
Windows Offender:
Reverse Engineering
Windows Defender's
Antivirus Emulator

Alexei Bulazel
@0xAlexei

Black Hat 2018

About Me

● Security researcher at ForAllSecure
● Firmware RE & cyber policy at River Loop Security
● RPI / RPISEC alumnus
● Second time talking at Black Hat - previously, “AVLeak” at  

Black Hat 2016

@0xAlexei

This is my personal research, any views and opinions
expressed are my own, not those of any employer

This Presentation Is...
● A deeply technical look at

Windows Defender
Antivirus’ binary emulator
internals 

● As far as I know, the first
conference talk about
reverse engineering any
antivirus software’s binary
emulator

This Presentation Is...
● A deeply technical look at

Windows Defender
Antivirus’ binary emulator
internals 

● As far as I know, the first
conference talk about
reverse engineering any
antivirus software’s binary
emulator

This Presentation Is Not…
● An evaluation of Windows

Defender Antivirus’
efficacy as an antivirus
product 

● Related to Windows
Defender ATP, or any
technologies under the
Windows Defender name

Outline

1. Introduction
a. Background
b. Introduction to Emulation

2. Tooling & Process
3. Reverse Engineering
4. Vulnerability Research
5. Conclusion

Why Windows Defender Antivirus
Windows’ built-in antivirus software:

● Now the “Defender” name covers multiple mitigations and security
controls built into Windows

● This presentation is about Windows Defender Antivirus, not Windows
Defender ATP, Application Guard, Exploit Guard, etc…

Why Windows Defender Antivirus

● Huge AV market share - “8% of systems running Windows 7 and
Windows 8 are running Windows Defender and more than 50% of
Windows 10 devices”*

*windowsreport.com/windows-defender-enterprise-antivirus/

Windows’ built-in antivirus software:
● Now the “Defender” name covers multiple mitigations and security

controls built into Windows
● This presentation is about Windows Defender Antivirus, not Windows

Defender ATP, Application Guard, Exploit Guard, etc…

Why Windows Defender Antivirus

● Huge AV market share - “8% of systems running Windows 7 and
Windows 8 are running Windows Defender and more than 50% of
Windows 10 devices”*

*windowsreport.com/windows-defender-enterprise-antivirus/

● Runs unsandboxed as NT AUTHORITY\SYSTEM
○ Exploit = initial RCE + privilege escalation + AV bypass

● Surprisingly easy for attackers to reach remotely

Windows’ built-in antivirus software:
● Now the “Defender” name covers multiple mitigations and security

controls built into Windows
● This presentation is about Windows Defender Antivirus, not Windows

Defender ATP, Application Guard, Exploit Guard, etc…

● Tavis and co. at P0 dropped some
awesome Defender bugs 

● I had analyzed AVs before, but
never Windows Defender 

● I reversed Defender’s JS engine for
~4 months, then got interested in
the Windows emulator 

● My personal research side project
during winter 2017-2018: ~5
months of reversing, another
month documenting

Motivation

Target - mpengine.dll
mpam-fe.exe released monthly:
● mpengine.dll  

“Microsoft Malware Protection Engine”
Also bundles 4 other binaries 

● MPSigStub.exe  
“Microsoft Malware Protection Signature Update Stub” 

● mpasbase.vdm
● mpasdlta.vdm  

● mpavbase.vdm
● mpavdlta.vdm

32 & 64-bit builds

mpengine.dll provides malware
scanning and detection capabilities -
other AV features and OS integration are
handled in Defender’s other components

My Prior Research:
Windows Defender’s JavaScript Engine

Presented at REcon Brussels (Belgium), February 2018

bit.ly/  
2qio857

JS Engine bit.ly/2qio857

JS engine used for analysis of
potentially malicious code -
reversed from binary

JS Engine bit.ly/2qio857

JS engine used for analysis of
potentially malicious code -
reversed from binary

Custom loader / shell used for
dynamic experimentation - thanks
Rolf Rolles!

JS Engine bit.ly/2qio857

JS engine used for analysis of
potentially malicious code -
reversed from binary

Custom loader / shell used for
dynamic experimentation - thanks
Rolf Rolles!

AV instrumentation
callbacks

JS Engine bit.ly/2qio857

JS engine used for analysis of
potentially malicious code -
reversed from binary

Custom loader / shell used for
dynamic experimentation - thanks
Rolf Rolles!

AV instrumentation
callbacks

Security at the cost of
performance

Related Work
● Only a handful of prior publications on binary

reversing of antivirus software
● Lots of conference talks, whitepapers, and blogs on

antivirus evasion, including against emulators
○ AVLeak with fellow RPI researchers Jeremy Blackthorne,

Andrew Fasano, Patrick Biernat, and Dr. Bülent Yener - side
channel-based black box emulator fingerprinting

*AV industry companies have occasionally presented on
the design of their emulators at conferences. Industry
patents also often have interesting information about
AV internals.

● As far as I know, there’s never been a
publication about reverse engineering
the internals of an AV emulator*

● Tavis Ormandy’s Defender bugs from 2017

Outline

1. Introduction
a. Background
b. Introduction to Emulation

2. Tooling & Process
3. Reverse Engineering
4. Vulnerability Research
5. Conclusion

Why Emulate?
Traditional AV model: scan files and look for
known malware signatures (file hashes,
sequences of bytes, file traits, etc…)

Why Emulate?
Traditional AV model: scan files and look for
known malware signatures (file hashes,
sequences of bytes, file traits, etc…)

Problem: signatures are easily evaded with
packed code, novel binaries, etc

Why Emulate?
Traditional AV model: scan files and look for
known malware signatures (file hashes,
sequences of bytes, file traits, etc…)

a.k.a:
● sandboxing
● heuristic analysis
● dynamic analysis
● detonation
● virtualization

Problem: signatures are easily evaded with
packed code, novel binaries, etc

Solution: run unknown binaries in a virtual
emulated environment - look for runtime
malicious behavior or known signatures
● Not a new idea, in use for at least 15 years

Emulation Overview

CPU
Emulation

OS (Kernel)
Emulation

Persistent
System State

Malware Binary

AV Instrumentation

Other
Scanning
Engines

In-Emulator
OS Facilities

nt!PEB

Settings

mpengine.dll

Emulation Overview
● Load unknown potentially

malicious binary

CPU
Emulation

OS (Kernel)
Emulation

Persistent
System State

Malware Binary

AV Instrumentation

Other
Scanning
Engines

In-Emulator
OS Facilities

nt!PEB

Settings

mpengine.dll

Emulation Overview
● Load unknown potentially

malicious binary
● Begin running from entrypoint,

and run until termination
condition

CPU
Emulation

OS (Kernel)
Emulation

Persistent
System State

Malware Binary

AV Instrumentation

Other
Scanning
Engines

In-Emulator
OS Facilities

nt!PEB

Settings

mpengine.dll

Emulation Overview
● Load unknown potentially

malicious binary
● Begin running from entrypoint,

and run until termination
condition

○ Time

CPU
Emulation

OS (Kernel)
Emulation

Persistent
System State

Malware Binary

AV Instrumentation

Other
Scanning
Engines

In-Emulator
OS Facilities

nt!PEB

Settings

mpengine.dll

Emulation Overview
● Load unknown potentially

malicious binary
● Begin running from entrypoint,

and run until termination
condition

○ Time
○ Number of instructions

CPU
Emulation

OS (Kernel)
Emulation

Persistent
System State

Malware Binary

AV Instrumentation

Other
Scanning
Engines

In-Emulator
OS Facilities

nt!PEB

Settings

mpengine.dll

Emulation Overview
● Load unknown potentially

malicious binary
● Begin running from entrypoint,

and run until termination
condition

○ Time
○ Number of instructions
○ Number of API calls

CPU
Emulation

OS (Kernel)
Emulation

Persistent
System State

Malware Binary

AV Instrumentation

Other
Scanning
Engines

In-Emulator
OS Facilities

nt!PEB

Settings

mpengine.dll

Emulation Overview
● Load unknown potentially

malicious binary
● Begin running from entrypoint,

and run until termination
condition

○ Time
○ Number of instructions
○ Number of API calls
○ Amount of memory used

CPU
Emulation

OS (Kernel)
Emulation

Persistent
System State

Malware Binary

AV Instrumentation

Other
Scanning
Engines

In-Emulator
OS Facilities

nt!PEB

Settings

mpengine.dll

Emulation Overview
● Load unknown potentially

malicious binary
● Begin running from entrypoint,

and run until termination
condition

○ Time
○ Number of instructions
○ Number of API calls
○ Amount of memory used
○ etc...  

CPU
Emulation

OS (Kernel)
Emulation

Persistent
System State

Malware Binary

AV Instrumentation

Other
Scanning
Engines

In-Emulator
OS Facilities

nt!PEB

Settings

mpengine.dll

Emulation Overview
● Load unknown potentially

malicious binary
● Begin running from entrypoint,

and run until termination
condition

○ Time
○ Number of instructions
○ Number of API calls
○ Amount of memory used
○ etc...  

● Collect heuristic observations
about runtime behavior, look
for signatures in memory or
dropped to disk, etc...

CPU
Emulation

OS (Kernel)
Emulation

Persistent
System State

Malware Binary

AV Instrumentation

Other
Scanning
Engines

In-Emulator
OS Facilities

nt!PEB

Settings

mpengine.dll

Outline

1. Introduction
2. Tooling & Process
3. Reverse Engineering
4. Vulnerability Research
5. Conclusion

Static Analysis

● ~12 MB DLL
● ~30,000 functions
● IDA Pro

○ Patch analysis with BinDiff
● Microsoft publishes PDBs

Dynamic Analysis & Loader

“Repeated vs. single-round games in security”
Halvar Flake, BSides Zurich Keynote

AV-Specific Challenges:
● Protected Process

○ Cannot debug, even as local admin
● Introspection
● Scanning on demand
● Code reachability may be configuration /

heuristics dependent

Dynamic Analysis & Loader

“Repeated vs. single-round games in security”
Halvar Flake, BSides Zurich Keynote

AV-Specific Challenges:
● Protected Process

○ Cannot debug, even as local admin
● Introspection
● Scanning on demand
● Code reachability may be configuration /

heuristics dependent

Solution:
Custom loaders for
AV binaries

Tavis Ormandy’s loadlibrary git.io/fbp0X
● PE loader for Linux

○ Shim out implementations for Windows API imports
○ Only implements the bare minimum to get mpengine.dll running, not

a general purpose Windows emulator or Wine replacement
● mpclient tool exposes the main scanning interface

○ I built ~3k LoC of additional tooling on top of mpclient

mpclient git.io/fbp0X
Linux mpclient
Binary

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

IAT

 
WinAPI
Emulation

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

IAT Emulator
 
WinAPI
Emulation

g_syscalls

 OutputDebugStringA

 WinExec

 ...

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

IAT Emulator
 
WinAPI
Emulation

Malware Binary

MZ...

g_syscalls

 OutputDebugStringA

 WinExec

 ...

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

IAT

__rsignal

Emulator
 
WinAPI
Emulation

Malware Binary

MZ...

g_syscalls

 OutputDebugStringA

 WinExec

 ...

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

IAT

__rsignal

Emulator
 
WinAPI
Emulation

Malware Binary

MZ...

g_syscalls

 OutputDebugStringA

 WinExec

 ...

Scanning Engine
Selection

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

IAT

__rsignal

Emulator
 
WinAPI
Emulation

Malware Binary

MZ...

g_syscalls

 OutputDebugStringA

 WinExec

 ...

Scanning Engine
Selection

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

IAT

__rsignal

Emulator
 
WinAPI
Emulation

Threat Virus:
Win32/Virut.BN!dam identified.

Malware Binary

MZ...

g_syscalls

 OutputDebugStringA

 WinExec

 ...

Scanning Engine
Selection

Demo
Scanning with mpclient

Dynamic Analysis - Code Coverage
● Getting an overview of what subsystems are being hit is

helpful in characterizing a scan or emulation session
○ Breakpoints are too granular

● Emulator has no output other than malware identification
● Lighthouse code coverage plugin for IDA Pro from Markus

Gaasedelen of Ret2 Systems / RPISEC

Halvar Flake’s SSTIC 2018 keynote

Outline
1. Introduction
2. Tooling & Process
3. Reverse Engineering

a. Startup
b. CPU Emulation
c. Instrumentation
d. Windows Emulation &

Environment
4. Vulnerability Research
5. Conclusion

Getting Emulated

● __rsignal function provides an entry
point into Defender’s scanning - give it a
buffer of data and it returns a malware
classification  

● Defender uses emulation to analyze
executables it does not recognize with
other less expensive analyses  

● Emulation results are cached - a given
binary will only be emulated once, even if
scanned multiple times

Emulator Initialization
● Allocate memory
● Initialize various objects and subsystems used

during emulation
● Load the binary to be analyzed - relocate,

resolve imports, etc
● Initialize virtual DLLs in the process memory

space 

● Heuristic observations about the binary are
recorded - section alignment, number of
imports, etc

Outline
1. Introduction
2. Tooling & Process
3. Reverse Engineering

a. Startup
b. CPU Emulation
c. Instrumentation
d. Windows Emulation &

Environment
4. Vulnerability Research
5. Conclusion

CPU Emulation
● Support for many architectures

○ This presentation looks at x86 32-bit 

● Technically dynamic translation, not
“emulation”

○ Lift to IL, JIT compile to sanitized x86 

● Architecture-specific software emulation
functions handle unique or difficult to lift
instructions

● The subsystem is incredibly complicated,
and could be a full talk in its own right
○ Not a primary focus of this research and the

subsystem I understand the least about

DT_platform_x86_16 = 0n0
DT_platform_x86_32 = 0n1
DT_platform_x86_64 = 0n2
DT_platform_emu_IL = 0n3
DT_platform_NETRPF = 0n4
DT_platform_NETEmu = 0n5
DT_platform_DTlib32 = 0n6
DT_platform_DTlib64 = 0n7
DT_platform_VMProtect = 0n8
DT_platform_ARM = 0n9
DT_platform_count = 0n10

*_2_IL Lifting

Individual architecture to IL lifting

Grab the bytes of opcode, determine
type, then emit IL accordingly

Example: Single-byte x86 push register
opcodes all map to type 0x13

 x86_IL_translator::translate

run_IL_emulator I did not observe this software IL emulator
being invoked during my research
● Hypothesis: used for non-x86 host

systems, e.g., Windows on ARM?
eIL_ID_xor8 = 0n107
eIL_ID_xor16 = 0n108
eIL_ID_xor32 = 0n109

IL Emulation in Software Emulator can run IL bytecode in software 

IL-to-x86 JIT Translation

lea opcode = 0x8d

IL code can be translated to x86 and
executed, a basic block at a time

I observed this IL-to-x86 JIT being
exercised during research

Calls to esc[ape]
functions are JITted for
special handling of
unique instructions

Check out
MSFT’s
VB2005 paper

Architecture-Specific esc Handlers
Architecture-specific functions provide
handling for unique architectural events
and emulation of unique instructions

x86_common_context::emulate_CPUID

Architecture-specific software
emulation for x86 CPUID instruction

Code coverage provided by
Lighthouse

Outline
1. Introduction
2. Tooling & Process
3. Reverse Engineering

a. Startup
b. CPU Emulation
c. Instrumentation
d. Windows Emulation &

Environment
4. Vulnerability Research
5. Conclusion

Instrumenting mpengine
Problem: little visibility into engine
● Coverage for the big picture, breakpoints for

detailed observation  

Only output is malware detection

Threat Virus:
Win32/Virut.BN!dam identified.

Instrumenting mpengine
Problem: little visibility into engine
● Coverage for the big picture, breakpoints for

detailed observation  

Only output is malware detection

Threat Virus:
Win32/Virut.BN!dam identified.

Solution: a malware’s eye view
● mpengine.dll has functions that are

invoked when our malware calls certain
Windows APIs

● Create a binary to explore the AV from
inside - hook and reuse existing functions
to share that view with us on the outside

mpclient git.io/fbp0X
Linux mpclient
Binary

MpEngine.dll

IAT

__rsignal

Emulator
 
WinAPI
Emulation

Threat Virus:
Win32/Virut.BN!dam identified.

Malware Binary

MZ...

g_syscalls

 OutputDebugStringA

 WinExec

 ...

Scanning Engine
Selection

Modified mpclient - ~3k LoC added github.com/0xAlexei

Linux mpclient
Binary

MpEngine.dll

IAT

__rsignal

WinAPI
Emulation

g_syscalls

 OutputDebugStringA

 WinExec

 ...

 
Print to stdout

OutputDebugStringA hook

Other actions...
WinExec hook

Malware Binary

MZ...

Emulator

Scanning Engine
Selection

OutputDebugStringA Hook

Use existing functions in Defender to
interact with function parameters and
virtual memory

Mark - Thanks for the idea!

Hook the native function pointer that gets called when
OutputDebugStringA is called in-emulator

OutputDebugStringA
Hook

OutputDebugStringA
Hook

Declaration - void * for pe_vars_t *

OutputDebugStringA
Hook

Declaration - void * for pe_vars_t *Local variable to
hold parameters -
same as
Parameters<1>

OutputDebugStringA
Hook

Declaration - void * for pe_vars_t *Local variable to
hold parameters -
same as
Parameters<1>

Pull parameters off
of the virtual stack
by calling
Parameters<1>
function inside
mpengine.dll

Parameters are just
addresses within
the emulator’s
virtual memory

OutputDebugStringA
Hook

Declaration - void * for pe_vars_t *Local variable to
hold parameters -
same as
Parameters<1>

Pull parameters off
of the virtual stack
by calling
Parameters<1>
function inside
mpengine.dll

Parameters are just
addresses within
the emulator’s
virtual memory

GetString calls
into
mpengine.dll
functions which
translate an
emulator virtual
memory address
(the parameter) into
a real pointer

OutputDebugStringA
Hook

Declaration - void * for pe_vars_t *Local variable to
hold parameters -
same as
Parameters<1>

Pull parameters off
of the virtual stack
by calling
Parameters<1>
function inside
mpengine.dll

Parameters are just
addresses within
the emulator’s
virtual memory

GetString calls
into
mpengine.dll
functions which
translate an
emulator virtual
memory address
(the parameter) into
a real pointer

Now we can just print the string to stdout

Demo
Hooking
OutputDebugStringA

myapp.exe Factors That Can Prevent Emulation:*
● Simplicity / lack of code entropy
● Linking against unsupported DLLs
● Calling unsupported functions
● Optimizations using complex instructions
● Targeting overly modern Windows builds 

Solutions:
● Add in junk code
● Strip down linkage to bare minimums
● Disable all optimizations
● Define your own entry point
● Target old Windows versions

*These are problems for AV emulators in general in
my experience. Defender seems more flexible than
others, but I did still have to massage compiler
settings to get a consistently emulated binary

I/O communication with outside
the emulator by calling
OutputDebugStringA and
other hooked functions

Malware Binary

Outline
1. Introduction
2. Tooling & Process
3. Reverse Engineering

a. Startup
b. CPU Emulation
c. Instrumentation
d. Windows Emulation &

Environment
4. Vulnerability Research
5. Conclusion

Windows Emulation & Environment

1. Usermode Environment
2. Usermode Code
3. User-Kernel Interaction
4. Kernel Internals
5. AV Instrumentation

Virtual File System
Contents
Dump file system contents with a
similar trick to the
OutputDebugStringA hook - just
pass void pointers to arbitrary data 

● 1455 files on the 2/28/18 build
○ Whole FS can be dumped in a

second or two
● Mostly fake executables
● A handful of fake config files
● Various text “goat” files
● Lots of empty files

Demo
Dumping The File System

C:\\aaa_TouchMeNot_.txt

Fake Config Files

C:\\Mirc\mirc.ini

[chanfolder]
n0=#Blabla
n1=#End

C:\\Mirc\script.ini
[script]
; blabla

C:\\Windows\msdfmap.ini

[connect default]
Access=NoAccess
[sql default]
Sql=" "
[connect CustomerDatabase]
Access=ReadWrite
Connect="DSN=AdvWorks"
[sql CustomerById]
Sql="SELECT * FROM Customers WHERE CustomerID = ?"
[connect AuthorDatabase]
Access=ReadOnly
Connect="DSN=MyLibraryInfo;UID=MyUserID;PWD=MyPassword"
[userlist AuthorDatabase]
Administrator=ReadWrite
[sql AuthorById]
Sql="SELECT * FROM Authors WHERE au_id = ?"

Virtual Registry Huge virtual registry with thousands of entries

1084 - svchost.exe
1268 - spoolsv.exe
1768 - explorer.exe
1796 - iexplore.exe
1800 - outlook.exe
1804 - msimn.exe
1808 - firefox.exe
1812 - icq.exe
1816 - yahoomessenger.exe
1820 - msnmsgr.exe
1824 - far.exe
1828 - trillian.exe
1832 - skype.exe
1836 - googletalk.exe
1840 - notepad.exe
1844 - wmplayer.exe
1848 - net.exe
1852 - spawned.exe
3904 - myapp.exe

0 - [System Process]
4 - System
356 - smss.exe
608 - csrss.exe
624 - winlogon.exe
676 - services.exe
680 - lsass.exe
700 - kav.exe
704 - avpcc.exe
708 - _avpm.exe
712 - avp32.exe
716 - avp.exe
720 - antivirus.exe
724 - fsav.exe
728 - norton.exe
732 - msmpeng.exe
736 - msmpsvc.exe
740 - mrt.exe
744 - outpost.exe
856 - svchost.exe

Processes
Various processes are
shown as running on the
system

These are not real running
processes, just names
returned in order to
present a realistic
execution environment to
malware

“myapp.exe” is the name
of the process under
emulation - PID varies in
different mpengine builds

Demo
Dumping The Process Listing

Windows Emulation & Environment

1. Usermode Environment
2. Usermode Code
3. User-Kernel Interaction
4. Kernel Internals
5. AV Instrumentation

Windows API Emulation

Implemented just like the real Windows API - DLLs
● Symbols indicate they are called “vdlls”
● Present on disk and in memory in the emulator - like real

Windows
● VDLLs are not present in mpengine.dll, must be

dynamically loaded from VDMs

Two types of Windows API functions:
● Stay in usermode → stay in the emulator
● Resolve to syscall → trap to native emulation

Reversing VDLLs

In-Emulator VDLL Emulations

Computer name is “HAL9TH”

● In-emulator emulations stay within the emulator
● Code is run within the dynamic translation system
● Some emulations stub out to hardcoded returns

Username is
“JohnDoe”

Stubbed Out Functions Complex functions are stubbed out to
return hardcoded values or halt emulation

RPCRT4.DLL

mspaint.exe

NTOSKRNL.EXE

ws2_32.dll Winsock library is uniquely full of
fingerprints - strings with “Mp” and
German websites

Windows Emulation & Environment

1. Usermode Environment
2. Usermode Code
3. User-Kernel Interaction
4. Kernel Internals
5. AV Instrumentation

Native Emulation
● Complex functions that cannot be handled in-emulator must be emulated in native code
● Akin to usermode → kernel, or VM guest → host transitions
● Emulator to native transition implemented with a custom hypercall instruction - apicall
0x0F 0xFF 0xF0 [4 byte immediate]

● Stubs that apicall to various functions are included in VDLLs

Emulated VDLL: kernel32!
CopyFileWWorker Native code: mpengine!KERNEL32_DLL_CopyFileWWorker

apicall

apicall
disassembly
provided by
an IDA
Processor
Extension
Module

g_syscalls dt mpengine!esyscall_t
 +0x0 proc : Ptr32 void
 +0x4 encrc : Uint4B apicall

instruction use
triggers
dispatch to
function
pointer in
g_syscalls
table

This is the table
we modify
when hooking
OutputDebug  
StringA

kernel32!OutputDebugStringA

In-emulator VDLL code

kernel32!OutputDebugStringA

In-emulator VDLL code

kernel32!OutputDebugStringA

apicall

In-emulator VDLL code

Native emulation
function

Emulated VDLL Functions
ADVAPI32
RegCreateKeyExW
RegDeleteKeyW
RegDeleteValueW
RegEnumKeyExW
RegEnumValueW
RegOpenKeyExW
RegQueryInfoKeyW
RegQueryValueExW
RegSetValueExW

USER32
MessageBoxA  

KERNEL32
CloseHandle
CopyFileWWorker
CreateDirectoryW
CreateFileMappingA

CreateProcessA
CreateToolhelp32Snapshot
ExitProcess
ExitThread
FlushFileBuffers
GetCommandLineA
GetCurrentProcess
GetCurrentProcessId
GetCurrentThread
GetCurrentThreadId
GetModuleFileNameA
GetModuleHandleA
GetProcAddress
GetThreadContext
GetTickCount
LoadLibraryW
MoveFileWWorker
MpAddToScanQueue
MpCreateMemoryAliasing
MpReportEvent

MpReportEventEx
MpReportEventW
MpSetSelectorBase
OpenProcess
OutputDebugStringA
ReadProcessMemory
RemoveDirectoryW
SetFileAttributesA
SetFileTime
Sleep
TerminateProcess
UnimplementedAPIStub
VirtualAlloc
VirtualFree
VirtualProtectEx
VirtualQuery
WinExec
WriteProcessMemory

Emulated ntdll.dll Functions
MpGetSelectorBase
MpUfsMetadataOp
NtCloseWorker
NtContinue
NtControlChannel
NtCreateEventWorker
NtCreateFileWorker
NtCreateMutantWorker
NtCreateSemaphoreWorker
NtCreateThreadWorker
NtDeleteFileWorker
NtDuplicateObjectWorker
NtGetContextThread
NtOpenEventWorker
NtOpenMutantWorker
NtOpenSemaphoreWorker
NtOpenThreadWorker
NtPulseEventWorker
NtQueryInformationFileWorker
NtQueryInformationThreadWorker

NtReadFileWorker
NtReleaseMutantWorker
NtReleaseSemaphoreWorker
NtResetEventWorker
NtResumeThreadWorker
NtSetContextThread
NtSetEventWorker
NtSetInformationFileWorker
NtSetLdtEntries
NtSuspendThreadWorker
NtTerminateThreadWorker
NtWaitForMultipleObjectsWorker_PostBlock
NtWaitForMultipleObjectsWorker_PreBlock
NtWriteFileWorker
ObjMgr_ValidateVFSHandle
ThrdMgr_GetCurrentThreadHandle
ThrdMgr_SaveTEB
ThrdMgr_SwitchThreads
VFS_CopyFile
VFS_DeleteFile

VFS_DeleteFileByHandle
VFS_FileExists
VFS_FindClose
VFS_FindFirstFile
VFS_FindNextFile
VFS_FlushViewOfFile
VFS_GetAttrib
VFS_GetHandle
VFS_GetLength
VFS_MapViewOfFile
VFS_MoveFile
VFS_Open

VFS_Read
VFS_SetAttrib
VFS_SetCurrentDir
VFS_SetLength
VFS_UnmapViewOfFile
VFS_Write

Native Emulation Functions

Native emulation functions all take
parameter pe_vars_t *, ~½mb
large struct containing entire
emulation session context

Native Emulation Functions

Native emulation functions all take
parameter pe_vars_t *, ~½mb
large struct containing entire
emulation session context

Templated Parameters functions
retrieve parameters to the function
from the emulated stack

Native Emulation Functions

Native emulation functions all take
parameter pe_vars_t *, ~½mb
large struct containing entire
emulation session context

Templated Parameters functions
retrieve parameters to the function
from the emulated stack

Return values, register state, CPU tick
count, etc, are managed through
various functions that manipulate
pe_vars_t

Interacting With Virtual Memory
mmap functions allow access to the emulated memory space
Interface similar to Unicorn Engine and other similar tools

Interacting With Virtual Memory
mmap functions allow access to the emulated memory space
Interface similar to Unicorn Engine and other similar tools

Wrapper functions around these functions make common operations easier

Windows Emulation & Environment

1. Usermode Environment
2. Usermode Code
3. User-Kernel Interaction
4. Kernel Internals
5. AV Instrumentation

Windows Kernel Emulation

Windows kernel facilities are emulated
with native code 

● Object Manager
● Process management
● File system
● Registry
● Synchronization primitives

Object Manager

● The Object Manager is an essential part of
the Windows Executive - provides kernel
mode resource management - processes,
files, registry keys, mutexes, etc 

● Defender supports 5 types of objects: File,
Thread, Event, Mutant (Mutex), Semaphore  

● Manages system state during emulation that
is persistent between native emulation API
calls

Object Manager Types

Objects are stored in a map,
tracked by pid and handle

Objects identify themselves by
C++ virtual method call, RTTI is
used to cast from
ObjectManager::Object to
specific subclasses

dt mpengine!ObjectManager::Object
 +0x0 __VFN_table : Ptr32
 +0x4 m_openCount : Uint4B
 +0x8 m_isPersistent : Bool
 +0x9 m_canDelete : Bool
 +0xa m_signal : Bool

dt mpengine!ObjectManager::FileObject
 +0x0 __VFN_table : Ptr32
 +0x4 m_openCount : Uint4B
 +0x8 m_isPersistent : Bool
 +0x9 m_canDelete : Bool
 +0xa m_signal : Bool
 +0xc m_fileHandle : Uint4B
 +0x10 m_accessMode : Uint4B
 +0x14 m_shareAccess : Uint4B
 +0x18 m_cursor : Uint4B

dt mpengine!ObjectManager::MutantObject
 +0x0 __VFN_table : Ptr32
 +0x4 m_openCount : Uint4B
 +0x8 m_isPersistent : Bool
 +0x9 m_canDelete : Bool
 +0xa m_signal : Bool
 +0xc m_ownerThrdId : Uint4B
 +0x10 m_isAbandoned: Uint4B
 +0x14 m_waitCount : Uint4B

5 types of object:
1. File
2. Thread
3. Event
4. Mutant (Mutex)
5. Semaphore

Stored in memory
as C++ objects

Object Manager Integration
The Object Manager manages persistent
system state during an emulation session

NTDLL_DLL_NtSetInformationFileWorker

NTDLL_DLL_NtOpenMutantWorker

Object Manager Integration
The Object Manager manages persistent
system state during an emulation session

NTDLL_DLL_NtSetInformationFileWorker

Current process handle is
emulated as 0x1234

NTDLL_DLL_NtOpenMutantWorker

VFS - Virtual File System
● Native emulation functions are filed under NTDLL (but accessible

from multiple VDLLs via apicall stubs)
● NTDLL_DLL_VFS_* functions do administrative work before

calling into internal VFS_* functions that actually engage with the
virtual file system, calling its methods to manipulate contents

● NTDLL Nt* emulation functions that interact with the
file system call down into VFS_* functions after
checking / normalizing / sanitizing inputs

VFS-Specific Native Emulations
ObjMgr_ValidateVFSHandle
VFS_CopyFile
VFS_DeleteFile
VFS_DeleteFileByHandle
VFS_FileExists
VFS_FindClose
VFS_FindFirstFile
VFS_FindNextFile
VFS_FlushViewOfFile
VFS_GetAttrib
VFS_GetHandle
VFS_GetLength
VFS_MapViewOfFile
VFS_MoveFile
VFS_Open

VFS_Open
VFS_Read
VFS_SetAttrib
VFS_SetCurrentDir
VFS_SetLength
VFS_UnmapViewOfFile
VFS_Write

dt mpengine!pe_vars_t
...
+0x241e0 vfs : Ptr32 VirtualFS
+0x241e4 vfsState : Ptr32 VfsRunState
+0x241e8 vfsNumVFOs : Uint4B
+0x241ec vfsVFOSizeLimit : Uint4B
+0x241f0 vfsRecurseLimit : Uint4B
+0x241f4 vfsFlags : Uint4B
...

Windows Emulation & Environment

1. Usermode Environment
2. Usermode Code
3. User-Kernel Interaction
4. Kernel Internals
5. AV Instrumentation

Defender Internal Functions

MpAddToScanQueue
Queue up a file (e.g., a dropped binary) for scanning

MpCreateMemoryAliasing
Alias memory in emulator

MpReportEvent, MpReportEvent{Ex,W}
Report malware behavior to inform heuristic detections

Mp{Get,Set}SelectorBase
Get/set segment registers (CS, DS, ES, etc)

MpUfsMetadataOp
Get/set metadata about the file being scanned

NtControlChannel
IOCTL-like administration for the AV engine

Internal administration and configuration functions accessible via apicall

MpReportEvent Used to communicate
information about malware
binary actions with Defender’s
heuristic detection engine

MpReportEvent

MpReportEvent - AV Processes
Emulated process
information is stored
in a data structure in
the kernel32.dll
VDLL and presented
when enumerated

Processes types are grouped
by PID - processes for antivirus
software has 700 PIDs

700 - kav.exe
704 - avpcc.exe
708 - _avpm.exe
712 - avp32.exe
716 - avp.exe
720 - antivirus.exe
724 - fsav.exe
728 - norton.exe
732 - msmpeng.exe
736 - msmpsvc.exe
740 - mrt.exe
744 - outpost.exe

Calling TerminateProcess on an AV product
triggers an MpReportEvent call

1 set attribute set_static_unpacking 14 get arbitrary attribute substring

2 delete attribute store pea_disable_static_unpacking 15 set pe_vars_t->max_respawns value

3 get mpengine.dll version number 16 modify register state (?)

4 set attribute set_pea_enable_vmm_grow 17 set arbitrary attribute

5 set attribute set_pea_deep_analysis 18 load microcode

6 set attribute set_pea_hstr_exhaustive 19 set breakpoint

7 set attribute set_pea_aggressiveimport 20 retrieve get_icnt_inside_loop value

8 set attribute set_pea_skip_unimplemented_opc 21 some sort of domain name signature check

9 set attribute pea_skip_unimplemented_opc 22 set pe_vars_t->internalapis

10 set attribute set_pea_disable_apicall_limit 23+24 switch_to_net32_proc (.NET)

11 get arbitrary attribute 25 get arbitrary pe attribute by number

12 check if malware is packed with a given packer 26-31 unimplemented

13 set attribute pea_disable_seh_limit 32 scan_msil_by_base

NtControlChannel Options

Outline

1. Introduction
2. Tooling & Process
3. Reverse Engineering
4. Vulnerability Research

a. Understanding P0’s Vulnerabilities
b. Bypassing Mitigations With apicall Abuse
c. Fuzzing

5. Conclusion

Tavis’ apicall Trick DWORD MpApiCall(PCHAR Module, PCHAR ProcName, ...)
{
 DWORD Result;
 DWORD ApiCrc;

 ApiCrc = crcstr(Module) ^ crcstr(ProcName);

 _asm {
 mov eax, dword ptr ApiCrc
 mov [apicode], eax
 mov ebx, esp
 lea esp, ProcName
 _emit 0x0f ; apicall opcode
 _emit 0xff ; apicall opcode
 _emit 0xf0 ; apicall opcode
 apicode:
 _emit 0x00 ; apicall immediate
 _emit 0x00 ; apicall immediate
 _emit 0x00 ; apicall immediate
 _emit 0x00 ; apicall immediate
 mov esp, ebx
 mov Result, eax
 }

 return Result;
}

● Build binary with an
rwx .text section,
generate apicall
instruction on the fly as
needed

● apicall instruction
triggers native emulation
functions from
malware .text section
with attacker controlled
arguments

Tavis’ NtControlChannel Bug NtControlChannel(0x12,...)

Tavis’ NtControlChannel Bug NtControlChannel(0x12,...)

Tavis’ NtControlChannel Bug NtControlChannel(0x12,...)

count is user controlled

Tavis’ NtControlChannel Bug NtControlChannel(0x12,...)

count is user controlled
Patched with max 0x1000 count check

Tavis’ VFS_Write Bug

VFS_Write(Handle, Buf, 0, 0xffffffff, 0);
VFS_Write(Handle, Buf, 0x7ff, 0x41414141, 0);

VFS_Write(
unsigned int hFile,
char * pBuffer,
unsigned int nBytesToWrite,
unsigned int nOffset,
unsigned int * pBytesWritten

);

Heap OOB r/w: buffer gets extended
to offset, but no space is allocated
for it. r/w at arbitrary offsets then
possible

Outline

1. Introduction
2. Tooling & Process
3. Reverse Engineering
4. Vulnerability Research

a. Understanding P0’s Vulnerabilities
b. Bypassing Mitigations With apicall Abuse
c. Fuzzing

5. Conclusion

Locking Down apicall

Can’t just trigger apicall from malware .text section or otherwise malware-created
memory (eg: rwx allocation) anymore

If apicall did not
come from a VDLL,
set a heuristic and
deny it

Proceed with
processing if
apicall is ok

is_vdll_page call added to __call_api_by_crc
in 6/20/2017 mpengine.dll build - is the apicall
instruction coming from a VDLL?

New AV heuristic trait added

Bypass
● apicall stubs are located throughout

VDLLs
● They can be located in memory and

called directly by malware, with attacker
controlled arguments
○ Passes is_vdll_page checks

 
Response from Microsoft: “We did indeed make
some changes to make this interface harder to
reach from the code we’re emulating -however,
that was never intended to be a trust boundary.

Accessing the internal APIs exposed to the
emulation code is not a security vulnerability...”

Bypass Example 1
VOID OutputDebugStringA_APICALL(PCHAR msg)
{

typedef VOID(*PODS)(PCHAR);
HMODULE k32base = LoadLibraryA(“kernel32.dll”);
PODS apicallODS = (PODS)((PBYTE)k32base + 0x16d4e);
apicallODS(msg);

}
Kernel32 base offset:
0x16d4e

Comes from kernel32
VDLL, so passes
is_vdll_page checks

OutputDebugStringA can be
normally hit from kernel32, so
this is ultimately just a unique way
of doing that

Bypass Example 2
VOID NtControlChannel_APICALL()
{

typedef VOID(*PNTCC)(DWORD, PVOID);
HMODULE k32base = LoadLibraryA(“kernel32.dll”);
PNTCC apicallNTCC = (PNTCC)((PBYTE)k32base + 0x52004);
apicallNTCC(0x11, “virut_body_found”);

}
Kernel32 base offset:
0x52004

Comes from kernel32
VDLL, so passes
is_vdll_page checks

NtControlChannel should
not be exposed to malware
running inside the emulator

NtControlChannel(0x11,“virut_body_found”)
triggers immediate malware detection

Demo
apicall abuse

1 set attribute set_static_unpacking 14 get arbitrary attribute substring

2 delete attribute store
pea_disable_static_unpacking

15 set pe_vars_t->max_respawns value

3 get mpengine.dll version number 16 modify register state (?)

4 set attribute set_pea_enable_vmm_grow 17 set arbitrary attribute

5 set attribute set_pea_deep_analysis 18 load microcode

6 set attribute set_pea_hstr_exhaustive 19 set breakpoint

7 set attribute set_pea_aggressiveimport 20 retrieve get_icnt_inside_loop value

8 set attribute set_pea_skip_unimplemented_opc 21 some sort of domain name signature check

9 set attribute pea_skip_unimplemented_opc 22 set pe_vars_t->internalapis

10 set attribute set_pea_disable_apicall_limit 23+24 switch_to_net32_proc (.NET)

11 get arbitrary attribute 25 get arbitrary pe attribute by number

12 check if malware is packed with a given packer 26-31 unimplemented

13 set attribute pea_disable_seh_limit 32 scan_msil_by_base

apicall
Bypass
Implications
Fingerprint and manipulate
the analysis environment
and malware detection
heuristics
(NtControlChannel,
MpReportEvent)

Access to an attack surface
with a known history of
memory corruption
vulnerabilities

Seems very difficult to
mitigate against abuse

Outline

1. Introduction
2. Tooling & Process
3. Reverse Engineering
4. Vulnerability Research

a. Understanding P0’s Vulnerabilities
b. Bypassing Mitigations With apicall Abuse
c. Fuzzing

5. Conclusion

Fuzzing Emulated APIs
● Create a binary that goes inside the emulator and repeatedly calls hooked

WinExec function to request new data, then sends that data to functions
with native emulations

● Buffers in memory passed to external hook function to populate with
parameters

● Could do fuzzing in-emulator too, but this is easier for logging results

MpEngine.dll

Input
Generation

Linux mpclient
Binary

Input Generation
● Borrow OSX syscall fuzzer

code from MWR Labs
OSXFuzz project* 

● Nothing fancy, just throw
random values at native
emulation handlers 

● Re-seed rand() at the start
of each emulation session,
just save off seeds in a log  

*github.com/mwrlabs/OSXFuzz

NtWriteFile Overflow
NtWriteFile is normally accessible and exported by
ntdll.dll

● VFS_Write has to be triggered with special apicall
Tavis’ inputs get sanitized out by NtWriteFileWorker before
it calls down to VFS_Write

LARGE_INTEGER L;
L.QuadPart =
0x2ff9ad29fffffc25;

NtWriteFile(
hFile,

 NULL,
 NULL,
 NULL,
 &ioStatus,
 buf,
 0x1,
 &L,
 NULL);

L.QuadPart = 0x29548af5d7b3b7c;
NtWriteFile(

hFile,
 NULL,
 NULL,
 NULL,
 &ioStatus,
 buf,
 0x1,
 &L,
 NULL);

NtWriteFile Overflow
NtWriteFile is normally accessible and exported by
ntdll.dll

● VFS_Write has to be triggered with special apicall
Tavis’ inputs get sanitized out by NtWriteFileWorker before
it calls down to VFS_Write

LARGE_INTEGER L;
L.QuadPart =
0x2ff9ad29fffffc25;

NtWriteFile(
hFile,

 NULL,
 NULL,
 NULL,
 &ioStatus,
 buf,
 0x1,
 &L,
 NULL);

L.QuadPart = 0x29548af5d7b3b7c;
NtWriteFile(

hFile,
 NULL,
 NULL,
 NULL,
 &ioStatus,
 buf,
 0x1,
 &L,
 NULL);

I fuzzed NtWriteFile:
● ~7 minutes @ ~8,000 NtWriteFile calls / second
● Fuzzed Length arguments
● Reproduced Tavis’ crash, alternate easier to reach

code path through NtWriteFile
Unfortunately, patches for VFS_Write bug also fixed this

Demo
Fuzzing NtWriteFile

Outline

1. Introduction
2. Tooling & Process
3. Reverse Engineering
4. Vulnerability Research
5. Conclusion

Summary
We covered:
● Tooling and instrumentation
● CPU dynamic translation basics

for x86
● Windows environment and

emulation for 32-bit x86 binaries
● A bit on vulnerability research

Summary
We covered:
● Tooling and instrumentation
● CPU dynamic translation basics

for x86
● Windows environment and

emulation for 32-bit x86 binaries
● A bit on vulnerability research

Not covered:
● CPU dynamic translation internals

○ Non-x86 architectures (x64, ARM,
VMProtect, etc…)

○ Unpacker integration
● 16-bit emulation
● Threading model
● .NET analysis

Also Inside mpengine.dll

Also Inside mpengine.dll

Unpackers

Also Inside mpengine.dll

Parsers

Unpackers

Also Inside mpengine.dll
JS Engine - see my
REcon Brx talk

Parsers

Unpackers

Also Inside mpengine.dll
JS Engine - see my
REcon Brx talk

Parsers

Unpackers

Other Scanning Engines

Also Inside mpengine.dll
JS Engine - see my
REcon Brx talk

Parsers

Unpackers .NET Engine

Other Scanning Engines

Also Inside mpengine.dll
JS Engine - see my
REcon Brx talk

Parsers

Unpackers

Tip: the Lua engine is for
signatures - attackers can’t hit
it

.NET Engine

Other Scanning Engines

Antivirus Reverse Engineering
● People constantly talk about what AVs can or

can’t do, and how/where they are vulnerable
● These claims are mostly backed up by Tavis

Ormandy’s work at Project Zero and a handful of
other conference talks, papers, and blogposts 

● I hope we’ll see more AV research in the future

Code & More Information
github.com/0xAlexei

Code release:
● OutputDebugStringA hooking
● “Malware” binary to go inside the emulator
● Some IDA scripts, including apicall disassembler

Article in PoC||GTFO 0x19:
● OutputDebugStringA hooking
● Patch diffing and apicall bypass
● apicall disassembly with IDA processor extension module

Conclusion
1. Exposition of how a modern AV uses

emulation to conduct dynamic analysis
on the endpoint

2. Discussion of emulator traits that
malware may use to detect, evade, and
exploit emulators

3. Demonstration of attacker / reverse
engineer analysis process and tooling

Thank You:
● Tavis Ormandy - exposing the

engine, mpclient, sharing ideas
● Mark - hooking ideas
● Markus Gaasedelen - Lighthouse
● Joxean Koret - OG AV hacker
● Numerous friends who helped

edit these slidesPublished presentation has 50+ more slides  

Defender JS Engine slides / video: 
bit.ly/2qio857

 @0xAlexei
Open DMs

github.com/0xAlexei

Backup Slides

Outline

1. Introduction
2. Tooling & Process
3. Reverse Engineering
4. Vulnerability Research
5. Conclusion

My Publications

Fingerprinting consumer AV
emulators for malware evasion
using “black box” side-channel
attacks
ubm.io/2LuTgqX

Surveying evasive malware behavior
and defenses against it
bit.ly/2sf0whA

Reverse engineering
Windows Defender’s JS
engine
bit.ly/2qio857

Defender 32-Bit Release Schedule

2017
● 5/23 (P0 bugs fixed)
● 6/20 (more P0 bugs fixed)
● 7/19
● 8/23
● 9/27
● 11/1
● 12/6 (UK NCSC bugs fixed)

2018
● 1/18
● 2/28
● 3/18
● 4/3 (Halvar’s unrar bug fixed)
● 4/19
● 5/23
● 6/25

Patent Search

“The present invention includes a system and method for translating potential malware devices into
safe program code. The potential malware is translated from any one of a number of different types
of source languages, including, but not limited to, native CPU program code, platform
independent .NET byte code, scripting program code, and the like. Then the translated program code
is compiled into program code that may be understood and executed by the native CPU…”

Outline

1. Introduction
2. Tooling & Process
3. Reverse Engineering
4. Vulnerability Research
5. Conclusion

Reversing Process
● Static reversing in IDA

○ Bindiff for patch analysis  

● Dynamic analysis and
debugging in GDB using
Tavis Ormandy’s
mpclient with
extensive customization  

● Coverage with a
customized Lighthouse
Pintool

Dealing With Calling Conventions
When calling mpengine.dll functions from mpclient: Difficulty
of interoperability between MSVC and GCC compiled code

● Possible to massage compiler with __attribute__ annotations
Easier solution - just hand-write assembly thunks to marshall
arguments into the correct format

Dealing With Calling Conventions
When calling mpengine.dll functions from mpclient: Difficulty
of interoperability between MSVC and GCC compiled code

● Possible to massage compiler with __attribute__ annotations
Easier solution - just hand-write assembly thunks to marshall
arguments into the correct format
BYTE * __fastcall __mmap_ex
(

pe_vars_t * v, // ecx
unsigned int64 addr, // too big for edx
unsigned long size, // edx
unsigned long rights

);

Dealing With Calling Conventions
When calling mpengine.dll functions from mpclient: Difficulty
of interoperability between MSVC and GCC compiled code

● Possible to massage compiler with __attribute__ annotations
Easier solution - just hand-write assembly thunks to marshall
arguments into the correct format
BYTE * __fastcall __mmap_ex
(

pe_vars_t * v, // ecx
unsigned int64 addr, // too big for edx
unsigned long size, // edx
unsigned long rights

);

apicall

Custom “apicall” opcode used to
trigger native emulation routines

0F FF F0 [4 byte immediate]

apicall

Custom “apicall” opcode used to
trigger native emulation routines

0F FF F0 [4 byte immediate]

immediate = crc32(DLL name, all caps) ^ crc32(function name)

apicall

Custom “apicall” opcode used to
trigger native emulation routines

0F FF F0 [4 byte immediate]

immediate = crc32(DLL name, all caps) ^ crc32(function name)

$./mphashgen KERNEL32.DLL OutputDebugStringA
KERNEL32.DLL!OutputDebugStringA: 0xB28014BB

0xB28014BB = crc32(“KERNEL32.DLL”) ^ crc32(“OutputDebugStringA”)

apicall

Custom “apicall” opcode used to
trigger native emulation routines

0F FF F0 [4 byte immediate]

0F FF F0 BB 14 80 B2
apicall kernel32!OutPutDebugStringA

immediate = crc32(DLL name, all caps) ^ crc32(function name)

$./mphashgen KERNEL32.DLL OutputDebugStringA
KERNEL32.DLL!OutputDebugStringA: 0xB28014BB

0xB28014BB = crc32(“KERNEL32.DLL”) ^ crc32(“OutputDebugStringA”)

apicall Dispatch
{x32, x64, ARM}_parseint
checks apicall immediate value, may
do special handling with
g_MpIntHandlerParam or pass on
to native emulation

apicall Dispatch

Function pointers to emulation routines
and associated CRCs are stored in
g_syscalls table

Given a CRC, __call_api_by_crc dispatches to
the corresponding emulation routine

{x32, x64, ARM}_parseint
checks apicall immediate value, may
do special handling with
g_MpIntHandlerParam or pass on
to native emulation

VDLL RE - apicall Disassembly
Problem: apicall
instruction confuses IDA’s
disassembler

VDLL RE - apicall Disassembly
Problem: apicall
instruction confuses IDA’s
disassembler

Solution: implement a
processor extension module
to support apicall
disassembly

HexRays Decompiler shows apicall as an
inline assembly block

VDLL RE - apicall Disassembly

Some functions have
exported names

apicall stub functions are labeled by script

Article in PoC||GTFO
0x19 explains how this all
works

IDA Processor Extension Module

An IDA Processor Extension
Module was used to add
support for the apicall
instruction 

Kicks in whenever a file
named “*.mp.dll” is
loaded

Rolf Rolles’ examples were extremely helpful:  
msreverseengineering.com/blog/2015/6/29/transparent-deobfuscation-with-ida-processor-module-extensions
msreverseengineering.com/blog/2018/1/23/a-walk-through-tutorial-with-code-on-statically-unpacking-the-finspy-vm-part-
one-x86-deobfuscation

Instruction Analysis

● Invoked to analyze
instructions 

● If three bytes at the
next instruction
address are 0f ff f0
we have an apicall  

● Note that the
instruction was an
apicall and that it
was 7 bytes long, so
the next instruction
starts at $+7

Instruction Representation

Represent the instruction
with mnemonic “apicall”

Represent the operand with the
name of the function being
apicall-ed to

Labeling apicall Stubs Creating and naming functions with apicall
instructions during autoanalysis is very slow

Scan for
apicall stub
function
signatures after
autoanalysis

Labeling apicall Stubs Creating and naming functions with apicall
instructions during autoanalysis is very slow

Scan for
apicall stub
function
signatures after
autoanalysis

mov edi, edi
call $+5
add esp, 0x4
apicall ...

Outline

1. Introduction
2. Tooling & Process
3. Reverse Engineering
4. Vulnerability Research
5. Conclusion

Emulator Components

CPU
Emulation

OS (Kernel)
Emulation

Persistent
System State

Malware Binary

AV Instrumentation

Other
Scanning
Engines

In-Emulator
OS Facilities

nt!PEB

Settings

mpengine.dll

● CPU emulation
○ + Timing 

● OS API emulation
○ + Timing 

● Emulated environment
○ Settings, processes, file system,

registry, network, etc 

● Antivirus instrumentation and
callbacks

Process Interaction

Since other processes don’t
really exist, they can’t be
interacted with like real
processes

ReadProcessMemory &
WriteProcessMemory
operations for processes other
than the one under analysis fail

0x1234 is a handle to the
emulated process under analysis

VirtualReg - Virtual Registry
● Unlike VFS, registry is not exposed for direct interaction from with in

the emulator, it can only be reached via advapi32.dll emulations
● advapi32.dll’s only natively emulated functions are those that

deal with registry interaction

WinExec Hook
Good function to hook - emulator functions fine without it
actually doing its normal operations

2 parameters - pointer and uint32 - can create an IOCTL-like
interface, pointer to arbitrary data, uint32 to specify action

UINT WINAPI WinExec( 
 In LPCSTR lpCmdLine,  
 In UINT uCmdShow  
);  

Example: Extracting VFS
File system is not stored in mpengine.dll - evidently loaded at
runtime from VDMs - can’t be trivially extracted with static RE

Example: Extracting VFS
File system is not stored in mpengine.dll - evidently loaded at
runtime from VDMs - can’t be trivially extracted with static RE

Example: Extracting VFS
File system is not stored in mpengine.dll - evidently loaded at
runtime from VDMs - can’t be trivially extracted with static RE

WinExec hook
Outside of emulator

ap
ic
al
l

ExitProcess Hook

Called at the end of emulation, even if
our binary doesn’t call it directly

Informs Pin when to stop tracing if
under analysis

Original
KERNEL32_DLL_ExitProcess
function needs to be called for
emulator to function properly, so just
call through to it

Unique VDLL PDB Paths
c:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\autoconv\objfre\i386\autoconv.pdb
c:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\bootcfg\objfre\i386\bootcfg.pdb
c:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\cmd\objfre\i386\cmd.pdb
c:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\dfrgfat\objfre\i386\dfrgfat.pdb
c:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\mmc\objfre\i386\mmc.pdb
c:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\msiexec\objfre\i386\msiexec.pdb
c:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\notepad\objfre\i386\notepad.pdb
c:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\rasphone\objfre\i386\rasphone.pdb
c:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\relog\objfre\i386\relog.pdb
c:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\replace\objfre\i386\replace.pdb
c:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\taskmgr\objfre\i386\taskmgr.pdb
c:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\winver\objfre\i386\winver.pdb
d:\build.obj.x86chk\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\lodctr\objchk\i386\lodctr.pdb
d:\build.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\attrib\objfre\i386\attrib.pdb
d:\build.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\chkdsk\objfre\i386\chkdsk.pdb
d:\build.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\compact\objfre\i386\compact.pdb
d:\build.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\find\objfre\i386\find.pdb
d:\build.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\finger\objfre\i386\finger.pdb
d:\build.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\fixmapi\objfre\i386\fixmapi.pdb
d:\build.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\ipv6\objfre\i386\ipv6.pdb
d:\build.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\logoff\objfre\i386\logoff.pdb
d:\build.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\migpwd\objfre\i386\migpwd.pdb
d:\build.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\mshta\objfre\i386\mshta.pdb
d:\build.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\ncpa\objfre\i386\ncpa.pdb
d:\build.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\ping\objfre\i386\ping.pdb
d:\build.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\w32tm\objfre\i386\w32tm.pdb
d:\build.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\wscript\objfre\i386\wscript.pdb
d:\MPEngine\amcore\MpEngine\mavutils\Source\sigutils\vdlls\Microsoft.NET\VFramework\Microsoft.VisualBasic\Microsoft.VisualBasic.pdb
d:\MPEngine\amcore\MpEngine\mavutils\Source\sigutils\vdlls\Microsoft.NET\VFramework\System.Data\System.Data.pdb
d:\mpengine\amcore\MpEngine\mavutils\Source\sigutils\vdlls\Microsoft.NET\VFramework\System\System.pdb
d:\mpengine\amcore\MpEngine\mavutils\Source\sigutils\vdlls\Microsoft.NET\VFramework\System.Windows.Forms\System.Windows.Forms.pdb
d:\pavbld\amcore\MpEngine\mavutils\Source\sigutils\vdlls\Microsoft.NET\VFramework\System.Drawing\System.Drawing.pdb
d:\pavbld\amcore\MpEngine\mavutils\Source\sigutils\vdlls\Microsoft.NET\VFramework\System.Runtime\System.Runtime.pdb
d:\pavbld\amcore\MpEngine\mavutils\Source\sigutils\vdlls\Microsoft.NET\VFramework\Windows\Windows.pdb
d:\pavbld\amcore\Signature\Source\sigutils\vdlls\Microsoft.NET\VFramework\mscorlib\mscorlib.pdb
e:\mpengine\amcore\MpEngine\mavutils\Source\sigutils\vdlls\Microsoft.NET\VFramework\System.Xml\System.Xml.pdb
e:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\rundll32\objfre\i386\rundll32.pdb
f:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\explorer\objfre\i386\explorer.pdb
f:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\lsass\objfre\i386\lsass.pdb
f:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\winlogon\objfre\i386\winlogon.pdb
f:\mpengine.obj.x86fre\amcore\mpengine\mavutils\source\sigutils\vfilesystem\files\write\objfre\i386\write.pdb
d:\pavbld\amcore\MpEngine\mavutils\Source\sigutils\vdlls\Microsoft.NET\VFramework\System.Runtime.InteropServices.WindowsRuntime\System.Runtime.InteropServices.WindowsRuntime.pdb

Fake Config Files
C:\\WINDOWS\system.ini

; for 16-bit app support
[386Enh]
woafont=dosapp.fon
EGA80WOA.FON=EGA80WOA.FON
EGA40WOA.FON=EGA40WOA.FON
CGA80WOA.FON=CGA80WOA.FON
CGA40WOA.FON=CGA40WOA.FON

[drivers]
wave=mmdrv.dll
timer=timer.drv

[mci]

C:\\WINDOWS\win.ini

; for 16-bit app support
[fonts]
[extensions]
[mci extensions]
[files]
[Mail]
MAPI=1
CMCDLLNAME32=mapi32.dll
CMC=1
MAPIX=1
MAPIXVER=1.0.0.1
OLEMessaging=1
[MCI Extensions.BAK]
aif=MPEGVideo
aifc=MPEGVideo
aiff=MPEGVideo
asf=MPEGVideo
asx=MPEGVideo
au=MPEGVideo

m1v=MPEGVideo
m3u=MPEGVideo
mp2=MPEGVideo
mp2v=MPEGVideo
mp3=MPEGVideo
mpa=MPEGVideo
mpe=MPEGVideo
mpeg=MPEGVideo
mpg=MPEGVideo
mpv2=MPEGVideo
snd=MPEGVideo
wax=MPEGVideo
wm=MPEGVideo
wma=MPEGVideo
wmv=MPEGVideo
wmx=MPEGVideo
wpl=MPEGVideo
wvx=MPEGVideo

Wininet.dll vdll
Minimal internet connectivity emulation with wininet.dll

File on local file
system is used to
simulate interaction
with handles to
internet resources

Timing
CPU tick count needs
to be updated during
instruction execution
and OS emulation

Like every other AV emulator
I’ve looked at, Defender
aborts execution on rdtscp

Outline

1. Introduction
2. Tooling & Process
3. Reverse Engineering
4. Vulnerability Research
5. Conclusion

libdislocator
libdislocator is a allocator included with AFL
that does allocation in a way likely to increase the
discovery rate for heap-related bugs

Source:
github.com/mirrorer/afl/tree/  
master/libdislocator
 
I integrated libdislocator code (not published) into:
loadlibrary/peloader/winapi/Heap.c

Since it’s open source and implemented as
in a simple single C file, we can easily drop
in libdislocator code to instrument
Windows heap API implementations in
loadlibrary

Offline
Demos

Screenshots of demos for
online slide release - see
presentation videos when
released for live demos

Demo
Scanning with mpclient

Scanning with mpclient

Scanning with mpclient

Demo
Lighthouse Usage

Tracing Timeline

Engine Startup

__rsignal(..., RSIG_BOOTENGINE, …)

Pintool must be enlightened about custom loaded
mpengine.dll location - take callback stub ideas from
Tavis Ormandy’s deepcover Pintool
github.com/taviso/loadlibrary/tree/master/coverage

Tracing Timeline

Engine Startup Initial
Scan

__rsignal(..., RSIG_BOOTENGINE, …) __rsignal(..., RSIG_SCAN_STREAMBUFFER, …)

Pintool must be enlightened about custom loaded
mpengine.dll location - take callback stub ideas from
Tavis Ormandy’s deepcover Pintool
github.com/taviso/loadlibrary/tree/master/coverage

Tracing Timeline

Engine Startup Initial
Scan

Emulator
Startup

__rsignal(..., RSIG_BOOTENGINE, …) __rsignal(..., RSIG_SCAN_STREAMBUFFER, …)

Pintool must be enlightened about custom loaded
mpengine.dll location - take callback stub ideas from
Tavis Ormandy’s deepcover Pintool
github.com/taviso/loadlibrary/tree/master/coverage

Tracing Timeline

Engine Startup Initial
Scan

Emulator
Startup Binary Emulation

Binary calls hooked
WinExec emulation
with params for start

__rsignal(..., RSIG_BOOTENGINE, …) __rsignal(..., RSIG_SCAN_STREAMBUFFER, …)

Hooking Defender’s emulation
functions for WinExec and
ExitProcess allows us to know
when emulation starts and stops*
 
*ExitProcess is called at the end of every
emulation session automatically - I believe this is
because setup_pe_vstack puts it at the bottom
of the call stack, even for binaries that do not
explicitly return to it

Pintool must be enlightened about custom loaded
mpengine.dll location - take callback stub ideas from
Tavis Ormandy’s deepcover Pintool
github.com/taviso/loadlibrary/tree/master/coverage

Tracing Timeline

Engine Startup Initial
Scan

Emulator
Startup Binary Emulation Emulator

Teardown

Emulator calls
ExitProcess

Binary calls hooked
WinExec emulation
with params for start

__rsignal(..., RSIG_BOOTENGINE, …) __rsignal(..., RSIG_SCAN_STREAMBUFFER, …)

Hooking Defender’s emulation
functions for WinExec and
ExitProcess allows us to know
when emulation starts and stops*
 
*ExitProcess is called at the end of every
emulation session automatically - I believe this is
because setup_pe_vstack puts it at the bottom
of the call stack, even for binaries that do not
explicitly return to it

Pintool must be enlightened about custom loaded
mpengine.dll location - take callback stub ideas from
Tavis Ormandy’s deepcover Pintool
github.com/taviso/loadlibrary/tree/master/coverage

Tracing Timeline

Engine Startup Initial
Scan

Emulator
Startup Binary Emulation Emulator

Teardown

Emulator calls
ExitProcess

Binary calls hooked
WinExec emulation
with params for start

__rsignal(..., RSIG_BOOTENGINE, …) __rsignal(..., RSIG_SCAN_STREAMBUFFER, …)

Collect coverage
information

Hooking Defender’s emulation
functions for WinExec and
ExitProcess allows us to know
when emulation starts and stops*
 
*ExitProcess is called at the end of every
emulation session automatically - I believe this is
because setup_pe_vstack puts it at the bottom
of the call stack, even for binaries that do not
explicitly return to it

Pintool must be enlightened about custom loaded
mpengine.dll location - take callback stub ideas from
Tavis Ormandy’s deepcover Pintool
github.com/taviso/loadlibrary/tree/master/coverage

Pintool Tracing

Pintool Tracing

Loading Coverage File

IDA Analysis

Demo
Hooking
OutputDebugStringA

Hooking OutputDebugStringA

Hooking OutputDebugStringA

Hooking OutputDebugStringA

Hooking OutputDebugStringA

Hooking OutputDebugStringA

Demo
Dumping The File System

Dumping The File System

Dumping The File System

Dumping The File System

Dumping The File System

Dumping The File System

Dumping The File System

Demo
Disassembling apicall

Disassembling apicall

Disassembling apicall

Demo
Fuzzing NtWriteFile

Fuzzing NtWriteFile

Fuzzing NtWriteFile

Fuzzing NtWriteFile

Fuzzing NtWriteFile

Fuzzing NtWriteFile

Fuzzing NtWriteFile

Demo
apicall abuse

apicall Abuse - OutputDebugStringA

apicall Abuse - NtControlChannel

apicall Abuse - OutputDebugStringA

