
BlackHat Europe 2020

Debug Resurrection on nRF52 
Series
LimitedResults




About 

• www.limitedresults.com


• Hardware Security


• Low-Level vulns


• No affiliation

Me

2

http://www.limitedresults.com


Agenda
Today

• Introduction


• nRF52


• APPROTECT


• Approach & Analysis


• Time to Hack


• Results


• Conclusion

3



INTRO

4



NordicSemiconductor
nRF52

• Released in 2015


• Popular IoT Platforms


• Short Range communications


• Bluetooth, Zigbee, Thread products


• But generally


• Debug interface (SWD) is disabled :(

5



Code Readout Protection
What is it?

• Hardware Security Mechanism


• Present in most of the MCUs/SoCs with integrated Flash 
nowadays


• Protect against Reverse-Engineering


• Prevent an attacker to access the Code/Data stored in 
Flash


• Protect hardcoded secrets present in the Firmware

6



Previously…
Long tradition of CRP attacks

• Microchip PIC 


• Heart of Darkness - Milosch Meriac


• Hacking the PIC 18F1320 - Andrew Huang aka Bunnie 


• NXP LPC


• Breaking Code Read Protection on the NXP LPC-family Microcontrollers - Chris Gerlinsky


• Breaking boot loader on the Cheap - Qais Temeiza, David Oswald 


• STMICRO STM32 


• Shedding too much Light on a Microcontroller's Firmware Protection - J. Obermaier, S. Tatschner


• Wallet.fail - D. Nedospasov, J. Datko, T. Roth


• Not exhaustive list of course…


• Some professional companies propose FW extraction as a Service

7

https://www.openpcd.org/images/HID-iCLASS-security.pdf
https://www.bunniestudios.com/blog/?page_id=40?
https://recon.cx/2017/brussels/resources/slides/RECON-BRX-2017-Breaking_CRP_on_NXP_LPC_Microcontrollers_slides.pdf
https://i.blackhat.com/eu-19/Thursday/eu-19-Temeiza-Breaking-Bootloaders-On-The-Cheap-2.pdf
https://www.aisec.fraunhofer.de/en/FirmwareProtection.html
https://wallet.fail


And what about Nordic MCUs?
nRF51

• RBPCONF Protection 


• Prevent direct access to the Flash and the RAM


• But ALL the registers are still R/W…


• And the debugger can still control the Code Flow Execution


• In 2015, IncludeSecurity disclosed how to bypass RBPCONF


• Just find a gadget (load word instruction with a register operand)


• Set the operand register to a target address and execute that one 
instruction


• Read the value from the register. 


• Script this using OpenOCD. Dumped.

8

https://blog.includesecurity.com/2015/11/NordicSemi-ARM-SoC-Firmware-dumping-technique.html


APPROTECT
nRF52

• On nRF52 


• Nordic decided to design a more restricted security 
mechanism


• This new feature is called APPROTECT


• Prevent direct access to the Flash and the RAM, but also 
to all the registers


• Not too much details in nRF52 documentation (security by 
obscurity)


• Never hacked (As Far As I Know)

9



My Objective
Defeat the APPROTECT

• Context


• 2 months (Lockdown)


• Main Objective


• Find a way to break the APPROTECT on nRF52840


• How to do that?


• I don’t know yet…

10



THE LIMITED APPROACH

11



The Dev-Kit
nRF52840-DK

• 50 Euros :\


• Download the SDK (nRF5_SDK_16.0.0)


• Install Nrfjprog (v10.6.0)


• Embedded Segger J-Link debugger


• Based on a MicroChip ATSAM3U2C (white 
sticker)


• Install debugger driver JLink (v6.64)


• Can be used independently :)

12



The Target
nRF52840

• Nordic nRF52840


• Bluetooth, Thread and Zigbee SoC


• 64 MHz Cortex-M4F CPU


• Integrated 1MB Flash, 256kB RAM


• Security


• ARM Crypto-cell


• Code Readout Protection 
(APPROTECT)

13



Memory Map
nRF52840

• Flash Memory located at 0x00000000


• Physical RAM is mapped to both the Data RAM 
and the Code RAM regions


• Code RAM @0x00800000-0x00840000


• Data RAM @0x20000000-0x20040000


• Factory information configuration registers 
(FICR) at 0x1000 0000


• Chip Specific information Pre-programmed in 
Factory like Device ID, Encryption Root, 
Identity Root, device address (bluetooth)


• User Information Configuration Registers 
(UICR) at 0x10001000

14



UICR
User Information Configuration Registers

• APPROTECT is mapped at 
0x10001208


• Write 0xFFFFFF00 
enable the Access 
Port Protection


• Cannot be disabled 
without erase all 
the RAM and Memory 
Flash (Nordic)

• Non-Volatile Memory (NVM) Registers to configure 
Specific Settings

15



Let’s start
nRF52

• Compile/Reuse a sample Code (SDK)


• Connect the board via USB


• Flash the hex into the nRF52


• $ nrfjprog -f NRF52 --program nrf_pca10056.hex --verify --chiperase && 
nrfjprog -f NRF52 —reset


• Or $ make && make install (inside the SDK)


• Verify the debug access by reading the APPROTECTSTATUS register via OpenOCD


• > nrf52.dap apreg 1 0x0c


• 0x00000000 APPROTECT enabled


• 0x00000001 APPROTECT disabled

16



APPROTECT
Command Line 

• Enabling (via OpenOCD)


• $ openocd -s /usr/local/share/openocd/
scripts -f ./interface/jlink.cfg -c 
"transport select swd" -f ./ 
target/nrf52.cfg 


• # Telnet 


• $ telnet localhost 4444


• > flash fillw 0x10001208 
0xFFFFFF00 0x01


• > reset 


• Enabling (via nrfjprog)


• $ nrfjprog --memwr 0x10001208 --val 
0xFFFFFF00

• Disabling (once connected to 
OpenOcd & telnet)


• #Write ERASEALL register


• > nrf52.dap apreg 1 0x04 
0x01 


• > reset


• Disabling (via nrfjrog)


• $ nrfjprog -f NRF52 —
recover

17



APPROTECT Enabled
nRF52

• Once APPROTECT enabled


• Could not Find MEM-AP to control the Core

18



APPROTECT Analysis
ARM-DAP

• Accessing ARM CPU throught the 
Debug Access Port (DAP)


• CRTL-AP


• Master Debug Port


• Not dependent of the 
APPROTECT


• AHB-AP


• Access Memories and Control 
the CPU via SWD


• This is the “Real” Debug Port


• ARM Cortex-M reference pretty 
useful here

19

https://developer.arm.com/documentation/ddi0439/b/Introduction/Product-documentation/Documentation


Boot Process
Relatively simple

• No BootROM


• no embedded boot-loader routines, 
nor IAP/ISP routines to reverse


• Power Sequence


• No info in the documentation


• Reset Vector


• Entry Point located at 0x0000 02B4

20



Reset Policy
Understand the power sequence

• Consequently


• at Power-on Reset, the AHB-AP has to initialise itself depending 
on the value of the APPROTECT, which is stored in UICR

21



The Limited Plan

• Goal


• Access to the AHB-AP Debug, despite of the APPROTECT


• I know


• No BootROM in nRF52


• At boot-up, the CPU/AHB-AP Block has to receive the APPROTECT value stored in 
Flash from NVMC to set the Protection State accordingly


• This is implemented in Pure Hardware and has to be done before the CPU start 
to load and execute Code stored in Flash


• What am I going to do?


• Fault Injection after a Power-On-Reset, when the NVMC/AHB-AP are initialised 
with the UICR values

22



Time To Hack

23



Fault injection
Voltage glitching

• The cheapest Fault Injection technique


• Perturb the Power Supply to induce a fault during critical SW/HW operations 


• Skip instruction, Data/Code modification 


• Difficult to predict the glitch effect and to defend against


• Commercial Tools are available…but you can also DIY


• Lot of Public resources


• Glitching for Noobs - Exide


• Glitching and Side Channel Analysis for all - Colin O’Flynn


• And more…

24

https://recon.cx/2014/slides/REcon2014-exide-Glitching_For_n00bs.pdf
https://recon.cx/2015/slides/recon2015-13-colin-o-flynn-Glitching-and-Side-Channel-Analysis-for-All.pdf


nRF52 Power Domain
Which line do I need to glitch?

• Six different Power Pins, zero info from 
Nordic


• DEC1 = 1.1V Regulator supply decoupling


• DEC2 = 1.3V Regulator supply decoupling


• DEC3 = Power Supply, decoupling


• DEC4 = 1.3V Regulator supply decoupling


• DEC5 = 1.3V Regulator supply decoupling


• DEC6 = 1.3V Regulator supply decoupling

• Probing these lines lead to


• DEC4 (1.2V-1.3V) is the power after the REG1 Stage, which supplies the 
digital blocks (CPU and Memories)


• DEC1 (0.8V-0.9V) is the CPU dedicated power line
25



PCB modification

• Schematics available, so easy 
job


• Focus on DEC1 and DEC4


• Why do I remove capacitors?


• Improve the monitoring of 
power consumption. No big 
low-pass filter effect (RC)


• The voltage glitch has a 
sharper drop-out. Better 
repeatability and fine-tuning 
parameters

26



PCB Modification
Soldering

• Magnet wire soldered to DEC1 
then connected to a SMA 
connector


• Red wire soldered to DEC4 then 
connected to a second SMA 
connector


• GND point as a main Ground

27



The attack flow

• nRF52 Boot-up


• Inject the fault


• Attempt a debugger connection


• $ openocd -s /usr/local/share/openocd/scripts -f ./
interface/jlink.cfg -c "transport select swd" -f ./target/
nrf52.cfg -c "init;dump_image nrf52_dumped.bin 0x0 0x100000"


• Check Status (if OK, that will dump the firmware)


• If not, Reset the chip and try again

28



Final Setup
Automation is key

• Home-made Glitcher System


• Based on Mosfet, passive components and SMA connectors 
for inputs/outputs (5$)


• Synchronised by Scope


• USB commands to set the different parameters like Delay, 
Width and Amplitude


• Fully controlled in Python

29



RESULTS

30



Black Box Reverse
Power analysis is the only way

• CH1 = TxD (pin 
P0.06)


• CH2 = Power 
consumption 
through DEC1


• CH3 = Pulse 
command to trig 
the Glitch


• CH4 = Power 
consumption 
through DEC4 
(Scope Trigger)

Flash Activity


31



Black Box Reverse
Identification of the targeted Hardware Process

• Identification


• CPU Power-Up


• NVMC Init


• Flash 
Activity

Transfer from Flash to Code RAM 


CPU Power Up

NVMC initialisation


Start to execute

32



Black Box Reverse
Identification of the targeted Hardware Process

• Hardware 
Process 
identified


• Visible on 
DEC1 and DEC4


• Timing window 
of 2.5 us

What I was 
looking for


33



Results
Bypass of APPROTECT on nRF52840

• Successful 
glitch


• Differences on 
both Power 
Lines


• No Flash 
Activity after 

Glitch effect


34



Results
Debug access despite APPROTECT enabled

• The Debugger can now connect to the AHB-AP bus and 
enumerate the breakpoints and watchpoints


• Classic debug session openOCD + arm-none—eabi-gdb

35



Persistence
Reactivating the debug interface permanently

• Dump Flash and UICR


• >(gdb) mon dump_impage flash.bin 
0x10000000 0x1000


• >(gdb) mon dump_impage uicr.bin 
0x10001000 0x1000


• Patch 0x00 -> 0xFF in the UICR.bin at 
0x10001208 in your hex editor


• Erase all


• nrfjprog -f NRF52 --recover


• Reflash the nRF52 with uicr.bin (and 
flash.bin)

36



Consumer Product
Logitech G Pro

• Need to validate this on a real 
product


• Sacrifice of my G Pro


• 120 Euros :\…rip


• Based on nRF52840


• APPROTECT is activated


• The goal is not to attack the 
Logitech Product here

37



Soldering
Logitech G Pro

• PCB Reference design 


• provided by Nordic


• Reused by Logitech


• Silkscreen


• No need to reverse PCB


• Easy job

38



Final Setup

• DEC1 is connected to the 
glitcher


• Successful glitch attack 
using the known 
parameters 


• Firmware is Dumped


• UICR is rewritten to add 
Debug Persistence to the 
Device


• Reset

39



Results
Attack is Validated

• End up with a full-functional device 


• Ideal conditions for


• Static analysis (firmware is 
dumped)


• Dynamic analysis (full debug on 
device)


• Attach debug to IDA


• Or just use gdb

40



End of Story?

41



Not yet…
Not yet

• I was cleaning my desk…


• when I received this tweet


• Is all the nRF52 Family vulnerable 
to the APPROTECT Bypass?


• Immediately order two more 
boards


• nRF52833-DK


• nRF52-DK

42



Quick Analysis
The entire family is likely vulnerable

• IP blocks such as Flash Controller, Cortex-M Core are the 
same across the nRF52 Family


• Comparison between the nRF52 from Nordic Website


• Let’s confirm that

43



Some modifications
nRF52833

• Enameled wire = DEC1 
(CPU_VCC)


• Red wire = DEC4 useful to 
monitor the chip activity


• Not necessary


• Don’t forget to put GND 
somewhere…

44



Same Pattern
nRF52833

• Clean Power 
Consumption on 
DEC1 (CPU)


• Clean Power 
Consumption on 
DEC4 (global)

45



Some modifications
nRF52832

• Enameled wire = DEC1 
(CPU_VCC)


• Red wire = DEC4 useful to 
monitor the chip activity


• Not necessary


• Don’t forget to put GND 
somewhere…

46



Same Pattern
nRF52832

• Clean Power 
Consumption on 
DEC1 (CPU)


• The same 
pattern can be 
easily 
identified

47



Same Consequence
nRF52832/nRF52833

• nRF52833 (after a glitch)


• Same for nRF52832

48



Impact
All the nRF52 are vulnerable…Forever

• Security Researchers/Hackers


• It is Good news


• Developers


• In case you rely on nRF52 Flash Content’s Confidentiality…


• Update your threat model


• Nordic


• No cooperation, that’s life


• Following the post, they sent Information Notice 2 days later


• No patch, no redesign… nRF52 will stay vulnerable FOREVER

49

https://infocenter.nordicsemi.com/pdf/in_133_v1.0.pdf


More Impact?
nRF52 based Modules
• Third Party Modules based on nRF52 are impacted


• Fanstel Corp.


• Laird


• Minew


• Raytac


• Taio Yuden


• U-blox


• Wurth Elektronik


• Murata


• Dynastream


• Fujitsu…and others

50



Conclusion
• APPROTECT Bypass on nRF52

• Fault Injection attack to allow Debug Resurrection


• Physical Access required


• Low-Cost equipment and Low-level Hacking skills to reproduce


• Has to be achieved only once


• Results


• Firmware Extraction (including FICR)


• Full Debug access (R/W Memory, Breakpoints…)


• No way to patch

51



BlackHat Europe 2020

Thank you
@LimitedResults


