
Arm’d and Dangerous
Patrick Wardle, Founder, Objective-See
Gary Davis, Chief Evangelist, Intrusion

KEY TAKEAWAYS
 � Organizations must shift from passive, perimeter-based malware defenses to solutions that meet

cybercriminals where they are.

 � As Macs have become more popular in enterprise settings, Mac malware has exploded.

 � M1 malware contains arm64 code and a universal binary with code for multiple architectures.

 � To reverse engineer M1 malware, analysts must understand arm64 basics.

 � Since similar anti-analysis logic is used across malware, common approaches can be used to bypass it.

 � Intrusion is changing the cybersecurity game with solutions based on bi-directional zero trust.

in partnership with

W
EB

IN
AR

 S
UM

M
AR

Y
Oc

to
be

r 1
4,

 2
02

1

PAGE 2

AR
M

’D
 A

N
D

DA
N

GE
RO

US OVERVIEW
Apple’s new M1 systems (also known as Apple Silicon) offer myriad benefits for macOS users. It is no
surprise that enterprise adoption of Mac products is on the rise. macOS and Apple’s new M1 system
on a chip (SOC) have become attractive targets for malware authors. Before analyzing this malicious
code, security analysts must first master topics like reversing arm64 code and bypassing anti-analysis
logic. Given that a small percentage of cyberattacks have known signatures, IT teams must also
consider new approaches to cybersecurity like continuous monitoring of incoming and outgoing
network traffic.

CONTEXT
Patrick Wardle discussed how to analyze the anti-analysis logic of M1 malware. Gary Davis discussed
the threat landscape and how Intrusion’s bi-directional zero trust solutions can protect macOS sys-
tems from cybercriminals.

KEY TAKEAWAYS
Organizations must shift from passive, perimeter-based malware defenses to
solutions that meet cybercriminals where they are.
While IT teams are spending more to address cyberattacks, it feels like a losing battle. Many organiza-
tions depend on signature-based cybersecurity products. However, most successful attacks today
come from malware-free or zero day types of techniques. Malware with a known signature repre-
sents only 5% of successful attacks.

Organizations should assume that they are already infected with malware. In addition, Macs are just
as vulnerable to cyberattacks as Intel Windows-based machines. In response, IT teams must take four
steps to shift away from passive, perimeter-based defenses that look for known malware:

1. Look at both inbound and outbound network traffic. Sampling a portion of the traffic isn’t
enough. In addition, the network traffic leaving the enterprise is just as important as the incoming
traffic.

2. Turn to AI. Both cybersecurity companies and cybercriminals are leveraging AI and machine
learning. AI technologies are crucial for analyzing large volumes of data.

Figure 1: The Current Cybersecurity Landscape

PAGE 3

AR
M

’D
 A

N
D

DA
N

GE
RO

US
3. Deploy real-time detection technologies. On average, it takes companies two days to figure out

that they are under attack. That is too long.

4. Rely on large volumes of data. The more data that is available, the more intelligent AI becomes
and the more effective it is at combatting cyber adversaries.

Signature-only anti-malware products aren’t enough to stop contemporary
attackers. We need to broaden our approach and rethink how we stop
cybercrime. The adversary is much more sophisticated. They are well-funded,
well-organized, and more brazen.
Gary Davis, Intrusion

As Macs have become more popular in enterprise settings, Mac malware has
exploded.
Apple’s new M1 system on a chip (SOC) is a primary contributor to surging macOS adoption. M1 is
also called Apple Silicon. It is an arm-based SOC which means that multiple technologies, like the
CPU, the GPU, and DRAM, are combined onto a single chip. This architecture is one reason why the
M1 chip is so efficient and performant. Malware compiled to run natively on this chip uses the arm64
instruction set.

Unfortunately, the emergence of M1 malware was inevitable. Any code compiled to run natively on
Apple’s new chip will run faster and won’t be subjected to translation issues associated with Rosetta,
Apple’s translation technology.

Testing of malware compiled for both Intel and arm64 platforms found about a 10% decrease in the
detection of malware on the arm64 sample, even though the malware was identical. This is significant
because some signatures are architecture-specific and signature-based cybersecurity solutions may
miss known malware, once it is recompiled to run natively on Apple.

M1 malware contains arm64 code and a universal binary with code for multiple
architectures.
A binary compiled to run natively on Apple Silicon contains arm64 code and within it, there is a
universal binary with code for multiple architectures. Mac malware authors distribute macOS binaries
in this file format so they can run their code natively on both Intel and arm-based systems.

Figure 2: macOS Adoption and the Growth of macOS Malware

PAGE 4

AR
M

’D
 A

N
D

DA
N

GE
RO

US
A file command can be used to look at the architectures and the O tool command can be used to
examine load commands within the binaries. This will reveal whether they have been compiled
specifically for macOS.

Earlier this year, Patrick Wardle discovered the first candidate sample of malicious code that was
natively compiled to run on Apple M1 systems, called GoSearch22. His analysis revealed that it was a
variant of the Pierrot malware family. Since GoSearch22 was identified, there has been a massive
increase in arm64 M1 malware. Unfortunately in some cases, Apple has inadvertently notarized these
binaries.

To reverse engineer M1 malware, analysts must understand arm64 basics.
Patrick Wardle reviewed several foundational concepts related to the arm64 instruction set:

 � Registers. Arm64 has 31 64-bit, general purpose registers named x0 to x30. The lower 32 bits of
any of these registers can be referred to with the w prefix. There are also dedicated registers. For
example, sp is the stack pointer and PC is the program counter. The virtual register is always set to
zero. In addition, arm64 has the PSTATE entity that contains condition flags.

During malware analysis, analysts can gain a fairly comprehensive understanding of a code sample
by studying the API calls it makes and the values of the arguments passed to it. In the context of
an API call, certain rules define how registers are used. With that understanding, it is possible to
identify which register will always hold the first argument and which register will always hold the
return value of the function when a function call is made.

In the context of arm64, the first eight arguments are passed in x0 through x7. The return value of
the function will be found in x0, or if it is a 128-bit value, it will be found in x0 and x1. The return
address, which is where the function returns to, can be found in the x30 or (lr) register and the x29
register. The frame pointer register is used for stack frames within the context of the function.

 � Instructions. These tell the CPU what to do. Instructions start with mnemonics which are human-
readable abbreviations for the instructions that they perform. The remaining part of the instruction
is made up of operands. There are three types: immediate, register, and memory. The first operand
is almost always the destination register.

Figure 3: How to Identify M1 Code

PAGE 5

AR
M

’D
 A

N
D

DA
N

GE
RO

US

 � Memory access model. Arm64’s load-and-store architecture separates instructions into those that
can access memory and those that cannot. The ldr or load register instruction loads information
from memory. The str or store register instruction stores a value from the register into the specified
memory address. This instruction is unique since the first operand is the source register and the
second is the destination.

 � Comparisons and conditions. Malware often performs checks via comparisons and then takes
actions. This behavior can impact malware analysis. Compare instructions perform a comparison
between two operands and update the flag in the PSTATE entity. Once condition flags have been
set, subsequent instructions act on these flags using condition codes.

 � Branching. This is how the arm64 instruction set can alter the control flow of a program. There are
three types of branches: unconditional, conditional, and branch and store.

By leveraging a decompiler and dynamic analysis tools, often a fundamental
understanding of arm64 will suffice for analyzing malware code. You only need
to focus on code arounds and function calls, rather than understanding every
assembly instruction.
Patrick Wardle, Objective-See

Figure 4: Arm64 Instruction Operands

Figure 5: Condition Codes

PAGE 6

AR
M

’D
 A

N
D

DA
N

GE
RO

US

Since similar anti-analysis logic is used across malware, common approaches can
be used to bypass it.
Anti-analysis logic is added to malware to thwart malware analysts. Before a malware sample can be
analyzed, it is crucial to identify and bypass the anti-analysis mechanisms. Examples of anti-analysis
logic found in the GoSearch22 malware include code to thwart dynamic analysis and debugging tools,
as well as code to obfuscate static analysis like garbage instructions and spurious function calls.

In the context of the GoSearch22 malware, Patrick Wardle reviewed three types of anti-analysis logic
and techniques to bypass them, debug the malware, and conduct a comprehensive analysis:

1. Debugger detection via ptrace/PT_DENY_ATTACH. The disassembled arm64 instructions for the
malware include five instructions which tell the operating system to exit if a debugger is detected. To
bypass this logic, the analyst can simply set a breakpoint. Once the breakpoint is set, the reg write
command can be used to modify the instruction pointer PC to point to the next instruction. As a result,
the problematic supervisor call is never made, thwarting and bypassing the anti-debugging logic.

2. System integrity protection (sip) status detection. System integrity protection (sip) protects
binaries from debugging. Analysts typically turn this functionality off when analyzing malware. As a
result, malware authors often assume that if malware is run on a system without sip enabled, the
code is probably being analyzed and it should exit prematurely. Using the debugger, it is possible to
see the value of the register, identify the functions that the malware is about to call, and consult
Apple documentation for those functions. By querying the object in the debugger, it is possible to
detect that it is going to check the status of system integrity protection in macOS. Once detected,
the analyst can change the instruction pointer to skip over this problematic call.

3. Virtual machine detection. The GoSearch22 malware also executes a large script that looks for
artifacts of virtual machines. If the malware detects that it has been virtualized, it will exit prema-
turely, assuming that most analysis is conducted in a virtualized environment. Once detected, the
analyst can once again modify the instruction pointer to skip over the problematic call.

Figure 6: Branches

PAGE 7

AR
M

’D
 A

N
D

DA
N

GE
RO

US

Intrusion is changing the cybersecurity game with solutions based on bi-
directional zero trust.
Instead of looking at signatures to detect malware, Intrusion’s cybersecurity products look at IPs. If
network traffic is coming from a known good IP, it is allowed. If it’s from a bad or unknown IP, it is
blocked. Rather than generating scores of alerts for the IT team, bad or suspect traffic is killed imme-
diately. This is a highly effective approach, since virtually every cybercriminal today relies on malware
calling home to initiate a successful attack.

Intrusion’s Shield solution uses a repository of threat intelligence with approximately 8.5 billion active
IPs. The Savant product sits on the wire, monitors the network, and informs Shield whether the traffic
is good or bad. Tracecop is Intrusion’s threat intelligence cloud that loads the 8.5 billion IPs into
memory.

ADDITIONAL INFORMATION
 � Patrick Wardle’s Slides. The complete slide deck, including code snippets, is available at

Speakerdeck.com.

 � Modern Arm Assembly Language Programming. This book explores the internals of Arm assem-
bly language and how to reverse engineer arm64 code.

 � The Art of Mac Malware. This open source book by Patrick Wardle can be downloaded for free.

Figure 7: Bypassing Debugger Detection

https://speakerdeck.com/patrickwardle/armd-and-dangerous-analyzing-arm64-malware-targeting-macos
https://www.amazon.com/Modern-Assembly-Language-Programming-Armv8-ebook/dp/B08KVRRCQS/ref=sr_1_3?crid=CT71LME0JL59&dchild=1&keywords=modern+arm+assembly+language+programming&qid=1634321631&sr=8-3
https://www.taomm.org/

PAGE 8

AR
M

’D
 A

N
D

DA
N

GE
RO

US

© 2021 Informa. All rights reserved.

 � Arm64 Assembly Crash Course. This resource can be found online.

 � How to Read arm64 Assembly Language. This blog post is available at Scott Wolchok’s website.

 � Introduction to Arm Assembly Language Basics. This tutorial is available at the Azeria Labs
website.

BIOGRAPHIES
Patrick Wardle
Founder, Objective-See

Patrick Wardle is the founder of Objective-See. Having worked at NASA and the NSA, as well as
presenting at countless security conferences, he is intimately familiar with aliens, spies, and talking
nerdy. Patrick is passionate about all things related to macOS security and thus spends his days
finding Apple 0days, analyzing macOS malware, and writing free open-source security tools to protect
Mac users.

Gary Davis
Chief Evangelist, Intrusion

Gary Davis serves as Intrusion’s chief evangelist. Prior to joining the company, he spent over 10 years
at Intel Corporation and McAfee, LLC where he served as chief security evangelist. During his tenure
he spoke on topics and trends in digital security including the evolving threat landscape, securing the
internet of things, the challenges with cryptocurrency, and many more. He has presented at high-
profile conferences and events around the world, including CES, Mobile World Congress, SXSW, and
the World Knowledge Forum. He has also delivered digital security topics to major educational institu-
tions including Harvard University and Columbia University.

Gary has appeared on broadcast outlets covering breaking cybersecurity news, including CBS News,
CNBC, NBC, ABC, FOX News, ESPN, Bloomberg, and WSJ MoneyBeat. He has also been quoted on
CNN and in the New York Times, the Wall Street Journal, USA Today, Money Magazine, Forbes,
Entrepreneur, U.S. News and World Report, and Time Magazine to name a few. He has also been
featured on radio programs in markets across the country.

https://github.com/Siguza/ios-resources/blob/master/bits/arm64.md
https://wolchok.org/posts/how-to-read-arm64-assembly-language/
https://azeria-labs.com/writing-arm-assembly-part-1/
https://azeria-labs.com/writing-arm-assembly-part-1/

