Automated Discovery of Deserialization Gadget
Chains

lan Haken
Senior Security Software Engineer, Netflix

Deserialization vulnerabilities became a popular focus of application security research in
2015 after Frohoff and Lawrence’s AppSecCali presentation Marshalling Pickles'. Even though
these types of vulnerabilities have been understood since at least 20062 this put a spotlight on the
subject because it revealed how high impact and wide-spread the problem could be®. During 2016
this vulnerability class was thoroughly* discussed® in conferences® and meetups’, but despite this
attention it is a vulnerability class that has not yet been eliminated and continues to see new
attention and research. At Black Hat USA 2017 Mufioz and Mirosh® presented a survey of JSON
deserialization libraries vulnerable to exploitation and at the upcoming AppSec USA 2018 in
October the subject continues to be covered in Kojenov’s presentation Deserialization: what, how
and why [notpP.

This paper looks at deserialization vulnerabilities from a different angle. Instead of focusing
on what makes an application vulnerable we focus on what makes a vulnerability exploitable, what
sort of exploits are possible, and how to assess the risk of deserialization deserialization
vulnerabilities in a given application. In this paper we focus exclusively on deserialization
vulnerabilities in Java, although the discussion and methods described should generalize to other
languages where these sorts of vulnerabilities apply (such as C# or PHP).

In the end we present and open source a new tool for discovering gadget chains that can be
used to exploit deserialization vulnerabilities. This tool can be used by both penetration testers and
application security engineers to assist in assessing the risk of a deserialization vulnerability and
quickly develop working gadget chains.

T https://frohoff.qithub.io/appseccali-marshalling-pickles/

2 http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Schoenefeld-up.pdf

8 https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-
your-application-have-in-common-this-vulnerability/

4 https://www.slideshare.net/cschneider4711/surviving-the-java-deserialization-apocalypse-owasp-
appseceu-2016

5 https://www.rsaconference.com/writable/presentations/file_upload/asd-fO03-serial-killer-silently-pwning-
your-java-endpoints.pdf

8 https://www.blackhat.com/docs/us-16/materials/us-16-Kaiser-Pwning-Your-Java-Messaging-With-
Deserialization-Vulnerabilities.pdf

" https://www.slideshare.net/ikkisoft/defending-against-java-deserialization-vulnerabilities

8 https://www.blackhat.com.docs.us-17.thursday.us-17-Munoz-Friday-The-13th-Json-Attacks.pdf

® https://appsecus2018.sched.com/event/FO4J

https://frohoff.github.io/appseccali-marshalling-pickles/
http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Schoenefeld-up.pdf
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability/
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability/
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability/
https://www.slideshare.net/cschneider4711/surviving-the-java-deserialization-apocalypse-owasp-appseceu-2016
https://www.slideshare.net/cschneider4711/surviving-the-java-deserialization-apocalypse-owasp-appseceu-2016
https://www.slideshare.net/cschneider4711/surviving-the-java-deserialization-apocalypse-owasp-appseceu-2016
https://www.rsaconference.com/writable/presentations/file_upload/asd-f03-serial-killer-silently-pwning-your-java-endpoints.pdf
https://www.rsaconference.com/writable/presentations/file_upload/asd-f03-serial-killer-silently-pwning-your-java-endpoints.pdf
https://www.rsaconference.com/writable/presentations/file_upload/asd-f03-serial-killer-silently-pwning-your-java-endpoints.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Kaiser-Pwning-Your-Java-Messaging-With-Deserialization-Vulnerabilities.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Kaiser-Pwning-Your-Java-Messaging-With-Deserialization-Vulnerabilities.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Kaiser-Pwning-Your-Java-Messaging-With-Deserialization-Vulnerabilities.pdf
https://www.slideshare.net/ikkisoft/defending-against-java-deserialization-vulnerabilities
https://www.blackhat.com.docs.us-17.thursday.us-17-munoz-friday-the-13th-json-attacks.pdf/
https://appsecus2018.sched.com/event/F04J

What is a deserialization vulnerability?

In object oriented languages such as Java, data can be contained in classes. The power of
object oriented languages is that semantic behavior related to these classes is carried with the
data. This affects the design of software in these languages and also allows for powerful features
like polymorphism. The fundamental vulnerability caused by deserialization is that an attacker may
specify the type of the data being being passed in to an application as it is deserialized. Because
the type of data specifies the class instantiated to hold that data—and the class determines what
code might be run—this means the attacker has direct influence on what code gets executed.

Consider the following Java snippet which represents a web application with a classic Java
deserialization vulnerability.

@POST
public String renderUser (HttpServletRequest request) {
ObjectInputStream ois = new ObjectInputStream (
request.getInputStream()) ;
User user = (User) ois.readObject();
return user.render () ;

The developer’s intent is that the request body contains a serialized version of the following
User class, which will get deserialized by the ObjectInputStream.readObject () method and
castto User. Suppose the implementation of the User class looks something like the below:

public class User implements Serializable {
private String name;
public String render () {
return name;

}

In this case an attacker being able to control the name field reflected in the output of the
web request is benign. While the developer can control the data type returned from
ois.readObject (), itis cast to a User and therefore the attacker cannot meaningfully influence
what code is executed without further context. However, suppose the following class also exists in
the application.

public class ThumbnailUser extends User ({
private File thumbnail;
public String render () {
return Files.read(thumbnail) ;
}

If the attacker instead sends a serialized instance of ThumbnailUser then when the
application calls render () on the object the contents of any file on the filesystem may be
reflected to the attacker. This demonstrates how an attacker being able to specify the type of data
allows the attacker to induce unintended behavior.

Gadget Chains

If this were the extent of the danger of deserialization vulnerabilities it would likely be the
case that most vulnerabilities are not exploitable since it relies on applications implementing
classes with “dangerous behavior” that override the benign behavior of the intended data types.
However, many deserialization libraries (including Java’s ObjectInputStream) utilize magic
methods so that classes can control their serialization/deserialization behavior. Magic methods get
automatically invoked by the deserialization library even before returning from the readObject ()
method. Therefore, if any class on the classpath implements dangerous behavior inside a magic
method, it can be executed by an attacker regardless of what type the object is cast to inside of
application code.

An example of a class implementing such a magic method is the JDK’s
java.util.HashMap. If this class used default serialization mechanics then serialized instances
of the class would likely not be interoperable between JDK versions when the underlying
implementation of the hash map was altered. To improve interoperability, this class instead
implements the writeObject () / readObject () methods which the deserialization library
invokes instead of using the default scheme for serializing / deserializing objects. When writing out
a map the writeObject () magic method instead just serializes all key/value pairs as a list. When
reading in a map the readObject () magic method reads each key/value pair from the list and
calls this.put (key, value) for each pair. As a result this class will also call hashCode () and
equals () oneach key read out of the serialized payload.

Thus, if any class on the classpath implements dangerous behavior inside one of
hashCode () or equals () it's possible to construct a serialized payload that would execute that
method. This gives rise to the notion of a gadget chain. A gadget chain is a sequence of class
methods starting with one of these magic methods and where the invocation of one method in the
chain leads to the invocation of the next method in the chain, ultimately ending with some sort of
dangerous behavior.

Consider the following example classes based on a simplified gadget chain in Clojure (which
is described in greater detail below):

class AbstractTableModels$ff19274a {
private IPersistentMap _ clojureFnMap;
public int hashCode () {
IFn f = _ clojureFnMap.get (
"hashCode") ;
return (int) (f.invoke (this));

public class FnCompose implements IFn {
private IFn f1, £2;
public Object invoke (Object arg) {
return f£2.invoke (fl.invoke (arg));

}

public class FnConstant implements IFn {
private Object value;

public class FnEval implements IFn ({
public Object invoke (Object arg) {

public Object invoke (Object arg) {
return value; }

} }

return Runtime.exec (arg) ;

By composing instances of these classes into a serialized payload and then wrapping the
AbstractTableModel$£f£f19274a instance in a HashMap, an attacker can execute arbitrary
code. This is an example of such a serialized payload using Jackson-style serialization:

“@class”: “java.util.HashMap”
“members”: [
2/
{
“@class”: “AbstractTableModel$ff19274a”
" __clojureFnMap”: {
“hashCode”: {
“@class”: “FnCompose”
“f2”7: { “Qclass”: “FnConstant”, “value”: “/usr/bin/calc” },
“f1”7: { “Q@class”: “FnEval” }

},

\\valn

If this payload were converted to ObjectInputStream’s binary format and sent to the
vulnerable renderUser () endpoint described in the first section, the application would end up
invoking the /usr/bin/calc process before ever returning from the readobject () method.
Since this happens before readObject () returns, it is irrelevant that the returned value (a
HashMap) cannot be cast to User.

There are many classes besides HashMap in the JDK (and other common Java libraries)
that implement magic methods and therefore provide useful first links in gadget chains. Another

example is the java.util.PriorityQueue class which can invoke Comparator.compare ()
and Comparable.compareTo () methods of its members. The ysoserial project'® is a collection
of deserialization gadget chains which includes many other examples.

The most important thing to observe about gadget chains is there their construction is
completely unrelated to what code or libraries your application invokes. Instead it is only
constrained by what classes are available on the classpath of your application. If your application
includes some library (perhaps even transitively) that is never actually called, its classes can still be
used to build a gadget chain.

Finding Deserialization Vulnerabilities

Finding deserialization vulnerabilities is similar to finding many other web applications
vulnerabilities such as cross-site scripting (XSS) or SQL injection. In the simplest terms an
application is vulnerable if attacker-controlled data (such as a query parameter or request body)
flows into a vulnerable method (such as new ObjectInputStream(attackerData)
.readObject ()). While new “vulnerable methods” are being discovered by researchers such as
the JSON libraries enumerated by Mufioz and Mirosh, the mechanisms by which vulnerabilities are
found in applications are reasonably well understood. We will therefore omit discussion on this
topic and refer the reader to aforementioned presentations and discussions of deserialization
vulnerabilities.

Why Focus on Exploits instead of Remediation

Given the assertion that we understand how to find deserialization vulnerabilities it is
reasonable to ask why we would focus on exploit discovery and development rather than
remediation. However, remediating a deserialization vulnerability can be particularly difficult
because it involves modification of the communication layer between an application and its clients.

It some cases, it can be extremely difficult or even impossible to change the communication
mechanism used by clients. Consider the case that client code is deployed on embedded or
consumer electronic (CE) devices. In this case there may be many clients that are years or even
decades old that cannot be updated. However, even if both client and server components are
under developer control it is still often a costly and difficult migration to perform. Developers must
either ensure that no breaking changes are made to the existing communication protocol or else
provide an upgrade path to a new communication protocol and coordinate migration of all clients.

Given that there can be significant costs to changing the communication layer of a service it
then becomes important to understand the trade-offs. If an application has a deserialization
vulnerability but has a small classpath with no gadget chains it may not be worth spending the time
and effort needed to fully remediate the vulnerability. On the other hand, a vulnerability that is
subject to a remote code execution (RCE) exploit would usually be prioritized. Thus, information
about what gadget chains can be constructed can help inform the priority of remediation.

10 https://github.com/frohoff/ysoserial

https://github.com/frohoff/ysoserial

Ultimately what would be useful to get a contextual understanding of what risk a deserialization
vulnerability poses when it is discovered.

Existing Gadget Chain Tools

Several tools do already exist to assist to help discover gadget chains on an application’s
classpath. The ysoserial project’' is one of the most well-known ones. It contains some tools for
building gadget chain payloads and has a collection of gadget chains discovered by researchers in
open source libraries. Therefore if an application has one of these libraries on the classpath one can
almost immediately identify possible gadget chains. However, this repository is not itself a tool for
finding new gadget chains, gadget chains that can be constructed using a combination of libraries,
or gadget chains exploitable against deserialization libraries other than the JDK’s
ObjectInputStrean library. Marshalsec'? is a similar project which supports a wider breadth of
deserialization libraries, but is again a tool which largely includes known gadget chains. The Java
Deserialization Scanner'® is a Burp Suite plugin which dynamically scans applications and attempts
to utilize known gadget chains from the ysoserial project. The NCC Group Burp Plugin' is another
Burp Suite plugin but which is mainly based on the JSON payloads from Mufioz and Mirosh’s work.

In contrast, joogle'® is a tool for performing programmatic queries against class and method
metadata of a classpath. This is a useful tool for researchers attempting to construct a gadget chain
one link at a time. However, using joogle to construct a gadget chain is still a largely manual
process.

Requirements for a new Gadget Chain Tool

Given that our simply stated goal is to understand the risk of a deserialization vulnerability,
we would like to construct a new tool that can illuminate what gadget chains can be constructed
against an application’s classpath. Therefore we would like a tool that:

e Determines what gadget chain exploits exist on the classpath

e Determines the impact of those exploits (e.g. RCE, SSRF, DoS, etc)

e Provides a (limited) overestimation of impact rather than underestimation

e FEasily operates on the entire classpath of an application; given multiple source languages
(such as Groovy, Scala, Clojure, Kotlin, etc) it should operate on Java bytecode

e Understands different deserialization libraries and the restrictions on gadget chains that
may be imposed by each library

™ https://github.com/frohoff/ysoserial

2 https://aithub.com/mbechler/marshalsec

'3 https://techblog.mediaservice.net/2017/05/reliable-discovery-and-exploitation-of-java-deserialization-
vulnerabilities/

14 https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2018/june/finding-deserialisation-
issues-has-never-been-easier-freddy-the-serialisation-killer/

8 https://github.com/Contrast-Security-OSS/joogle

https://github.com/frohoff/ysoserial
https://github.com/mbechler/marshalsec
https://techblog.mediaservice.net/2017/05/reliable-discovery-and-exploitation-of-java-deserialization-vulnerabilities/
https://techblog.mediaservice.net/2017/05/reliable-discovery-and-exploitation-of-java-deserialization-vulnerabilities/
https://techblog.mediaservice.net/2017/05/reliable-discovery-and-exploitation-of-java-deserialization-vulnerabilities/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2018/june/finding-deserialisation-issues-has-never-been-easier-freddy-the-serialisation-killer/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2018/june/finding-deserialisation-issues-has-never-been-easier-freddy-the-serialisation-killer/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2018/june/finding-deserialisation-issues-has-never-been-easier-freddy-the-serialisation-killer/
https://github.com/Contrast-Security-OSS/joogle

Gadget Inspector

The primary contribution of this paper is the introduction of a tool satisfying the above
requirements. We have named this tool Gadget Inspector and it is available as an open source
project’®.

This tool operates on a classpath and supports specifying either a war (in order to analyze a
whole web application) or a collection of jars (for analyzing a single library and its transitive
dependencies or just an alternatively constructed application). The output of the tool is a list of
gadget chains where each gadget chain is a list of method invocations. Some examples of these
outputs and corresponding gadget chain payloads are provided below.

Gadget Inspector makes a number of simplifying assumptions to make analysis of the Java
bytecode relatively straightforward. These assumptions are laid out in the details below and we
attempt to justify each assumption to explain why they are expected to lead to a low number of
errors in the analysis.

As an example of a gadget chain produced by Gadget Inspector, the following is one of the
first results discovered from this tool:

clojure.inspector.proxy$javax.swing.table.AbstractTableModel$ff19274a.hashCode() (O)
clojure.main$load_script.invoke(Object) (1)
clojure.main$load_script.invokeStatic(Object) (O)

clojure.lang.Compiler.loadFile(String) (O)

FileInputStream.<init>(String) (1)

arLON =

This gadget chain causes the application to load (and execute) a clojure source file from
disk. By changing the fourth method invocation in this gadget chainto clojure.main$eval opt
we can actually achieve arbitrary RCE instead. This version of the gadget chain was added to the
ysoserial project in July 2017" and its full construction can be seen there. A condensed form of
this construction is provided here for illustration:

'8 https://aithub.com/JackOfMostTrades/gadgetinspector
7 https://aithub.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/Clojure.java

https://github.com/JackOfMostTrades/gadgetinspector
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/Clojure.java

final String clojurePayload =
String.format (" (use '[clojure.java.shell :only [sh]]) (sh %s)", cmd);

Map<String, Object> fnMap = new HashMap<String, Object>();
fnMap.put ("hashCode",
new clojure.coreS$Scomp () .invoke (
new clojure.main$eval opt (),
new clojure.core$constantly () .invoke (clojurePayload))) ;

AbstractTableModel$ff19274a model = new AbstractTableModel$ff19274a () ;
model. initClojureFnMappings (PersistentArrayMap.create (fnMap)) ;

HashMap<Object, Object> targetMap = new HashMap<Object, Object>();
targetMap.put (model, null);

return targetMap;

How Gadget Inspector Works

Gadget Inspector is open source'® and the reader is encouraged to inspect the source code
for low level details of its operation. Gadget Inspector primarily utilizes the ASM library'® for Java
bytecode inspection and builds upon its instruction visitor framework to perform symbolic
execution. It operates in five major steps which we describe below.

Class and Method Hierarchy Enumeration

The first step is enumerating all of the classes, methods, and their metadata for classes on
the classpath. Using this we also build up a class inheritance hierarchy and method override
hierarchy.

This step could be easily accomplished using JDK reflection APIs although we utilize ASM
to inspect class files directly since it is used more deeply below anyway.

Passthrough Dataflow Discovery

The next step is discover methods with “passthrough” dataflow. Specifically we want to
enumerate cases where an argument X to method M being attacker-controllable leads to an
attacker-controllable object being returned from M. We achieve this by stepping through bytecode
and performing some simple symbolic execution. Consider the following two examples:

'8 https://aithub.com/JackOfMostTrades/gadgetinspector
"9 https://asm.ow?2.i0/

https://github.com/JackOfMostTrades/gadgetinspector
https://asm.ow2.io/

public class FnConstant implements IFn { public class FnDefault ({

private Object wvalue; private FnConstant £;
public Object invoke (Object arg) { public Object invoke (Object arg) {
return value; return arg != null ? arg :

} f.invoke (arg);

This would lead to the following output. Note that arguments are numbered starting at O
and that for all non-static methods (such as both above) the implicit this argument is argument O.
e FnConstant.invoke() -> 0
e FnDefault.invoke() -> 1
e FnDefault.invoke() -> 0

In the first bullet above we are indicating that if the Oth argument to FnConstant.invoke() is
attacker-controlled then we expect the return value to be attacker-controlled. This is because the
output of that invocation is this.value. This leads us to our first assumption: if an object is
attacker-controllable then all fields of that object are also attacker-controllable. We justify this
given the context of our threat model. If an object is attacker-controlled it’s usually because it is
read from a serialized payload and thus all of its members are also set from the serialization
payload. There are cases where this assumption may break down, but in evaluation it doesn’t lead
to many false positives.

In the second bullet above we indicate that the 1st argument to FnDefault. invoke ()
gets returned. In the third bullet, if the this argument to FnDefault.invoke() is
attacker-controllable then by our above assumption we assume this.f is also
attacker-controllable. Given the first bullet above, we therefore assume that the return value of
this.f.invoke () is attacker-controllable. Therefore we finally see that the return value would
also be attacker-controllable.

Implicit in our derivation of bullets two and three is another assumption: any branch
conditions inside methods are satisfiable. Determining what branch conditions are satisfiable tends
to be one of the more difficult problems in code analysis which is entirely side-stepped by this tool.
We feel justified in making this assumption since very often the variables used to make branch
decisions are also attacker-controllable and therefore an attacker has strong control over what
branch conditions get satisfied. Although this is one of the weaker justifications, based on the
evaluation of Gadget Inspector (discussed more below) this led to few false positives.

The results of this step of the analysis are only used to aid in the next step.

Passthrough Callgraph Discovery

The next step in Gadget Inspector’s operation is very similar to the previous one. However,
instead of enumerating dataflow from method arguments to return values, we instead want to
enumerate dataflow from method arguments to method invocations. This is used to build up a call
graph for the application. This is achieved using the same symbolic execution as above. The
following is an example:

public class AbstractTableModelS$ff19274a {
private IPersistentMap _ clojureFnMap;
public int hashCode () {
IFn £ = _ clojureFnMap.get ("hashCode") ;
return (int) (f.invoke (this));

This method would result in the following output for the AbstractTableModel
$ff19274a.hashCode () method:
e O->IFn.invoke() @ 1
e O->IFn.invoke() @ O

In the first bullet we are indicating that if the Oth argument to hashCode () (the implicit
this) is attacker-controllable then this gets passed in as the 1stargumentto IFn.invoke (). To
derive the second bullet, if we treat this as attacker-controllable then = clojureFnMap is
attacker-controllable. As a heuristic we treat Map.get () as having passthrough dataflow on the
Oth argument. Therefore we determine that £ is attacker-controllable. We then see £ passed as the
implicit this to £.invoke (). Thisyields the second bullet above.

Gadget Chain Source Discovery

Using the class and method hierarchy from the first step, in this step we enumerate all
gadget chain source methods. These methods are enumerated using known tricks discovered by
researchers. For example, we treat Object.hashCode () as a source method since we know that
this method can get invoked by putting the object in a HashMap as described above. While the
example of the hashCode () entry point could be derived using the rest of Gadget Inspector’s
analysis, other entry points rely on a hardcoded configuration. One example of this is the
InvocationHandler.invoke () entry point utilized by Frohoff’s commons-collections gadget
chain, which can be achieved by wrapping the class in a dynamic proxy. Gadget Inspector would
have been unable to derive this gadget chain source method on its own since it relies on the
underlying JDK behavior of dynamic proxies which bytecode analysis would not reveal.

What source methods exist may also depend on what serialization library we are
considering. The above examples are valid for the JDK’s ObjectInputStream, but for other
libraries (such as Jackson) entry points would vary. For Jackson, the source methods may just be
no-arg constructors.

Call Graph Search

Given the call graph from step 3 and the source methods from step 4, we now simply
perform a breadth-first-search through the call graph starting from those source methods. We

output a gadget chain whenever the search encounters an “interesting method.” Each node in the
call graph is a method invocation such as “O -> IFn.invoke() @ 1”. At each node we add to our
search all implementations of those methods (using the method hierarchy enumerated in step 1).
For the example of “O -> IFn.invoke() @ 1” we would add all implementations of IFn. invoke () as
further nodes to explore in our graph search. Given the above examples, this would include
FnConstant.invoke () and FnDefault.invoke ().

The ability to jump to any method implementation is another assumption of our analysis. In
general this is possible because the attacker controls the data types of any fields of objects in our
gadget chain and therefore what implementation of a class is deserialized as that field value. The
only limitation on this assumption is that an attacker can only specify data types that are
serializable. The conditions that make a class serializable depend on what serialization library we
are considering, which is another one of the ways Gadget Inspector is parameterizable.

It is important to note that we output a gadget chain result once we encounter an
“interesting method.” It is another limitation that this analysis requires a hardcoded list of
interesting methods. Examples include the Java APIs for executing processes, reflection methods,
APIs for loading classes, etc. Omissions from this list lead to false negatives, and indeed what is
considered “interesting” may entirely be subjective or context-dependent.

Evaluation Results

In order to evaluate the efficacy of Gadget Inspector we ran it with configuration for the JDK
ObjectInputStream against the 100 most popular java libraries, as ranked by
mvnrepository.com.

As hoped, this rediscovered some known gadget chains, such as the commons-collections
gadget chain discovered by Frohoff*°:

1. com.sun.corba.se.spi.orbutil.proxy.CompositelnvocationHandlerimpl
.invoke(Object, Method, Object[]) (0)

. org.apache.commons.collections.map.LazyMap.get(Object) (O)

. org.apache.commons.collections.functors.InvokerTransformer
transform(Object) (O)

4. java.lang.reflect.Method.invoke(Object, Object([]) (O)

w N

One of the reasons that the original discovery of this gadget chain was so significant was its
widespread usage. It is the 38th most popular library on mvnrepository.com so this RCE gadget
chain could be used as an exploit in a large number of applications that were subject to unsafe
deserialization.

As described above, Gadget Inspector also discovered this gadget chain in Clojure?":

20 hitps://qithub.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/
CommonsCollections1.java
21 hitps://qithub.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/Clojure.java

https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/Clojure.java

clojure.inspector.proxy$javax.swing.table.AbstractTableModel$ff19274a.hashCode() (0)
clojure.main$load_script.invoke(Object) (1)
clojure.main$load_script.invokeStatic(Object) (O)

clojure.lang.Compiler.loadFile(String) (O)

FileInputStream.<init>(String) (1)

aprwd =

As described previously, we can replace step 4 with clojure.main$eval opt which
leads to an RCE gadget chain. mvnrepository.com ranks Clojure as the 6th most popular library
meaning that the prevalence of this RCE gadget chain may be even more widespread than the
commons-collections gadget chain of 2016, though we would certainly expect there to be fewer
applications with deserialization vulnerabilities to begin with given the appreciation for their danger
that has arisen in the past 2 years.

This gadget chain was originally discovered in the 1.8.0 version of the clojure library and
also affected all versions before it. This gadget chain was reported to the clojure-dev mailing list in
July 2017 and in the 1.9.0 deserialization of the AbstractTableModel $ff19274a class was
disabled as remediation.

In preparation of this paper, Gadget Inspector was rerun on the latest version of the clojure
(1.10.0-alpha4 at the time of writing). On this version of Clojure Gadget Inspector discovered an
alternate entry point that led to the same gadget chain:

clojure.lang.ASeq.hashCode() (O)
clojure.lang.lterate.first() (O)
clojure.main$load_script.invoke(Object) (1)
clojure.main$load_script.invokeStatic(Object) (O)
clojure.lang.Compiler.loadFile(String) (O)
FileInputStream.<init>(String) (1)

Ok wWN =

The same alteration of step 5 leads to another RCE gadget chain??. This entrypoint was first
available in clojure release 1.8.0 and effects all releases since then. Therefore it is the case that all
releases of clojure available at the time of writing can be used to construct an RCE gadget chain.

Gadget Inspector also discovered the following gadget chains in Scala, the 3rd most
popular library on mvnrepository.com. The first leads to an SSRF exploit that performs a GET
request to an arbitrary URL*:

1. scala.math.Ordering$$anon$5.compare(Object, Object) (0)

2. scala.PartialFunction$OrElse.apply(Object) (O)

3. scala.sys.process.processinternal$$anonfun$onlOlnterrupt$ 1
.applyOrElse(Object, scala.Function1) (0)

22 hitps://aithub.com/JackOfMostTrades/ysoserial/blob/master/src/main/java/ysoserial/payloads/
Clojure2.java

23 https://aithub.com/JackOfMostTrades/ysoserial/blob/master/src/main/java/ysoserial/payloads/
Scala.java

https://github.com/JackOfMostTrades/ysoserial/blob/master/src/main/java/ysoserial/payloads/Clojure2.java
https://github.com/JackOfMostTrades/ysoserial/blob/master/src/main/java/ysoserial/payloads/Clojure2.java
https://github.com/JackOfMostTrades/ysoserial/blob/master/src/main/java/ysoserial/payloads/Clojure2.java
https://github.com/JackOfMostTrades/ysoserial/blob/master/src/main/java/ysoserial/payloads/Scala.java
https://github.com/JackOfMostTrades/ysoserial/blob/master/src/main/java/ysoserial/payloads/Scala.java
https://github.com/JackOfMostTrades/ysoserial/blob/master/src/main/java/ysoserial/payloads/Scala.java

4. scala.sys.process.ProcessBuilderimpl$URLInput$$anonfun$$lessinit$greater$

.apply() (0)
5. java.net.URL.openStream() (O)

A similar gadget chain in Scala discovered by Gadget Inspector would allow an attacker to
(over)write an arbitrary path with a zero byte file. By overwriting application files, this could lead to a
viable denial of service attack.

1. scala.math.Ordering$$anon$5.compare(Object, Object) (0)
2. scala.PartialFunction$OrElse.apply(Object) (0)
3. scala.sys.process.processinternal$$anonfun$onlOinterrupt$ 1

.applyOrElse(Object, scala.Function1) (0)
4. scala.sys.process.ProcessBuilderimpl$FileOutput$$anonfun$$lessinit$greater$3

-apply() (0)
5. java.io.FileOutputStream.<init>(File, boolean) (1)

Evaluation: Netflix Internal App

Gadget Inspector includes two features which make it especially powerful. The first is that
besides analysing individual libraries as described in the previous section, it can also discover
gadget chains that include links between many different libraries on an application’s classpath.

The second feature is that is offers a great deal of flexibility in its parameterization of
serialization libraries. This was especially relevant in the analysis of an internal web application at
Netflix. Our application security team discovered that this application was subject to unsafe
deserialization, but it used a custom deserialization library which subjected inputs to some unique
constraints:

e The library invokes the readResolve () magic method but not readObject ()

e Serialized objects do notneed to implement java.io.Serializable

e Member fields of serialized objects cannot have a $ in the name.

o Non-static inner classes always have an implicit Souter member name, so only
static inner classes could be considered serializable.
No serialization support for arrays or generic maps
e No null member values

This last requirement was especially constraining as it implies that all members of serialized
objects must also satisfy these constraints. It also implies that classes with recursive member types
(such as java.lang.Thread which has a parent member of type Thread) could not be
serialized.

Because of all of these restrictions, teams that ran penetration tests on this application were
unable to come up with any working exploits despite several days of work. However, this was an
ideal candidate for us to evaluate Gadget Inspector on and after only a few minutes of analysis it
discovered the following gadget chain:

com.thoughtworks.xstream.mapper.AbstractAttributeAliasingMapper.readResolve() (0)
org.apache.commons.configuration.ConfigurationMap$ConfigurationSet.iterator() (0)
org.apache.commons.configuration.ConfigurationMap$ConfigurationSet
$ConfigurationSetlterator.<init>() (0)
4 org.apache.commons.configuration.CompositeConfiguration.getKeys() (0)
5 clojure.lang.APersistentMap$KeySeq.iterator() (0)
6 com.netflix.internal.utils.collections.lteratorWrapper$CallableWrapper.iterator() (0)
7 java.util.concurrent.Executors$RunnableAdapter.call() (O)
8. org.apache.commons.exec.StreamPumper.run() (0)
9. org.eclipse.core.internal.localstore.SafeFileOutputStream.close() (0)
10
11
12

WIN! —

org.eclipse.core.internal.localstore.SafeFileOutputStream.commit() (O)
org.eclipse.core.internal.localstore.SafeFileOutputStream.copy(File, File) (2)
java.io.FileOutputStream.<init>(File) (1)

The colors above identify different libraries the classes belong to. This highlights that this
gadget chain jumps through seven different libraries including JDK classes, application classes,
and open source libraries.

The above gadget chain had the effect of copying an arbitrary path to any other arbitrary
path. By constructing the payload corresponding to this gadget chain we were able to copy files
with secrets (such as private keys) to the web application’s static resources directory for exfiltration.

However, a small alteration of the above gadget chain allowed us to substitute the 9th step
with java.io.StringBufferInputStream as the input stream and org.eclipse.
core.internal.localstore.SafeChunkyOutputStream as the output stream. By doing so
we were able to create a payload that would write arbitrary content to an arbitrary path. By writing a
JSP file to the web resource directory we were able to achieve RCE.

By identifying these gadget chains we were able to prioritize the unsafe deserialization
vulnerability as critical despite the existing mitigations. Before the availability of Gadget Inspector,
the inability of penetration testers to develop a working exploit had led us to suspect that the
mitigations in place would have prevented a meaningful exploit.

Conclusion

Given that research and presentations on deserialization vulnerabilities continue to come
out it is clear that this class of vulnerabilities is still not going away. As we have demonstrated with
Gadget Inspector, gadget chains can be even more complex and subtle than they have been in the
past, and research can be advanced by utilizing such methods.

We believe that the use of tools for end-to-end automated discovery of new or
context-specific gadget chains is unexplored territory in deserialization vulnerability research.
Using the methods described we have already discovered a number of new, high impact gadget
chains in open source libraries. It has also allowed us to quickly identify the impact of
deserialization vulnerabilities in internal Netflix microservices and prioritize them appropriately.

In analysing applications, Gadget Inspector was able to produce results in only a few
minutes. Anecdotally, security researchers have spent days and weeks building gadget chains in

the past and we believe that Gadget Inspector has the potential to significantly reduce the time it
takes to evaluate the risk of deserialization vulnerabilities and create working deserialization
vulnerability exploits.

Gadget Inspector is a prototype tool, and has a number of limitations and assumptions
described above. However, it is open source®* and we encourage researchers to provide feedback,
submit contributions to improve it, or to utilize these ideas to build even more powerful tools.

24 https://qithub.com/JackOfMostTrades/gadgetinspector

https://github.com/JackOfMostTrades/gadgetinspector

