEU @BLACKHATEVENTS https://labs.sentinelone.com/moving-from-dynamic-emulation-of-uefi-modules-to-coverage-guided-fuzzing-of-uefi-firmware/

https://labs.sentinelone.com/moving-from-dynamic-emulation-of-uefi-modules-to-coverage-guided-fuzzing-of-uefi-firmware/

#BHEU @BLACKHATEVENTS

Limitations of blackbox AFL fuzzing
ü Lack of code-coverage-based feedback loop means test generation can rely

only static corpus.

ü Random input mutations with little initial knowledge may need extra RE
work to create more precise/valid corpus

ü Platform simulation like Simics with combination of Symbolic Execution* can
improve input corpus generation and test coverage in general.

ü efiXplorer can also fill that gap by providing the coverage and helping with
corpus generation for potential targets.

* https://software.intel.com/content/www/us/en/develop/articles/finding-bios-vulnerabilities-with-symbolic-execution-
and-virtual-platforms.html

https://software.intel.com/content/www/us/en/develop/articles/finding-bios-vulnerabilities-with-symbolic-execution-and-virtual-platforms.html

#BHEU @BLACKHATEVENTS

Vendors disclosure Details

Intel/Dell Timeline (discovered by Nvidia Offensive Research):
§ Sep 2020: Initial Disclosure

§ Oct 2020: Issues confirmed
GetVariable() – 2 stack overflow issues with SMM code execution impact
SmmGetVariable() – 2 stack overflow issues with SMM code execution impact
CommBuffer – 1 heap overflow issue with SMM code execution impact

§ Nov 2020: Security fixes confirmed in update cycle

§ April 2020: Disclosure date

#BHEU @BLACKHATEVENTS

efiXplorer
Automated vulnerability search

at scale

#BHEU @BLACKHATEVENTS

Automated vulnerability search methodology

We used 3 datasets with firmware images only released in 2020:

ü ASRock - 450 firmware images
ü ASUS - 820 firmware images
ü Lenovo - 84 firmware images

#BHEU @BLACKHATEVENTS

Automated vulnerability search methodology
We evaluated efiXplorer at automated vulnerability search in three ways:

ü Measuring objects and structures recovery
ü Function calls recovery precision 0.94 / recall 0.88 (at DXE stage)
ü For more info: https://github.com/binarly-io/Research_Publications/tree/main/EKO_2020

ü Measuring attack surface: number of SMI handlers and GetVariable calls

ü Running automated vulnerability checks and validating results semi-manually

https://github.com/binarly-io/Research_Publications/tree/main/EKO_2020

#BHEU @BLACKHATEVENTS

efiXplorer
SMI callout automated search

#BHEU @BLACKHATEVENTS

efiXloader: SMM callouts identification
§ SMM callout is a well-known attack vector for years and retains its

significant place in the UEFI firmware security assessment
§ SMI handlers - are crucial places, where SMM callouts may exist
§ Assume that some Runtime Service triggers inside SMI handler

#BHEU @BLACKHATEVENTS

efiXloader: SMM callouts identification

§ efiXloader introduces the semi-automatic way of SMM callouts identification
within the whole firmware using static analysis approach

§ Since efiXloader can trigger efiXplorer analyzing routines, it is possible to
identify SMM callouts within the whole firmware

§ Runtime/Boot services execution inside SMM

§ Iterate through EFI_SMM_SW_DISPATCH2_PROTOCOL.Register()
within each SMM driver and collect pointer to SMI handler

#BHEU @BLACKHATEVENTS

efiXloader: SMM callouts identification
§ Iterate through EFI_SMM_SW_DISPATCH2_PROTOCOL.Register()

within each SMM driver and collect pointer to SMI handler

#BHEU @BLACKHATEVENTS

efiXloader: SMM callouts identification
§ Iterate through EFI_SMM_SW_DISPATCH2_PROTOCOL.Register()

within each SMM driver and collect pointer to SMI handler

#BHEU @BLACKHATEVENTS

efiXloader: SMM callouts identification
§ BootServices

#BHEU @BLACKHATEVENTS

efiXloader: SMM callouts identification
§ RuntimeServices

#BHEU @BLACKHATEVENTS

efiXloader: SMM callouts identification

efiXplorer

#BHEU @BLACKHATEVENTS

SMM callouts identification: statistics

Vendor Name Avg number of SMI calls per
firmware

Avg number of SMM callout pattern is
triggered per firmware

ASRock 51 72
ASUS 42 80

Lenovo 20 3

#BHEU @BLACKHATEVENTS

SMM callouts identification: results

#BHEU @BLACKHATEVENTS

efiXplorer
GetVariable vuln search

#BHEU @BLACKHATEVENTS

efiXplorer: GetVariable vuln search
EFI_GET_VARIABLE EFI_RUNTIME_SERVICES::GetVariable definition

https://github.com/tianocore/edk2/blob/3806e1fd139775610d8f2e7541a916c3a91ad989/MdePkg/Include/Uefi/UefiSpec.h#L647

#BHEU @BLACKHATEVENTS

efiXplorer: GetVariable vuln search
If DataSize smaller than VarDataSize, just change DataSize and return EFI_BUFFER_TOO_SMALL
status code (according to the implementation of VariableServiceGetVariable from EDK2)

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/Variable/RuntimeDxe/Variable.c#L2397

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Universal/Variable/RuntimeDxe/Variable.c

#BHEU @BLACKHATEVENTS

efiXplorer: GetVariable vuln search

Algorithm and implementation

§ loop through all the pairs of GetVariable
calls and get the address of the DataSize
stack variable on the first call

§ check that the data size is not initialized
before the second call to GetVariable

§ check that the DataSize argument
variable is the same for two calls

#BHEU @BLACKHATEVENTS

efiXplorer: GetVariable vuln search

#BHEU @BLACKHATEVENTS

efiXplorer: GetVariable vuln examples
§ In this case, changing the value of the variable can lead to the execution of arbitrary code

#BHEU @BLACKHATEVENTS

efiXplorer: GetVariable vuln examples
§ The sequence of multiple GetVariable calls may cause the buffer overflow as follows

§ Correct usage

1. First call is required to update
DataSize value

2. Second call — trigger OOB write

Initializing data size before each call

#BHEU @BLACKHATEVENTS

GetVariable vuln search: statistics

Vendor Name Avg number of calls per firmware Avg number of vuln pattern is triggered per
firmware

ASRock 735 2
ASUS 697 5

Lenovo 466 20

#BHEU @BLACKHATEVENTS

DXE GetVariable vuln search: results

#BHEU @BLACKHATEVENTS

efiXplorer
SmmGetVariable vuln

search

#BHEU @BLACKHATEVENTS

efiXplorer: SmmGetVariable vuln search
• SmmGetVariable - function from EFI_SMM_VARIABLE_PROTOCOL
• functionality is like EFI_RUNTIME_SERVICES::GetVariable

https://github.com/tianocore/edk2/blob/3806e1fd139775610d8f2e7541a916c3a91ad989/MdeModulePkg/Include/Protocol/SmmVariable.h#L24

https://github.com/tianocore/edk2/blob/3806e1fd139775610d8f2e7541a916c3a91ad989/MdeModulePkg/Include/Protocol/SmmVariable.h

#BHEU @BLACKHATEVENTS

efiXplorer: SmmGetVariable vuln search
Algorithm and implementation
(similar to GetVariable vuln
search)
§ loop through all the pairs of

SmmGetVariable calls and get the address
of the DataSize stack variable on the first
call

§ check that the data size is not initialized
before the second call to
SmmGetVariable

§ check that the DataSize argument
variable is the same for two calls

#BHEU @BLACKHATEVENTS

efiXplorer: SmmGetVariable vuln search
§ Static analyzer messages in the IDA output window

#BHEU @BLACKHATEVENTS

efiXplorer: SmmGetVariable vuln examples
§ The sequence of multiple SmmGetVariable calls may cause the buffer overflow inside SMM

1. First call is required to update
DataSize value

2. Second call — trigger OOB write

#BHEU @BLACKHATEVENTS

SmmGetVariable vuln search: statistics

Vendor Name Avg number of calls per firmware Avg number of vuln pattern is triggered per
firmware

ASRock 8 0
ASUS 7 0*

Lenovo 15 1

* 3 cases among 820 firmware images

#BHEU @BLACKHATEVENTS

SmmGetVariable vuln search: results

#BHEU @BLACKHATEVENTS

efiXplorer
PPI GetVariable vuln

search

#BHEU @BLACKHATEVENTS

efiXplorer: PPI GetVariable vuln search
Similar to GetVariable in SMM, PEI modules rely on
EFI_PEI_READ_ONLY_VARIABLE2_PPI service to read nvram variables

https://github.com/tianocore/edk2/blob/3806e1fd139775610d8f2e7541a916c3a91ad989/MdePkg/Include/Ppi/ReadOnlyVariable2.h#L104

https://github.com/tianocore/edk2/blob/3806e1fd139775610d8f2e7541a916c3a91ad989/MdePkg/Include/Ppi/ReadOnlyVariable2.h

#BHEU @BLACKHATEVENTS

efiXplorer: PPI GetVariable vuln search

Algorithm and implementation
(similar to SmmGetVariable
vuln search)
§ loop through all the pairs of

VariablePPI->GetVariable calls and get
the address of the DataSize stack
variable on the first call

§ check that the DataSize argument is
the same for both calls

#BHEU @BLACKHATEVENTS

PPI GetVariable vuln search: statistics

Vendor Name Avg number calls per firmware Avg number of vuln pattern is triggered per
firmware

ASRock 122 12
ASUS 176 17

Lenovo 77 8

#BHEU @BLACKHATEVENTS

PPI GetVariable vuln search: results

#BHEU @BLACKHATEVENTS

Vuln hunting at scale:
results and statistics

#BHEU @BLACKHATEVENTS

Vuln hunting at scale: vendor stats

Attack surface and potential vulnerabilities: average numbers per 1
firmware for each of the 3 vendors

Vendor
name

SMI handlers
num.

Potential SMM
callouts num.

PEI GetVariable
calls num.

Potential PEI
GetVariable vuln

num

DXE GetVariable
calls num.

Potential DXE
GetVariable vuln

num

SMM GetVariable
calls num.

Potential SMM
GetVariable vuln

num

ASRock 51 72 122 12 735 2 8 0

ASUS 42 80 176 17 697 5 7 0.003

Lenovo 20 3 78 8 466 2 15 1

#BHEU @BLACKHATEVENTS

Vuln hunting at scale: Attack Surface stats

Attack surface and potential vulnerabilities: average numbers per 1
firmware for each boot phase (PEI/SMM/DXE)

Metric PEI SMM DXE
GetVariable 152.00 8.00 695.00
GetVar Vuln 15.00 0.06 4.00

#BHEU @BLACKHATEVENTS

efiXplorer: future plans

#BHEU @BLACKHATEVENTS

Disassembly Microcode

Decompiler

#BHEU @BLACKHATEVENTS

#BHEU @BLACKHATEVENTS

Power of dataflow analysis

#BHEU @BLACKHATEVENTS

#BHEU @BLACKHATEVENTS

Conclusion
ü Well-tuned heuristics work surprisingly well for UEFI security analysis

- recovery of important structures
- automated attack surface measurement (!)
- automated potential vulnerability finding (!)

ü Firmware vendors have worked on attack surface reduction, but well-known attack
vectors is still a problem in 2020, such as: SMM callouts, GetVariable misuse

ü We need more open, usable, and working instruments for UEFI security, including:
Vuln research, RE and automation, Forensics and Data Science

ü It's about right time for a much broader audience to look into the problem of UEFI
implants

ü Who knows what else we'll find there?

Thank you!
@matrosov, @isciurus,

@yeggorv, @p41ll
#BHEU @BLACKHATEVENTS

