black hat

LUSA 284

AUGUST 4—-9, 2018

MANDALAY BAY / LA%*VEGAS - | /

¥ sBHUSA / @BLACK HAT EVENTS

L.

black hat

USA 2018

SDL That Won’t Break the
Bank

Steve Lipner
Executive Director
SAFECode
Lipner@SAFECode.org

L.

blackhat Overview

USA 2018

* Introduction

* SDL history and origins

* SDL big picture

* SDL for smaller/newer organizations
 Basic Principles

* What to do next

* Some final basics

* Conclusions

L.

black hat Introduction

LUSA 2013

* This briefing is targeted at organizations that are getting started with
SDL
* New organizations with limited resources
* Small organizations
* Organizations that haven’t paid attention to software security

* For bigger organizations that are big targets — perhaps a useful guide
to getting started
e But should expect to wind up doing everything

L.

black hat

USA 2018

SDL History and Origins

L.

black hat SDL Pre-History

LUSA 2013

* First there was Windows

* Then there was the Security Response Center
* Then there was Code Red, Nimda, UPnP

* Then there was Trustworthy Computing

* Then there was the Windows Server 2003 Security Push
* Trained everybody
* Deployed the tools we had
» Told everybody to stop work, do security reviews, fix bugs

* Pre-ship “audit” confirmed effectiveness of what was done
* Effectiveness led to decision to create sustained process

L.

black hat Creating the SDL

LUSA 2013

* |nitial SDL (v 2.0) derived from Windows Security Push

* Train engineers

 |dentify things the engineers must do to create secure software (more about this
later)

» Distribute “must do” activities throughout development cycle

* Final Security Review was the successor to the “audit”
* Did the engineering team do the SDL?
* Any major problems left?
* Not “test security in at the end”

e Updated SDL on a (more or less) regular cadence
* New classes of vulnerabilities
* New techniques for secure development

L.

black hat

USA 2018

SDL Big Picture
(or picture of a big SDL)

L.

black hat SDL Process Overview

USA 2018

#BHUSA

Training Requirements Design Release

Implementation Verification

e Core training e Analyze security J| e Threat modeling | e Specify tools e Dynamic/Fuzz e Response plan

and privacy risk e Attack surface e Enforce banned testing
e Define quality analysis functions

® Response
e Final security execution

e Verify threat review
gates e Static analysis models/attack e Release archive
surface
Education Technology and Process Accountability
— i

—

Ongoing Process Improvements

Microsoft Representation, roughly 2008

L.

black hat

LUSA 2013

Secure Design Principles

Threat Modeling

Perform Architectural and Design Reviews
Develop an Encryption Strategy

Standardize Identity and Access Management
Establish Log Requirements and Audit Practices

ure Coding Practices

Establish Coding Standards and Conventions
Use Safe Functions Only

* Design
* Sec

Use Current Compiler and Toolchain Versions and Secure
Compiler Options

Use Code Analysis Tools To Find Security Issues Early
Handle Data Safely

Handle Errors

. Manage Security Risk Inherent in the Use of Third-party
Components
* Manual Testing

Perform Manual Verification of Security
Features/Mitigations
Perform Penetration Testing

SAFECode Fundamentals

e Automated Testing

Use Static Analysis Security Testing Tools

Perform Dynamic Analysis Security Testing

Fuzz Parsers

Network Vulnerability Scanning

Verify Secure Configurations and Use of Platform
Mitigations

Perform Automated Functional Testing of Security
Features/Mitigations

* Manage Security Findings

Define Severity
Risk Acceptance Process

* Vulnerability Response and Disclosure

Define Internal and External Policies

Define Roles and Responsibilities

Ensure that Vulnerability Reporters Know Who to Contact
Manage Vulnerability Reporters

Monitor and Manage Third-party Component
Vulnerabilities

Fix the Vulnerability

Identify Mitigating Factors or Workarounds

Vulnerability Disclosure

Secure Development Lifecycle Feedback

L.

black hat

USA 2018

SDL for Smaller/Newer
Organizations

L.

blackhat \What If You're Not Microsoft?

LUSA 2013

* First SDL processes were created at big companies
* |'ve talked about Microsoft
* Other SAFECode member companies
e Other large companies

* For a big company
* You write a lot of code
* Products are under heavy scrutiny by vulnerability researchers — and attackers
» Security problems create intense customer pressure
* Policy may be “do everything”

* For a small company
* “Do everything” is probably unaffordable

O Smaller Organizations

blackhat .
usa=ms Advantages and Disadvantages

* Maybe less scrutiny

* Maybe less critical to customers (or maybe not!)

* Probably smaller, simpler product family

* May depend more on code other organizations write

~ Probably smaller security team

~ Probably less budget for security tools and training

~ Maybe less management commitment to product security

L.

black hat Basic Principles For SDL

LUSA 2013

* The developers are responsible for creating secure software

* The security team supports the developers
* Training
* Tools
* Consultation
 Validation (but not “penetration testing security in”)

* Rely on root cause analysis and continuous improvement
* Know why vulnerabilities occur
* Figure out how to prevent them
» Update your process, tools, training

L.

black hat So What To Do?

LUSA 2013

* Following slides suggest measures to incorporate in a “starter” SDL

* These are in (my estimated, rough) priority order and show
* What
* Why
 How (and resources)

* I’'m assuming an established organization with shipping products that
wants or needs to create an SDL

* I'm identifying discrete activities that go in your dev process “where
they fit” — integrate as appropriate whether Agile, DevOps, Spiral...

* Your mileage will vary

L.

blackhat Have A Response Process

LUSA 2013

* Be prepared to accept vulnerability reports
* Have an email alias and a website, answer reports
* Fix reported and related vulnerabilities timely and correctly
* Do root cause analysis
* Why did we have this vulnerability?
* How can we adapt our development process to prevent prevalent vulnerabilities?
e Response process is a key input to the definition of your SDL!
* |t's a good source of input on the state of your software security
* |t also helps build customer confidence even if you don’t have an SDL

* ISO 29147 and ISO 30111 are valuable guides for response

L.

black hat Track Security Work

LUSA 2013

* Have a way to know what you’ve done
* Fixing individual code bugs
* Executing parts of your SDL process

* If you don’t know what you’ve done, you’re flying blind
* When things go wrong, you don’t know why
* You don’t have a good idea what parts of your process are working — you may
not even have a process

* The more integrated SDL tracking is with your development bug
tracking, the better

* Add the bug types and effects
* There are some commercial tools for common tracking systems

O Have a Rating System and

black hat
USA =018 Bug Bar

* Think about the severity of different kinds of vulnerabilities and know
which are “must fix”

* Would you delay shipping to eliminate this problem?
* Security bugs get rated by severity in the tracking system

* Not all vulnerabilities are created equal
* Impact and exploitability matter

* Impact will depend on the product and how it’s used
* Simpler severity rating system is probably better
* You will probably underestimate ease of discovery and exploitation
e CVSS v3 and Microsoft bug bar are useful references

L.

black hat Secure Third Party Code

LUSA 2013

* Select secure third party code and be ready to deal with
vulnerabilities in components

* “Secure” based on CVE history, reputation, developer having an SDL process
e Cases range from embedding a product to copying a snippet of source code
* Have an inventory

* Have a plan to evaluate and respond

* Nobody builds everything themselves any more

* This is potentially more important than dealing with vulnerabilities in code you
write

* See SAFECode guide on third-party components
* Some commercial tools to help with component management

L.

black hat Do The Easy Stuft

LUSA 2013

* Adopt secure development options that are “free”
* Built into your tools
* Little or no impact on developers, performance
* These are no-brainers

* The secure development options are there because they address
common vulnerabilities

* Maybe you won’t experience them, but they’re common

* Examples
* Building with compile and build time mitigations such as ASLR and DEP
* Banning unsafe C/C++ APlIs

L.

blackhat Motivate the Organization

LUSA 2013

* Not just the security team — get executive buy-in

* Get your engineering staff signed up to shipping secure code
* It’s 2018 — this shouldn’t be necessary but...
* “Why would anyone do that?”
e “Tell them not to do that.”

* Developers must understand that product security is
* Important
* Their job

* Message has to come from someone they’ll believe, and the message
has to be serious

L.

black hat Train the Developers

LUSA 2013

* Once the developers are motivated, tell them what they need to do

* Their college CS or SWE program didn’t tell them ®
* Training needs to be targeted to your developers, technology, products

* You're counting on the developers to produce secure software — not
the security team

* Free and commercial resources are available (although targeted to
your technology and product is better)
* OWASP
* SAFECode

L.

black hat Have A Secure Design

LUSA 2013

e Design or architect the product to protect itself and the users’ data

* Designed-in bad security is expensive to fix, and probably impossible
to fix quickly

4 SQL Database

‘ Trust boundary

Client requests

* The best design analysis technique is threat modeling (see below) but
copying a secure architecture may also be a practical way to start

L.

blackhat Use Platform Security Features

USA 2018

* Don’t roll your own security features if security isn’t your business

* Many products require security features

* Encryption

* |dentity and Access Management

* Logging and Auditing

* All are likely to be provided by platform or framework
e Use the platform features in a secure way

* This is cheaper than rolling your own, and safer!

L.

black hat Minimize Attack Surface

LUSA 2013

» “Attack surface” is jargon for exposed interfaces
* Open ports
e Unprotected files
* Unauthenticated services

* |f you close attack surface, you have to worry less about vulnerabilities in a
component

» Users still have to use your product — but there’s no reason to expose something
that’s not used

* You can reduce attack surface with settings or code
* See the SDL book (free download) for more on attack surface
e Scanners can tell you what attack surface you’ve exposed

L.

blackhat Avoid Code Vulnerabilities (1)

LUSA 2013

* Vulnerabilities from code-level errors are major source of problems
* Lots of languages and frameworks, lots of tools and techniques

* Some techniques (organizations with mature SDL do all)
* Train your developers to avoid dangerous coding constructs
Use safe libraries (string handling, input and output sanitization, XSS safety)
Run code analysis tools
Run testing tools
Code-level penetration testing

L.

blackhat Avoid Code Vulnerabilities (2)

LUSA 2013

* Don’t get overwhelmed
* Your technology narrows the problem (no buffer overruns in managed code)

* Response incidents and root cause analysis focus your effort
* Train on the problems you (or other companies like you) have

* All buffer overruns? You’re already using safe libraries — probably time for
static analysis and maybe fuzzing

e All XSS? Maybe time for new libraries and testing

* Trying to do everything is great, but starting out, you need to
prioritize

blgc’:khat’ Avoid Code Vulnerabilities (3)

LUSA 2013

* Integrate security into development
* |deally, use desktop tools rather than run tools at the end

* Integrate security tests into your pre-deployment tests

* If you wait for the security team to run the tools and tests, the developers won't
have time to fix the bugs — “we have to ship!” — this is critical for Agile and DevOps

* Select tools and enable tests cautiously
* Your developers will hate false positives (Google Tricorder aims for 90% true positive)

* Many tools take a lot of “training” for your code base and application

* Lots of tool options
* Free/OSS (OWASP, Linux Foundation CllI)
* Free tool scans if you’re building OSS code

 Commercial products
e Services (vendor runs the tool and gives you results)

L.

black hat Threat Model

LUSA 2013

* Threat modeling addresses design errors

* Describe your design, then think about what can go wrong in a structured way
e STRIDE vulnerabilities
* Evaluate potential vulnerabilities and fix the important ones (see “Bug Bar”)

* Design level vulnerabilities are less common than code level, but they
still occur
e Can be very serious when they happen (see “Secure Design”)
* Do a high level threat model first, then come back for details

* Lots of books, guides (SAFECode guide to tactical threat modeling),
free and commercial tools, consultants

L.

black hat

USA 2018

Some Final Basics

L.

blackhat \erify You've Done the SDL

LUSA 2013

e Understand security before you ship or deploy
 Whether you're releasing an OS every three years or an update to a website this
afternoon

* The bug tracking system should have a bug for every requirement (and for
investigating/fixing every tool find)
* If the bugs are fixed, you’ve done the process
* |f not, it’s time for a discussion about risk

* Penetration testing consultants?
 Maybe — but know why you’re using them

* |'ve listed verification late — that’s where it sits in the schedule — but even if
you only adopt a minimal SDL, you should verify that you’ve done it

L.

blackhat Have A Bug Bounty Program

LUSA 2013

* A bug bounty is a great complement to (or component of) a response
process and SDL

* You pay external researchers for finding and reporting vulnerabilities
* Great input to your root cause analysis and SDL updating

* It’s not a substitute for having an SDL process
* A good way to have the same experience over and over...

* So if you’re not doing at least some of the design and code parts of the SDL
process, don’t expect a bug bounty to add much to your product security

L.

black hat Conclusions

LUSA 2013

* SDL is an effective way to integrate security from attack into your
software

* Full SDL process has a lot of parts, but adoption can be staged or
tailored for affordability

* Principles are important
* The developers build code that’s secure
* Root cause analysis drives your priorities

* A few basics to get started
* Response process and root cause analysis
 Management of third party component security

L.

blackhat Resources

USA 2018

* BSIMM - https://www.bsimm.com/

* Howard and Lipner SDL book - https://blogs.msdn.microsoft.com/microsoft press/2016/04/19/free-ebook-
the-security-development-lifecycle/ (free)

. EO 2)9147-http://standards.iso.org/ittf/PuincIvAvaiIabIeStandards/c045170 ISO IEC 29147 2014.zip
ree

* ISO 30111 - https://www.iso.org/standard/53231.html (paywall)

* Linux Foundation Core Infrastructure Initiative - https://www.coreinfrastructure.org/programs/tooling/
* Microsoft SDL v5.2 - https://msdn.microsoft.com/en-us/library/windows/desktop/cc307748.aspx

* Microsoft SDL Bug Bar - https://msdn.microsoft.com/en-us/library/windows/desktop/cc307404.aspx

* OWASP resources (documents, tools, training) - https://www.owasp.org/index.php/Main Page

 SAFECode documents - https://safecode.org/publications/

* SAFECode training - https://safecode.org/training/

https://blogs.msdn.microsoft.com/microsoft_press/2016/04/19/free-ebook-the-security-development-lifecycle/
http://standards.iso.org/ittf/PubliclyAvailableStandards/c045170_ISO_IEC_29147_2014.zip
https://www.iso.org/standard/53231.html
https://msdn.microsoft.com/en-us/library/windows/desktop/cc307404.aspx
https://www.owasp.org/index.php/Main_Page
https://safecode.org/publications/
https://safecode.org/training/

