
A Deep Dive into macOS MDM
Jesse Endahl, Fleetsmith
Max Belanger, Dropbox

August 9th, 2018

Introductions

Jesse Endahl — CPO & CSO, Fleetsmith

Max Bélanger — Staff Engineer, Dropbox

Fleetsmith automates device setup,
OS and app updates, security, and
compliance for Apple devices.

We do a lot to ensure our product is
secure by design.

Our goal was to increase security of
DEP & MDM, and raise the bar for
MDM vendors.

Why we did this research

Agenda
● Basics
● Overview
● Deep Dive
● Vulnerability Details
● Exploit Demo
● Fix Details
● Conclusion and Takeaways

What is MDM (Mobile Device Management)?

● A way to achieve centralized device management
● Requires an MDM server which implements support for

the MDM protocol
● MDM server can send MDM commands, such as remote

wipe or “install this config”

Basics

Basics

What is DEP (Device Enrollment Program)?

● Allows a device to automatically enroll in pre-configured
MDM server the first time it’s powered on

● Most useful when the device is brand new
● Can also be useful for reprovisioning workflows (wiped

with fresh install of the OS)

Basics

What is SCEP (Simple Certificate Enrollment Protocol)?

● An relatively old protocol, created before TLS and HTTPS
were widespread.

● Gives clients a standardized way of sending a Certificate
Signing Request (CSR) for the purpose of being granted a
certificate.

What are Configuration Profiles (aka mobileconfigs)?

● Apple’s official way of setting/enforcing system
configuration.

● File format that can contain multiple payloads.
● Based on property lists (the XML kind).
● “can be signed and encrypted to validate their origin,

ensure their integrity, and protect their contents.”

Basics

— Page 70, iOS Security Guide, January 2018.

Overview — Entities

● Apple
● Reseller (includes Apple Retail)
● MDM vendor
● Customer
● Device

Overview — Protocols

MDM

● Combination of APNs (Apple servers) + RESTful API
(MDM vendor servers)

● Communication occurs between a device and a server
associated with a device management product

● Commands delivered in plist-encoded dictionaries
● All over HTTPS. MDM servers can be pinned.

Overview — Protocols

MDM Authentication

● Push notification device token (APNs)
● Client certificate (MDM server)

Overview — Protocols

DEP

● 3 APIs: 1 for resellers, 1 for MDM vendors, 1 for device
identity (undocumented)
○ More modern and JSON based (vs. plist)

● Today we’ll focus on the MDM ↔ Apple aka the DEP
“cloud service” API

Overview — Protocols

DEP “cloud service” API

● RESTful
● Two main uses:

○ sync device records from Apple to the MDM server
○ sync “DEP profiles” to Apple from the MDM server

(delivered by Apple to the device later on)

Overview — Protocols

DEP “cloud service” API

● A DEP “profile” contains:
○ MDM vendor server URL
○ Additional trusted certificates for server URL (optional pinning)
○ Extra settings (e.g. which screens to skip in Setup Assistant)

● Authentication: OAuth 1.0a token

Overview — Protocols

SCEP

● RESTful
● In lieu of TLS/HTTPS, PKCS#7 signed data is relied upon

to ensure message integrity
● Supports concept of a “Challenge Password” for

authenticating the enrollment request (SCEP CSRs)

Overview — Establishment of trust

● Three legal entities involved: Apple, MDM vendor,
customer

● Trust must be established for both DEP and MDM
between these parties

● Once trust is established, MDM vendor is granted right to:
○ send MDM push notifications to devices
○ manage device records and “DEP profiles”

Overview — Establishment of trust

Some differences:

● With MDM, what’s being granted to the MDM vendor by
Apple is an APNs certificate.

● With DEP, what’s being granted to the MDM vendor by
Apple is an OAuth token.

Overview — Putting it all together

1. Device record creation (Reseller, Apple)
2. Device record assignment (Customer)
3. Device record sync (MDM vendor)
4. DEP check-in (Device)
5. Profile retrieval (Device)
6. Profile installation (Device)

a. incl. MDM, SCEP and root CA payloads

7. MDM command issuance (Device)

Deep Dive

● The latter parts of this process (steps 4–7) involve the
device itself

● macOS interacts directly with Apple and MDM vendor
servers

● Scenario: A user unboxes a brand new MacBook
previously configured by their employer to set itself up
automatically via DEP + MDM

Deep Dive - Architecture

● DEP and MDM enrollment involves many agents, daemons
● ConfigurationProfiles.framework provides

abstraction for the enrollment process
● Exports functions that map well to high-level “steps” of

enrollment process

Links
ConfigurationProfiles.framework

Setup Assistant.app

Step 4: Getting the Activation Record

● Purpose: determine whether device is DEP enabled
● Activation Record is the internal name for DEP “profile”
● Begins as soon as the device is connected to WAN
● Driven by CPFetchActivationRecord
● Implemented by cloudconfigurationd via XPC

○ LaunchDaemon (always runs as root)

XPC
cloudconfigurationdConfigurationProfiles.framework

Links

Setup Assistant.app

Step 4: Getting the Activation Record - Absinthe

MCTeslaConfigurationFetcher manages process

1. Retrieve certificate
○ GET https://iprofiles.apple.com/resource/certificate.cer

2. Initialize state from certificate (NACInit)
○ Uses various device-specific data (i.e. Serial Number via IOKit)

3. Retrieve session key
○ POST https://iprofiles.apple.com/session

4. Establish the session (NACKeyEstablishment)

https://iprofiles.apple.com/resource/certificate.cer
https://iprofiles.apple.com/session

Step 4: Getting the Activation Record - Request

● 5. Make the request
○ POST https://iprofiles.apple.com/macProfile

● JSON payload encrypted using Absinthe (NACSign)
● All requests over HTTPs, built-in root certificates are used
● Example:

{
“action”: “RequestProfileConfiguration”,
“sn”: “<device serial number>”

}

https://iprofiles.apple.com/macProfile

Absinthe +
TLS

iprofiles.apple.com

XPC
cloudconfigurationdConfigurationProfiles.framework

Links

Setup Assistant.app

Step 4: Getting the Activation Record - Response

● In response, the server provides JSON dictionary
● Similar to the DEP profile

○ Example: Customization of Setup Assistant

● Two fields matter for the next step:
○ url: URL of the MDM vendor host for the activation profile.
○ anchor-certs: Array of DER-encoded certificates used as trusted

anchors.

Step 5: Getting the Activation Profile

● Activation Profile = DEP-delivered configuration profile
● Same as a regular profile: includes multiple payloads
● Begins when user clicks “next”
● Driven by CPGetActivationProfile
● Implemented by ManagedClient.app over MIG

○ LaunchDaemon (as root) with auxiliary per-user LaunchAgent (as user)
○ Implementation is named mcxSvr_cloudconfiguration

Step 5: Getting the Activation Profile

● Request sent to url provided in DEP profile.
● Anchor certificates are used to evaluate trust if provided.

○ Reminder: the anchor_certs property of the DEP profile

● Request is a simple .plist with device identification
○ Examples: UDID, OS version.

● CMS-signed, DER-encoded
● Signed using the device identity certificate (from APNS)
● Certificate chain includes expired Apple iPhone Device CA

TLS w/
anchor-certs

MDM Profile Endpoint
url

MIG
ManagedClient.app

Links
ConfigurationProfiles.framework

Setup Assistant.app

Step 6: Installing the Activation Profile

● Once retrieved, profile is stored on the system
● This step begins automatically (if in setup assistant)
● Driven by CPInstallActivationProfile
● Implemented by mdmclient over XPC

○ LaunchDaemon (as root) or LaunchAgent (as user), depending on
context

Step 6: Installing the Activation Profile

● Configuration profiles have multiple payloads
● Installation: loop to install each payload in the profile
● Framework has a plugin-based architecture for installing

profiles
● Each payload type is associated with a plugin

○ Can be XPC (in framework) or classic Cocoa (in
ManagedClient.app)

● Example:
○ Certificate Payloads use CertificateService.xpc

Step 6: Installing the Activation Profile

● Typically, activation profile provided by an MDM vendor will
include the following payloads:
○ com.apple.mdm: to enroll the device in MDM
○ com.apple.security.scep: to securely provide a client certificate to

the device.
○ com.apple.security.pem: to install trusted CA certificates to the

device’s System Keychain.

Step 6: Installing the Activation Profile

● Installing the MDM payload equivalent to MDM check-in
● Configures the device for MDM
● Payload contains key properties:

○ MDM Check-In URL (CheckInURL)
○ MDM Command Polling URL (ServerURL) + APNs topic to trigger it

● To install MDM payload, request is sent to CheckInURL
● Implemented in mdmclient

Step 6: Installing the Activation Profile

● MDM payload can depend on other payloads
● Allows requests to be pinned to specific certificates:

○ Property: CheckInURLPinningCertificateUUIDs
○ Property: ServerURLPinningCertificateUUIDs
○ Delivered via PEM payload

● Allows device to be attributed with an identity certificate:
○ Property: IdentityCertificateUUID
○ Delivered via SCEP payload

TLS w/
CheckInURLPinningCertificateUUIDs

MDM Check-In Endpoint
CheckInURL

Install
Activation

Profile

mdmclient

ConfigurationProfiles.framework

Setup Assistant.app

Step 7: Listening for MDM commands

● After MDM check-in is complete, vendor can issue push
notifications using APNs

● Upon receipt, handled by mdmclient
● To poll for MDM commands, request is sent to ServerURL
● Makes use of previously installed MDM payload:

○ ServerURLPinningCertificateUUIDs for pinning request
○ IdentityCertificateUUID for TLS client certificate

TLS w/
ServerURLPinningCertificateUUIDs

Apple Push Service

MDM Vendor Command Endpoint
ServerURL

mdmclient

MDM Vendor Push
Sender

Vulnerability: InstallApplication

● Wide range of commands available
● Very common: InstallApplication
● Allows remote, silent installation of an application on the

device
● Implemented using App Store infrastructure

Vulnerability: InstallApplication

● The command request contains the URL to a manifest:
○ The manifest describes the application package
○ The manifest is encoded as a property list (XML)

● The manifest includes the URL to the package to install
● On macOS, this points to a signed distribution package

(.pkg)

Vulnerability: InstallApplication

● mdmclient uses CommerceCore.framework, calling
CKMDMProcessManifestAtURL

● CommerceKit: contains various “services”, each backed by
a LaunchAgent/LaunchDaemon
○ storeassetd: downloads and processes the manifest, queuing

downloads for each specific package
○ storedownloadd: downloads and installs the package

Vulnerability: InstallApplication

mdmclient

storeassetd

storedownloadd

XPC

CommerceCore
.framework

XPC

MDM
Manifest
Endpoint

MDM
Package
Endpoint

TLS

TLS

CommerceKit

Links

Vulnerability: InstallApplication

● MDM and Store are two separate components
○ Different threat models

● mdmclient is not evaluating the trust of the manifest URL
○ In fact, StoreFoundation’s core networking classes used in this

scenario do not appear to evaluate trust at all
○ Allows MITM attack

● Example: State could target a specific organization by
MITMing commands from the MDM vendor. Not limited to
DEP.

Demo

● Simulate malicious ISP or state actor via Internet Sharing
(on macOS)
○ Proxy all traffic from new device using mitmproxy

● Simulate compromised CA by using valid cert from
Fleetsmith’s CA

● Intercept request for manifest during device’s first boot
● Serve malicious manifest, causing device to download and

install a different .pkg
○ Personal Developer ID certificate to sign “malicious” package

Demo

https://docs.google.com/file/d/1GK2-nHvIo3q7TY8lbH3PTxbgxCwYHr4v/preview

Fix: InstallEnterpriseApplication

● New command: InstallEnterpriseApplication
● Includes new properties to control trust evaluation
● Available in macOS 10.13.6 (thus also 10.14)

○ Thus, time delay for new hardware to support fix
● Important: Requires MDM vendor to adopt new command

Fix: InstallEnterpriseApplication

● Can pin manifest request to specific anchor certificates:
○ Property: ManifestURLPinningCerts

● Can ensure certificate revocation checks are performed:
○ Property: PinningRevocationCheckRequired

Fix: InstallEnterpriseApplication

● Under the hood: CKMDMProcessManifestAtURL now
takes in a dictionary of options
○ _CKMDMManifestOptionPinCertificates
○ _CKMDMManifestOptionPinningRevocationCheckRequired

● StoreFoundation networking objects now evaluate trust
○ Uses standard NSURLConnection delegate method for authentication challenges

Takeaways

● Complex system with many moving parts
● Some have different threat models → bugs can appear

between components
● Important to perform holistic “systems level” security

reviews
● Security is often dependent on the MDM vendor →

vendors can do more

Recommendations for Apple

● Fully document the security model for DEP & MDM,
including the role of the Apple iPhone Device CA

● Require pinning at each step (currently optional)
● Require any Configuration Profile containing sensitive

data (e.g. Wi-Fi password) to be both signed and
encrypted (currently optional)

● Make factory installed OS version and build number
available via DEP APIs

MDM Vendor Security Checklist

● Pin at every step of the process
○ Step 4: Pin MDM anchor_certs in DEP profile
○ Step 5: Pin MDM URLs in payload (/checkin, /commands)
○ Step 7: Pin using InstallEnterpriseApplication
○ All networking calls from agent binary (if one exists)

● Use SCEP
○ Avoid generating private keys server-side
○ Use SCEP “Challenge Password” (HMAC works well)

MDM Vendor Checklist

● Configuration Profiles
○ All should be signed
○ All that contain sensitive data should be signed and encrypted, using the

device’s public key

● Encrypt sensitive customer data at rest
○ e.g. WiFi passwords

Disclosure timeline

● First disclosed to Apple on April 28th, acknowledged May
2nd

● InstallEnterpriseApplication announced in
“What's New in Managing Apple Devices” session at WWDC
on June 7th

● MDM Protocol Reference documentation updated to
include InstallEnterpriseApplication on July 5th

● Fix is introduced with macOS 10.13.6 on July 9th

Conclusion

Thank you!

○ Shout out to Fleetsmith cofounder Stevie Hryciw for first discovering the
vulnerability + his assistance on early research

○ Shout out to @groob @bruienne @mikeymikey @jessecpeterson for their
research, open source work, and contributions to the Mac security community

○ Shout out to Apple for their quick reaction and courteous response as well as
the great work their security engineering team is doing to continually improve
platform security for both iOS & macOS

Resources

○ Twitter:
○ @jesseendahl
○ @maxbelanger

○ Fleetsmith: fleetsmith.com

