

DeepLocker Concealing Targeted Attacks with AI Locksmithing

Dhilung Kirat, Jiyong Jang, Marc Ph. Stoecklin IBM **Research**

Dhilung Kirat

Jiyong Jang

Marc Ph. Stoecklin

Cognitive Cyber Security Intelligence (CCSI) IBM Research

AI-aided attacks

Profile a target to increase success [2]

[1] S. Palka et al., "Fuzzing Email Filters with Generative Grammars and N-Gram Analysis", Usenix WOOT 2015
[2] A. Singh and V. Thaware, "Wire Me through Machine Learning", Black Hat USA 2017

[3] J. Jung et al., "AVPASS: Automatically Bypassing Android Malware Detection System", Black Hat USA 2017

[4] H. Anderson, "Bot vs. Bot: Evading Machine Learning Malware Detection", Black Hat USA 2017

[5] DARPA Cyber Grand Challenge (CGC), 2016

[6] D. Petro and B. Morris, "Weaponizing Machine Learning: Humanity was Overrated Anyway", DEF CON 2017

AI-aided attacks

AI capability embedded inside malware itself

Malware concealment – Locksmithing

AI Locksmithing

© 2003 Warner Bros. Pictures All Rights Reserved

Unleashing DeepLocker – AI Locksmithing

DeepLocker Deep Dive

Traditional targeted attack

AI-powered targeted attack

What is a Deep Neural Network (DNN)?

Deep Convolutional Neural Network

AlexNet (2012) [1] 8 layers, 622K neurons, 60 million parameters

[1] Krizhevsky, Alex, et. al. "Imagenet classification with deep convolutional neural networks." NIPS 2012.

Target attributes

Target detection

Template matching requires a template to match to.

Derivation of an unlocking key

DeepLocker – AI-Powered Concealment and Unlocking

AI-powered concealment

No decryption key available in malware sample to reverse engineer!

Key generation

Key generation

Target

High-dimensional facial features

Key

Analysis of the key generation model

Dataset: Labeled Faces in the Wild (LFW) http://vis-www.cs.umass.edu/lfw/

DeepLocker – AI-powered concealment

1 Target Class Concealment

Does not reveal **what** it is looking for (e.g., faces, organization, or a completely obscure object specific to the target environment)

3 Malicious Intent Concealment

Payload is fully encrypted concealing **how** the final attack is executed

2 Target Instance Concealment

If the target class is an individual, it does not reveal **who** it is looking for

Attacking DeepLocker – AI Lock Picking

Ways to counter

Ways to counter

Payload execution

AI-powered concealment

Code attestation

01 1Q

Block sensor access

Host-based monitoring

Brute-force key

Deceptive resources

Code analysis

AI usage monitoring

Brute-force attributes

Deceptive attributes

Reverse engineering AI models

Partial occlusion

Occlude a portion of the image to see how the embedding is affected (deconvnet) [1]

Neural attention model

Heatmap using the degree of excitation of neurons in each layer (excitation backprop) [2]

Debug neural networks

Fuzzing for neural networks (coverage-guided fuzzing) [3]

M. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," ECCV 2014
J. Zhang et. al., "Top-down neural attention by excitation backprop," ECCV 2016
A. Odena and I. Goodfellow, "TensorFuzz: Debugging neural networks with coverage-guided fuzzing," arXiv 2018

Takeaways

Rapid democratization of AI has made AI-powered attacks an imminent threat

DeepLocker is a demonstration of the potential of **AI-embedded attacks**

Current defenses will become obsolete and **new defenses are needed**

Thank you

Dhilung Kirat Jiyong Jang Marc Ph. Stoecklin 🖾 dkirat@us.ibm.com

⊠ jjang@us.ibm.com

🔀 mpstoeck@us.ibm.com

IBM Research