


SDL That Won’t Break the 
Bank
Steve Lipner

Executive Director

SAFECode

Lipner@SAFECode.org



Overview

• Introduction

• SDL history and origins

• SDL big picture

• SDL for smaller/newer organizations

• Basic Principles

• What to do next

• Some final basics

• Conclusions



Introduction

• This briefing is targeted at organizations that are getting started with 
SDL 
• New organizations with limited resources

• Small organizations

• Organizations that haven’t paid attention to software security

• For bigger organizations that are big targets – perhaps a useful guide 
to getting started
• But should expect to wind up doing everything



SDL History and Origins



SDL Pre-History

• First there was Windows 

• Then there was the Security Response Center

• Then there was Code Red, Nimda, UPnP

• Then there was Trustworthy Computing

• Then there was the Windows Server 2003 Security Push
• Trained everybody
• Deployed the tools we had
• Told everybody to stop work, do security reviews, fix bugs

• Pre-ship “audit” confirmed effectiveness of what was done

• Effectiveness led to decision to create sustained process



Creating the SDL

• Initial SDL (v 2.0) derived from Windows Security Push
• Train engineers
• Identify things the engineers must do to create secure software (more about this 

later)
• Distribute “must do” activities throughout development cycle

• Final Security Review was the successor to the “audit”
• Did the engineering team do the SDL?
• Any major problems left?
• Not “test security in at the end”

• Updated SDL on a (more or less) regular cadence
• New classes of vulnerabilities
• New techniques for secure development



SDL Big Picture
(or picture of a big SDL)



Ongoing Process Improvements

Technology and Process
Education Accountability 

SDL Process Overview

Microsoft Representation, roughly 2008



SAFECode Fundamentals

• Design
• Secure Design Principles
• Threat Modeling
• Perform Architectural and Design Reviews
• Develop an Encryption Strategy
• Standardize Identity and Access Management
• Establish Log Requirements and Audit Practices

• Secure Coding Practices
• Establish Coding Standards and Conventions
• Use Safe Functions Only
• Use Current Compiler and Toolchain Versions and Secure 

Compiler Options
• Use Code Analysis Tools To Find Security Issues Early
• Handle Data Safely
• Handle Errors

• Manage Security Risk Inherent in the Use of Third-party 
Components

• Manual Testing
• Perform Manual Verification of Security 

Features/Mitigations
• Perform Penetration Testing

• Automated Testing
• Use Static Analysis Security Testing Tools
• Perform Dynamic Analysis Security Testing
• Fuzz Parsers
• Network Vulnerability Scanning
• Verify Secure Configurations and Use of Platform 

Mitigations
• Perform Automated Functional Testing of Security 

Features/Mitigations
• Manage Security Findings

• Define Severity
• Risk Acceptance Process

• Vulnerability Response and Disclosure
• Define Internal and External Policies
• Define Roles and Responsibilities
• Ensure that Vulnerability Reporters Know Who to Contact
• Manage Vulnerability Reporters
• Monitor and Manage Third-party Component 

Vulnerabilities
• Fix the Vulnerability
• Identify Mitigating Factors or Workarounds
• Vulnerability Disclosure
• Secure Development Lifecycle Feedback



SDL for Smaller/Newer 
Organizations



What If You’re Not Microsoft?

• First SDL processes were created at big companies
• I’ve talked about Microsoft
• Other SAFECode member companies 
• Other large companies

• For a big company
• You write a lot of code
• Products are under heavy scrutiny by vulnerability researchers – and attackers
• Security problems create intense customer pressure
• Policy may be “do everything”

• For a small company
• “Do everything” is probably unaffordable



Smaller Organizations
Advantages and Disadvantages

⁺ Maybe less scrutiny

⁺ Maybe less critical to customers (or maybe not!)

⁺ Probably smaller, simpler product family

• May depend more on code other organizations write

⁻ Probably smaller security team

⁻ Probably less budget for security tools and training

⁻ Maybe less management commitment to product security



Basic Principles For SDL

• The developers are responsible for creating secure software

• The security team supports the developers
• Training

• Tools

• Consultation

• Validation (but not “penetration testing security in”)

• Rely on root cause analysis and continuous improvement
• Know why vulnerabilities occur

• Figure out how to prevent them

• Update your process, tools, training



So What To Do?

• Following slides suggest measures to incorporate in a “starter” SDL

• These are in (my estimated, rough) priority order and show
• What
• Why
• How (and resources)

• I’m assuming an established organization with shipping products that 
wants or needs to create an SDL

• I’m identifying discrete activities that go in your dev process “where 
they fit” – integrate as appropriate whether Agile, DevOps, Spiral…

• Your mileage will vary



Have A Response Process

• Be prepared to accept vulnerability reports
• Have an email alias and a website, answer reports

• Fix reported and related vulnerabilities timely and correctly

• Do root cause analysis
• Why did we have this vulnerability?

• How can we adapt our development process to prevent prevalent vulnerabilities?

• Response process is a key input to the definition of your SDL!
• It’s a good source of input on the state of your software security

• It also helps build customer confidence even if you don’t have an SDL

• ISO 29147 and ISO 30111 are valuable guides for response



Track Security Work

• Have a way to know what you’ve done
• Fixing individual code bugs
• Executing parts of your SDL process

• If you don’t know what you’ve done, you’re flying blind
• When things go wrong, you don’t know why
• You don’t have a good idea what parts of your process are working – you may 

not even have a process

• The more integrated SDL tracking is with your development bug 
tracking, the better
• Add the bug types and effects
• There are some commercial tools for common tracking systems



Have a Rating System and
Bug Bar

• Think about the severity of different kinds of vulnerabilities and know 
which are “must fix”
• Would you delay shipping to eliminate this problem?

• Security bugs get rated by severity in the tracking system 

• Not all vulnerabilities are created equal
• Impact and exploitability matter

• Impact will depend on the product and how it’s used
• Simpler severity rating system is probably better

• You will probably underestimate ease of discovery and exploitation

• CVSS v3 and Microsoft bug bar are useful references



Secure Third Party Code

• Select secure third party code and be ready to deal with 
vulnerabilities in components
• “Secure” based on CVE history, reputation, developer having an SDL process
• Cases range from embedding a product to copying a snippet of source code
• Have an inventory
• Have a plan to evaluate and respond

• Nobody builds everything themselves any more
• This is potentially more important than dealing with vulnerabilities in code you 

write

• See SAFECode guide on third-party components

• Some commercial tools to help with component management



Do The Easy Stuff

• Adopt secure development options that are “free”
• Built into your tools 

• Little or no impact on developers, performance

• These are no-brainers 

• The secure development options are there because they address 
common vulnerabilities 
• Maybe you won’t experience them, but they’re common

• Examples
• Building with compile and build time mitigations such as ASLR and DEP

• Banning unsafe C/C++ APIs 



Motivate the Organization

• Not just the security team – get executive buy-in

• Get your engineering staff signed up to shipping secure code
• It’s 2018 – this shouldn’t be necessary but…
• “Why would anyone do that?”
• “Tell them not to do that.”

• Developers must understand that product security is
• Important
• Their job

• Message has to come from someone they’ll believe, and the message 
has to be serious



Train the Developers

• Once the developers are motivated, tell them what they need to do
• Their college CS or SWE program didn’t tell them 

• Training needs to be targeted to your developers, technology, products

• You’re counting on the developers to produce secure software – not 
the security team

• Free and commercial resources are available (although targeted to 
your technology and product is better)
• OWASP

• SAFECode



Have A Secure Design

• Design or architect the product to protect itself and the users’ data

• Designed-in bad security is expensive to fix, and probably impossible 
to fix quickly

• The best design analysis technique is threat modeling (see below) but 
copying a secure architecture may also be a practical way to start



Use Platform Security Features

• Don’t roll your own security features if security isn’t your business

• Many products require security features
• Encryption
• Identity and Access Management
• Logging and Auditing
• All are likely to be provided by platform or framework

• Use the platform features in a secure way
• This is cheaper than rolling your own, and safer!



Minimize Attack Surface

• “Attack surface” is jargon for exposed interfaces
• Open ports
• Unprotected files
• Unauthenticated services

• If you close attack surface, you have to worry less about vulnerabilities in a 
component
• Users still have to use your product – but there’s no reason to expose something 

that’s not used

• You can reduce attack surface with settings or code

• See the SDL book (free download) for more on attack surface

• Scanners can tell you what attack surface you’ve exposed



Avoid Code Vulnerabilities (1)

• Vulnerabilities from code-level errors are major source of problems

• Lots of languages and frameworks, lots of tools and techniques

• Some techniques (organizations with mature SDL do all)
• Train your developers to avoid dangerous coding constructs

• Use safe libraries (string handling, input and output sanitization, XSS safety)

• Run code analysis tools

• Run testing tools

• Code-level penetration testing



Avoid Code Vulnerabilities (2)

• Don’t get overwhelmed
• Your technology narrows the problem (no buffer overruns in managed code)

• Response incidents and root cause analysis focus your effort 
• Train on the problems you (or other companies like you) have

• All buffer overruns? You’re already using safe libraries – probably time for 
static analysis and maybe fuzzing

• All XSS? Maybe time for new libraries and testing

• Trying to do everything is great, but starting out, you need to 
prioritize



Avoid Code Vulnerabilities (3)

• Integrate security into development
• Ideally, use desktop tools rather than run tools at the end
• Integrate security tests into your pre-deployment tests
• If you wait for the security team to run the tools and tests, the developers won’t 

have time to fix the bugs – “we have to ship!” – this is critical for Agile and DevOps

• Select tools and enable tests cautiously
• Your developers will hate false positives (Google Tricorder aims for 90% true positive)
• Many tools take a lot of “training” for your code base and application

• Lots of tool options
• Free/OSS (OWASP, Linux Foundation CII)
• Free tool scans if you’re building OSS code
• Commercial products
• Services (vendor runs the tool and gives you results)



Threat Model

• Threat modeling addresses design errors
• Describe your design, then think about what can go wrong in a structured way

• STRIDE vulnerabilities

• Evaluate potential vulnerabilities and fix the important ones (see “Bug Bar”)

• Design level vulnerabilities are less common than code level, but they 
still occur
• Can be very serious when they happen (see “Secure Design”)

• Do a high level threat model first, then come back for details

• Lots of books, guides (SAFECode guide to tactical threat modeling), 
free and commercial tools, consultants



Some Final Basics



Verify You’ve Done the SDL

• Understand security before you ship or deploy
• Whether you’re releasing an OS every three years or an update to a website this 

afternoon

• The bug tracking system should have a bug for every requirement (and for 
investigating/fixing every tool find)
• If the bugs are fixed, you’ve done the process
• If not, it’s time for a discussion about risk

• Penetration testing consultants?
• Maybe – but know why you’re using them

• I’ve listed verification late – that’s where it sits in the schedule – but even if 
you only adopt a minimal SDL, you should verify that you’ve done it



Have A Bug Bounty Program

• A bug bounty is a great complement to (or component of) a response 
process and SDL

• You pay external researchers for finding and reporting vulnerabilities
• Great input to your root cause analysis and SDL updating

• It’s not a substitute for having an SDL process 
• A good way to have the same experience over and over…

• So if you’re not doing at least some of the design and code parts of the SDL 
process, don’t expect a bug bounty to add much to your product security



Conclusions

• SDL is an effective way to integrate security from attack into your 
software

• Full SDL process has a lot of parts, but adoption can be staged or 
tailored for affordability

• Principles are important
• The developers build code that’s secure

• Root cause analysis drives your priorities

• A few basics to get started
• Response process and root cause analysis

• Management of third party component security



Resources

• BSIMM - https://www.bsimm.com/

• Howard and Lipner SDL book - https://blogs.msdn.microsoft.com/microsoft_press/2016/04/19/free-ebook-
the-security-development-lifecycle/ (free)

• ISO 29147 - http://standards.iso.org/ittf/PubliclyAvailableStandards/c045170_ISO_IEC_29147_2014.zip
(free)

• ISO 30111 - https://www.iso.org/standard/53231.html (paywall)

• Linux Foundation Core Infrastructure Initiative - https://www.coreinfrastructure.org/programs/tooling/

• Microsoft SDL v5.2 - https://msdn.microsoft.com/en-us/library/windows/desktop/cc307748.aspx

• Microsoft SDL Bug Bar - https://msdn.microsoft.com/en-us/library/windows/desktop/cc307404.aspx

• OWASP resources (documents, tools, training) - https://www.owasp.org/index.php/Main_Page

• SAFECode documents - https://safecode.org/publications/

• SAFECode training - https://safecode.org/training/

https://blogs.msdn.microsoft.com/microsoft_press/2016/04/19/free-ebook-the-security-development-lifecycle/
http://standards.iso.org/ittf/PubliclyAvailableStandards/c045170_ISO_IEC_29147_2014.zip
https://www.iso.org/standard/53231.html
https://msdn.microsoft.com/en-us/library/windows/desktop/cc307404.aspx
https://www.owasp.org/index.php/Main_Page
https://safecode.org/publications/
https://safecode.org/training/

